
z/OS

MVS Initialization and Tuning Reference

SA22-7592-03

IBM

z/OS

MVS Initialization and Tuning Reference

SA22-7592-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 583.

Fourth Edition, September 2002

This is a major revision to SA22-7592-02.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1 Release 4 of z/OS.e™ (5655-G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xvii

Tables . xix

About this document . xxi
Who should use this document . xxi
MVS™ Workload Management . xxi
Where to find more information . xxi

Using LookAt to look up message explanations . xxii
Accessing z/OS licensed documents on the Internet xxii
Information updates on the web. xxiii

How to read syntax conventions . xxiii

Summary of changes . xxv

Part 1. Overview . 1

Chapter 1. System tailoring . 3
MVS hardware configuration definition . 3
System tailoring at initialization time . 3

Types of IPL . 4
Operator entry of parameters . 5
Description and use of the parmlib concatenation . 6
Specifying an alternate nucleus . 8
Specifying an alternate master (system) catalog. 8

Understanding the master scheduler job control language 9
Where does the master JCL reside? . 9
Changing the master scheduler JCL . 10
Setting up started tasks with the Master JCL . 11
Writing your own master scheduler JCL . 12

Overview of parmlib members . 14
Implicit system parameters . 21
Managing system security — APF-authorized library list 22

Choosing an APF list format . 22
Specifying the APF list . 23

Specifying installation exits . 24
Specifying LNKLST concatenations . 24

Chapter 2. Sharing parmlib definitions . 25
Objectives for sharing parmlib . 25
What are system symbols? . 25

Static system symbols. 27
Dynamic system symbols . 28
Symbols reserved for system use . 29

Setting up a shared parmlib. 30
Step 1. Plan to share parmlib members . 30
Step 2. Determine where to specify system parameters 33
Step 3. Determine where to specify the system name 34
Step 4. Know the considerations for a mixed sysplex 35
Step 5. Create an IEASYMxx parmlib member . 36
Step 6. Code support for system symbols in LOADxx 40

Using system symbols in parmlib. 41
Step 1. Know the rules for using system symbols in parmlib 42

© Copyright IBM Corp. 1991, 2002 iii

||

Step 2. Determine where to use system symbols in parmlib 45
Step 3. Verify system symbols in parmlib . 46

Displaying static system symbols. 46
Diagnosing problems with static system symbols . 46
Indirect volume serial support . 46
Using indirect volume serial support. 47

Restrictions. 48

Part 2. Members of SYS1.PARMLIB . 49

Chapter 3. ADYSETxx (dump suppression) . 51
Parameter in IEASYSxx (or supplied by the operator): 51
Syntax rules for ADYSETxx. 51
Syntax format of ADYSETxx . 52
IBM-supplied defaults for ADYSETxx . 52
Statements/parameters for ADYSETxx. 52

Chapter 4. ALLOCxx (allocation system defaults) 57
Parameter in IEASYSxx (supplied by the operator): . 57
Syntax rules for ALLOCxx . 57
Syntax format of ALLOCxx . 58
Syntax example of ALLOCxx . 59
IBM-supplied default for ALLOCxx . 59
Statements/parameters for ALLOCxx . 59

Chapter 5. APPCPMxx (Define APPC/MVS configuration) 73
Changing values . 73
Parameter in IEASYSxx (or supplied by the operator): 73
Syntax rules for APPCPMxx . 73
Syntax format of APPCPMxx . 74
IBM-supplied default for APPCPMxx . 74
Statements/parameters for APPCPMxx . 74
Response to errors in APPCPMxx . 79

Chapter 6. ASCHPMxx (APPC/MVS transaction scheduler) 81
Changing values . 81
Default values. 81
Support for system symbols . 81
Parameter in IEASYSxx (or supplied by the operator): 82
Syntax rules for ASCHPMxx . 82
Syntax format of ASCHPMxx . 82
IBM-supplied default for ASCHPMxx . 82
Statements/parameters for ASCHPMxx . 82

Chapter 7. BLSCECT (Formatting exits for dump and trace analysis) 89
Parameter in IEASYSxx (or supplied by the operator): 89
Syntax rules for BLSCECT . 89
IBM-supplied default for BLSCECT . 89
Statements/parameters for BLSCECT . 89

Chapter 8. BLSCUSER (Installation customization for dump and trace analysis) 91
Parameter in IEASYSxx (or issued by the operator): 91
Syntax rules for BLSCUSER . 91
Syntax format of BLSCUSER . 92
IBM-supplied default for BLSCUSER . 93
Statements/parameters for BLSCUSER, BLSCECT, and embedded parmlib members 93

iv z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 103
Syntax rules for BPXPRMxx . 103
Syntax of BPXPRMxx . 104
Syntax example of BPXPRMxx . 107
IBM-supplied default for BPXPRMxx . 108
Statements and parameters for BPXPRMxx . 108

Chapter 10. CLOCKxx (time of day parameters) . 135
Parameter in IEASYSxx (or supplied by the operator): 135
Syntax rules for CLOCKxx. 135
Syntax format of CLOCKxx . 135
IBM-supplied default for CLOCKxx. 136
Statements/parameters for CLOCKxx. 136

Chapter 11. CNGRPxx (Specify alternate console groups) 139
Console groups in a SYSPLEX . 139
Selecting a CNGRPxx member . 139
Syntax rules for CNGRPxx . 139
Syntax examples . 140
Syntax format of CNGRPxx . 140
IBM-supplied default for CNGRPxx . 140
Statement/parameters for CNGRPxx . 140

Chapter 12. CNLcccxx (Time and date format for translated messages) 143
Restrictions for CNLcccxx . 143
Parameter in IEASYSxx (or supplied by the operator): 143
Selecting a CNLcccxx member . 143
Syntax rules for CNLcccxx. 144
Syntax format of CNLcccxx . 144
Syntax example of CNLcccxx . 145
Statements/parameters for CNLcccxx . 145

Chapter 13. COFDLFxx (hiperbatch parameters) 147
Parameter in IEASYSxx (or issued by the operator) 147
Syntax rules for COFDLFxx . 147
Syntax format of COFDLFxx . 148
Starting DLF . 148
Statements/parameters for COFDLFxx . 148

Chapter 14. COFVLFxx (virtual lookaside facility parameters) 149
Collecting VLF statistics . 150
Parameter in IEASYSxx (or issued by the operator) 150
Syntax rules for COFVLFxx . 150
Syntax format of COFVLFxx . 151
Starting VLF . 151
Statements/parameters for COFVLFxx . 151

Chapter 15. COMMNDxx (Commands automatically issued at initialization) 153
Parameter in IEASYSxx (or issued by the operator): 153
Support for system symbols . 154
Syntax rules for COMMNDxx. 154
IBM-supplied default for COMMNDxx. 154
Statements/parameters for COMMNDxx. 155

Chapter 16. CONFIGxx (standard configuration list) 157
Comparing the current and standard configurations 157

Contents v

Matching configurations. 157
Nonmatching configurations . 157
Error in CONFIGxx statement . 157

Reconfiguring system elements . 158
Parameter in IEASYSxx: . 158
Syntax rules for CONFIGxx . 158
IBM-supplied default for CONFIGxx . 158
Statements/parameters for CONFIGxx . 158

Chapter 17. CONSOLxx (Console configuration definition) 165
Using CONSOLxx in a sysplex . 165
Related members of parmlib . 166
Related commands . 166
CONSOLE statement . 167
INIT statement . 168
DEFAULT statement . 168
HARDCOPY statement . 168
IEASYSxx: . 169
Syntax rules for CONSOLxx . 169
IBM-supplied default for CONSOLxx . 170
Statements/parameters for CONSOLxx . 170
Devices used as MCS consoles. 192
Maximum and default specifications for AREA and SEG 193

Chapter 18. COUPLExx (cross-system coupling facility (XCF) parameters) 195
Parameter in IEASYSxx (or supplied by the operator): 195
Syntax rules for COUPLExx . 195
Syntax format of COUPLExx . 196
IBM-supplied default for COUPLExx . 196
Statements/parameters for COUPLExx . 196

Chapter 19. CSVLLAxx (library lookaside (LLA) list) 205
Starting LLA . 205
Parameter in IEASYSxx (or supplied by the operator): 205
Syntax rules for CSVLLAxx . 205
Syntax format of CSVLLAxx . 206
IBM-supplied default for CSVLLAxx . 206
Statements/parameters for CSVLLAxx . 206

Chapter 20. CSVRTLxx (Define the RTLS configuration) 211
Parameter in IEASYSxx (or supplied by the operator): 212
Syntax rules for CSVRTLxx . 213
Syntax format of CSVRTLxx . 214
IBM-supplied default for CSVRTLxx . 214
Statements/parameters for CSVRTLxx . 214
Examples . 218

Example 1 . 218
Example 2 . 218

Chapter 21. CTncccxx (component trace parameters) 219
Tracing of MVS components . 219
Tracing of installation-provided applications . 219
Parameter in IEASYSxx (or supplied by the operator): 219
Syntax rules for CTncccxx . 219
Syntax examples . 220
Syntax format of CTncccxx . 221

vi z/OS V1R4.0 MVS Initialization and Tuning Reference

IBM-supplied default for CTncccxx. 221
Statements/parameters for CTncccxx. 221

Chapter 22. CUNUNIxx (Unicode Conversion Environment) 225
Selecting a CUNUNIxx member. 225
Parameter in IEASYSxx: . 225
Syntax rules for CUNUNIxx . 225
Syntax format of CUNUNIxx . 226
IBM-supplied default for CUNUNIxx . 226
Statements/parameters for CUNUNIxx . 226

Chapter 23. DEVSUPxx (Device Support Options) 227
Parameter in IEASYSxx (or Issued By the Operator) 227
Syntax Rules for DEVSUPxx . 227
Syntax Format of DEVSUPxx . 228
IBM-Supplied Default for DEVSUPxx . 228
Statements/Parameters for DEVSUPxx . 229

Volume Partitioning Parameters . 230

Chapter 24. DIAGxx (Control common storage tracking and GFS trace) 233
Specifying the DIAGxx members . 233
Parameter in IEASYSxx (or specified by the operator): 234
Syntax rules for DIAGxx . 234
Syntax format of DIAGxx . 234
IBM-supplied default for DIAGxx . 234
Statements/parameters for DIAGxx . 235

Chapter 25. EPHWP00 (BookManager ® topic extraction) 239
Parameter in IEASYSxx (or issued by the operator): 239
Syntax rules for EPHWP00 . 240
Syntax format of EPHWP00 . 240
IBM-supplied default for EPHWP00 . 240

Chapter 26. EXITxx (allocation installation exit list) 241
Parameter in IEASYSxx (or issued by the operator): 241
Syntax rules for EXITxx. 242
Syntax format of EXITxx . 242
IBM-supplied default for EXITxx. 242
Statements/parameters for EXITxx. 242

Chapter 27. EXSPATxx (excessive spin condition actions) 243
Parameter in IEASYSxx (or issued by the operator): 243
Syntax rules for EXSPATxx . 243
Syntax example of EXSPATxx . 243
IBM-supplied default for EXSPATxx . 244
Statements/parameters for EXSPATxx . 244
Example of EXSPATxx . 245

Chapter 28. GRSCNFxx (global resource serialization configuration) 247
Parameters in IEASYSxx: . 248
Syntax rules for GRSCNFxx . 248
IBM-supplied default for GRSCNFxx . 249
Statements/parameters for GRSCNFxx . 249

Chapter 29. GRSRNLxx (global resource serialization resource name lists) 253
Parameter in IEASYSxx (or supplied by the operator): 253

Contents vii

Support for system symbols . 253
Syntax rules for GRSRNLxx . 253
IBM-supplied default for GRSRNLxx . 254
Statements/parameters for GRSRNLxx . 255

Chapter 30. GTFPARM (generalized trace facility parameters) 257
Parameter in IEASYSxx (or issued by the operator): 257
Syntax rules for GTFPARM . 257
IBM-supplied default for GTFPARM . 258
Statements/parameters for GTFPARM . 259

Chapter 31. IEAABD00 (ABDUMP written to a SYSABEND data set) 261
Parameter in IEASYSxx (or specified by the operator): 261
Syntax rules for IEAABD00 . 261
IBM-supplied default for IEAABD00 . 262
Statements/parameters for IEAABD00 . 262

Chapter 32. IEAAPFxx (authorized program facility list) 265
Parameter in IEASYSxx (or Supplied by the Operator): 266
Syntax Rules for IEAAPFxx . 266
IBM-Supplied Default for IEAAPFxx . 267
Statements/Parameters for IEAAPFxx . 267

Chapter 33. IEAAPP00 (authorized I/O appendage routines) 269
Syntax rules for IEAAPP00 . 269
IBM-supplied default for IEAAPP00 . 269
Statements/parameters for IEAAPP00 . 269

Chapter 34. IEACMD00 (IBM-supplied commands) 271
Parameter in IEASYSxx (or supplied by the operator): 271
Syntax rules for IEACMD00 . 272
IBM-supplied default for IEACMD00 . 272
Statements/parameters for IEACMD00 . 272

Chapter 35. IEADMCxx (DUMP command parmlib) 273
Performance implications . 273
Syntax rules for IEADMCxx . 273
Syntax format of IEADMCxx . 273
IBM-supplied default for IEADMCxx . 273
Statements/parameters for IEADMCxx . 274

Chapter 36. IEADMP00 (ABDUMP written to a SYSUDUMP data set) 277
Parameter in IEASYSxx (or specified by the operator): 277
Syntax rules for IEADMP00 . 277
IBM-supplied default for IEADMP00 . 278
Statements/parameters for IEADMP00 . 278

Chapter 37. IEADMR00 (ABDUMP written to a SYSMDUMP data set) 281
Recommendation for IEADMR00 with z/OS UNIX . 281
Parameter in IEASYSxx (or specified by the operator): 281
Syntax rules for IEADMR00 . 281
IBM-supplied default for IEADMR00 . 282
Statements/parameters for IEADMR00 . 282

Chapter 38. IEAFIXxx (fixed LPA list) . 283
Parameter in IEASYSxx (or specified by the operator): 283

viii z/OS V1R4.0 MVS Initialization and Tuning Reference

Syntax rules for IEAFIXxx . 284
Syntax format of IEAFIXxx. 284
Syntax example of IEAFIXxx . 284
IBM-supplied default for IEAFIXxx . 284
Statements/parameters for IEAFIXxx . 285

Chapter 39. IEAICSxx (installation control specifications) 287
Syntax rules for IEASICSxx . 287
Statements/parameters for IEAICSxx . 287

Chapter 40. IEAIPSxx (installation performance specifications) 291
Syntax rules for IEAIPSxx . 292
Statements/parameters for IEAIPSxx . 292

Chapter 41. IEALPAxx (modified LPA list) . 303
Parameter in IEASYSxx (or supplied by the operator): 303
Syntax rules for IEALPAxx. 304
Syntax format of IEALPAxx . 304
Syntax example of IEALPAxx. 304
IBM-supplied default for IEALPAxx. 304
Statements/parameters for IEALPAxx. 304

Chapter 42. IEAOPTxx (OPT parameters) . 307
Syntax rules for IEAOPTxx . 308
Statements/parameters for IEAOPTxx . 308

Chapter 43. IEAPAKxx (LPA pack list) . 319
Parameter in IEASYSxx (or supplied by the operator): 319
Syntax rules for IEAPAKxx . 319
IBM-supplied default for IEAPAKxx . 320
Statements/parameters for IEAPAKxx . 320

Chapter 44. IEASLPxx (SLIP commands) . 321
Parameter in IEASYSxx (or supplied by the operator): 321
Syntax rules for IEASLPxx. 321
IBM-supplied default for IEASLPxx. 322
Using system commands . 323

Chapter 45. IEASVCxx (installation-defined SVCs) 325
Parameter in IEASYSxx (or entered by the operator): 325
Syntax rules for IEASVCxx . 325
Syntax examples of IEASVCxx . 325
IBM-supplied default for IEASVCxx . 325
Statements/parameters for IEASVCxx . 326

Chapter 46. IEASYMxx (symbol definitions and IEASYSxx members) 329
Parameter in LOADxx: . 329
Performance implications . 329
Syntax rules for IEASYMxx . 329
Syntax format of IEASYMxx . 330
IBM-supplied default for IEASYMxx . 330
Statements/parameters for IEASYMxx . 330

Chapter 47. IEASYSxx (system parameter list) . 335
Overview of IEASYSxx parameters . 335
Changes to initialization parameters . 338

Contents ix

Support for system symbols . 338
Parameter specified by the operator: . 339
Syntax rules for IEASYSxx . 339
IBM-supplied default for IEASYSxx . 340
Specifying the list option for IEASYSxx parameters 340
Statements/parameters for IEASYSxx . 340

Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE and TERMINAL parameters) . . . 381
Missing interrupt handler (MIH) . 381
I/O timing . 382
Interaction of MIH and I/O timing processing . 383
Hot I/O (HOTIO) . 383
IOS component tracing . 383
Parameter in IEASYSxx (or specified by the operator): 383
Syntax rules for IECIOSxx . 384
IBM-supplied default for IECIOSxx. 386
Statements/parameters for MIH . 386
Statements/parameters for HOTIO. 390

Options for HOTIO recovery . 391
Statements/parameters for TERMINAL . 392
Statements/parameters for CTRACE . 392

Chapter 49. IEFSSNxx (subsystem definitions) - keyword parameter form 393
Restrictions for IEFSSNxx . 393
Parameter in IEASYSxx (or supplied by the operator): 394
Syntax rules for IEFSSNxx . 395
IBM-supplied default for IEFSSNxx . 395
Statements/parameters for IEFSSNxx . 395
Examples of IEFSSNxx member . 396

Example 1 . 396
Example 2 . 396

Chapter 50. IFAPRDxx (product enablement policy) 397
Before creating the member . 397
Usage considerations . 398
Parameter in IEASYSxx (or issued by the operator): 398
Syntax rules for IFAPRDxx . 398
Syntax format of IFAPRDxx . 399
IBM-supplied default for IFAPRDxx . 400
Statements/parameters for IFAPRDxx . 400
Examples . 403

Chapter 51. IGDDFPKG (DFSMS/MVS functional component list) 405
Before creating the member . 405
Listing components and features in IGDDFPKG . 405
Usage considerations . 406
Parameter in IEASYSxx (or issued by the operator): 406
Syntax rules for IGDDFPKG . 406
Syntax format of IGDDFPKG . 407
Syntax examples for IGDDFPKG . 407
IBM-supplied default for IGDDFPKG . 407
IBM-supplied sample for IGDDFPKG . 407
Statements/parameters for IGDDFPKG . 407

Chapter 52. IGDSMSxx (Storage Management Subsystem definition) 409
Parameter in IEASYSxx: . 409

x z/OS V1R4.0 MVS Initialization and Tuning Reference

||

Defining SMS through the IEFSSNxx member . 409
Example of an SMS record in IEFSSNxx . 410

Starting SMS - at IPL and afterward . 411
Specifying SMS parameters through SETSMS and SET SMS 411
Syntax rules for IGDSMSxx . 411
Syntax format of IGDSMSxx . 411
IBM-supplied default for IGDSMSxx . 412
Required keywords for IGDSMSxx. 412
Optional keywords for IGDSMSxx . 413
Example of the contents of IGDSMSxx . 421

Chapter 53. IKJPRM00 (TIOC parameters to control TSO/TCAM) 423
Parameter in IEASYSxx (or issued by the operator) 423
Syntax rules for IKJPRM00 . 423
IBM-supplied default for IKJPRM00 . 424
Statements/parameters for IKJPRM00 . 424

Chapter 54. IKJTSOxx (TSO/E commands and programs) 427
Parameter in IEASYSxx (or specified by the operator): 427
Selecting the IKJTSOxx member . 427
Syntax rules for IKJTSOxx. 428
IBM-supplied default for IKJTSOxx. 428
Statements/parameters for IKJTSOxx . 429

Chapter 55. IPCSPRnn (interactive problem control system) 441
Parameter in IEASYSxx (or specified by the operator): 441
Syntax rules for IPCSPRnn . 441
IBM-supplied default for IPCSPRnn . 441
Statements/parameters for IPCSPRnn . 441

Chapter 56. IVTPRM00 (Communication Storage Manager) 445
Parameter in IEASYSxx (or supplied by the operator): 445
Syntax format of IVTPRM00 . 445
Syntax rules for IVTPRM00 . 445
IBM-supplied defaults for IVTPRM00 . 445
Statements/parameters for IVTPRM00 . 445

Chapter 57. LNKLSTxx (LNKLST concatenation) 449
Using PROGxx to define LNKLST concatenations . 449
Using LNKLSTxx . 449
Parameter in IEASYSxx (or supplied by the operator): 449
Syntax rules for LNKLSTxx . 449
Syntax format of LNKLSTxx . 450
Syntax example of LNKLSTxx . 450
IBM-supplied default for LNKLSTxx . 450
IBM-supplied sample for LNKLSTxx . 450

Chapter 58. LOADxx (system configuration data sets) 451
Placement of LOADxx . 451
Copying LOADxx members . 451
Filtering with LOADxx . 452

Filtering example . 452
Parameter in IEASYSxx (or supplied by the operator): 455
Support for system symbols . 455
Syntax rules for LOADxx . 455
Syntax format of LOADxx . 455

Contents xi

IBM-supplied default for LOADxx . 456
Statements/parameters for LOADxx . 456
Example of parmlib concatenation . 466

Chapter 59. LPALSTxx (LPA library list) . 467
Parameter in IEASYSxx (or supplied by the operator): 467
Syntax rules for LPALSTxx . 467
Syntax format of LPALSTxx . 468
Syntax example of LPALSTxx . 468
IBM-supplied default for LPALSTxx . 469
Statements/parameters for LPALSTxx . 469

Chapter 60. MMSLSTxx (MVS message service list) 471
Selecting an MMSLSTxx member . 471
Parameter in IEASYSxx: . 471
Sample MMSLSTxx member . 471
Syntax rules for MMSLSTxx . 471
Syntax format of MMSLSTxx . 471
Syntax example for MMSLSTxx . 472
IBM-supplied default for MMSLSTxx . 472
Statements/parameters for MMSLSTxx . 472

Chapter 61. MPFLSTxx (message processing facility list) 475
Parameter in IEASYSxx: . 475
Syntax rules for MPFLSTxx . 475
Selecting MPFLSTxx members . 475
IBM-supplied MPFLSTxx member . 476
Controlling message presentation through MPFLSTxx 476

Syntax for controlling message presentation . 476
IBM-supplied defaults for .MSGCOLR . 476
Displaying the message presentation attributes for the current MPFLSTxx 477
MPFLSTxx parameters for controlling message presentation 477

Controlling message management . 480
Specifying message management . 480
Syntax for controlling message management . 481
IBM-supplied defaults for message management 481
Listing the message processing attributes for the current MPFLSTxx 482
Using other methods to suppress messages . 482

Statements/parameters for MPFLSTxx . 482
Controlling command processing using MPFLSTxx. 488
MPFLSTxx parameters for controlling command processing 488

Deactivating a command exit . 489
Approaches to message suppression using MPFLSTxx 489

Conservative list of suppressible non-JES messages 490
Aggressive list of suppressible JES2 messages . 491
Conservative list of suppressible JES3 messages 491

Examples of MPFLSTxx members . 492

Chapter 62. MSTJCLxx (master scheduler JCL) . 495
Parameter in IEASYSxx (or supplied by the operator): 495
Performance implications . 495
Support for system symbols . 495
Syntax rules for MSTJCLxx . 495
IBM-supplied default for MSTJCLxx . 496
Statements/parameters for MSTJCLxx . 496

xii z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 63. NUCLSTxx (Customizing the nucleus region) 497
Adding and deleting modules. 497

Contradictory specifications . 497
Restrictions . 497

NUCLSTxx compared with NMLDEF . 497
Relationship to the LOADxx member . 498

Placement of NUCLSTxx . 498
NUCLSTxx specification in LOADxx member . 498

Parameter in IEASYSxx (or supplied by the operator): 498
Syntax rules for NUCLSTxx . 498
Syntax format of NUCLSTxx . 498
IBM-supplied default for NUCLSTxx . 498
Statements/parameters for NUCLSTxx . 499
Example of replacing modules . 499

Chapter 64. PFKTABxx (program function key table definition) 501
Parameter in IEASYSxx (or entered by the operator): 501
Syntax rules for PFKTABxx . 501
Using the display command . 501
IBM-supplied default for PFKTABxx . 501
Statements/parameters for PFKTABxx . 502

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 503
Using the APF statement . 503

Defining aliases in the APF list . 503
Using the IEAAPFPR exec . 504

Using the EXIT statement . 504
Using the SYSLIB statement . 505
Using the LNKLST statement. 506

Using PROGxx instead of LNKLSTxx. 506
Using LNKLST processing. 506
Changing the current LNKLST set . 506
Concatenating data sets to the LNKLST concatenation 507
APF authorization for LNKLST data sets . 508
Cataloging LNKLST data sets . 508
Modifying the contents of LNKLST data sets . 508
Removing an XCFAS ENQ . 509
Removing or compressing a data set in an active LNKLST set 509

Placement of SYSLIB and LNKLST statements in PROGxx 509
Using the LPA statement . 510

Considerations for msys for Setup . 510
Parameter in IEASYSxx (or specified by the operator): 511

PROG=xx and APF=xx . 511
PROG=xx and EXIT=xx. 511
PROG=xx and LNK=xx . 511

IBM-supplied default . 511
Syntax rules for PROGxx . 511
Syntax format of the APF statement . 512
Statements/parameters for the APF statement . 512
Example of the APF statement . 512
Syntax format of the EXIT statements . 513
Statements/parameters for the EXIT statement . 513
Examples of EXIT statements . 516
Syntax format of the SYSLIB statement . 516
Statements/parameters for the SYSLIB statement . 516
Example of the SYSLIB statement . 517

Contents xiii

||

Syntax format of the LNKLST statements . 517
Statements/parameters for the LNKLST statement . 518
Examples of the LNKLST statement . 522
Syntax format of the LPA statements . 523
Statements/parameters for the LPA statement . 523

Chapter 66. SCHEDxx (PPT, master trace table, and abend codes for automatic restart) 527
Parameter in IEASYSxx (or specified by the operator): 527
Modifying the PPT between IPLs . 528
Syntax rules for SCHEDxx. 528
IBM-supplied default for SCHEDxx. 528
IBM-supplied sample member SCHEDxx . 528
Statements/parameters for SCHEDxx . 528
Program properties table (PPT) . 533

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 537
Using the SET command . 537
Using the SETSMF command . 538
Parameter in IEASYSxx (or supplied by the operator): 538
Support for system symbols . 538
Syntax rules for SMFPRMxx . 538
Syntax format of SMFPRMxx. 539
IBM-supplied default for SMFPRMxx . 540
IBM-supplied sample for SMFPRMxx . 540
Considerations for msys for Setup . 540
Parameters for SMFPRMxx . 541

Chapter 68. TSOKEY00 (TSO/VTAM time-sharing parameters) 553
Parameter in IEASYSxx (or supplied by the operator): 553
Syntax rules for TSOKEY00 . 553
IBM-supplied default for TSOKEY00 . 553
Statements/parameters for TSOKEY00 . 553

Chapter 69. VATLSTxx (volume attribute list) . 557
Use of 3344 and 3350 Emulated 3330-1 and 3330-11 devices 557
Definitions of the mount and use attributes. 558
Processing the VATLSTxx members . 558
Parameter in IEASYSxx (or supplied by the operator): 559
Support for system symbols . 560
Creating a VATLSTxx member . 561

Example of default use attributes . 561
Syntax rules for VATLSTxx . 561
Specifying a generic volume serial number . 562
Specifying a generic device type . 563

Example of setting the generic device type . 563
Statements/parameters for VATLSTxx . 563
Examples of VATLSTxx entries . 563
IBM-supplied default for VATLSTxx . 565

Chapter 70. XCFPOLxx (XCF PR/SM policy) . 567
Parameter in IEASYSxx (or supplied by the operator): 567
Syntax rules for XCFPOLxx . 567
Syntax format of XCFPOLxx . 568
IBM-supplied default for XCFPOLxx . 568
Statements/parameters for XCFPOLxx . 568

xiv z/OS V1R4.0 MVS Initialization and Tuning Reference

||

Part 3. Appendixes . 571

Appendix A. IEFSSNxx (subsystem definitions) - positional parameter form 573
Parameter in IEASYSxx (or supplied by the operator): 573
Syntax rules for IEFSSNxx . 574
IBM-supplied default for IEFSSNxx . 575
Statements/parameters for IEFSSNxx . 575

Appendix B. Symbolic Parmlib Parser . 577
Activation . 577
Capabilities . 577
Limitations . 579

Appendix C. Accessibility . 581
Using assistive technologies . 581
Keyboard navigation of the user interface . 581

Notices . 583
Programming Interface information. 584
Trademarks . 584

Index . 587

Contents xv

xvi z/OS V1R4.0 MVS Initialization and Tuning Reference

Figures

1. MSTJCL00 Load Module in SYS1.LINKLIB. 9
2. Example IEASYMxx Parmlib Member . 33
3. Complete IEASYMxx Parmlib Member . 39
4. Coding IEASYMxx for a Four-System Sysplex . 39
5. IEASYMA4 Parmlib Member . 40
6. Example IEASYMxx Parmlib Member . 40
7. Example LOADxx Parmlib Member . 41
8. Example COMMNDxx Parmlib Member . 154
9. Keyword Format of the SMS Record in IEFSSNxx 409

10. Positional Format of the SMS Record in IEFSSNxx. 409
11. Example of the SMS Record in IEFSSNxx . 410
12. Example of the Contents of IGDSMSxx . 422
13. LOADxx Filtering Hierarchy . 452

© Copyright IBM Corp. 1991, 2002 xvii

xviii z/OS V1R4.0 MVS Initialization and Tuning Reference

Tables

1. Syntax conventions . xxiii
2. Characteristics of Parmlib Members . 14
3. Restrictions on Changing the Format of the APF List 22
4. Static System Symbols . 27
5. Dynamic System Symbols . 28
6. Procedure to Set Up Parmlib for Sharing . 30
7. Precedence of System Parameter Specifications 34
8. Recommended Actions for IEASYSxx Members 34
9. Precedence of System Name Specifications . 35

10. Procedure to Specify System Symbols in Parmlib Definitions. 41
11. Supported Domains . 128
12. Devices used as MCS Consoles. 192
13. Maximum and Default Specifications for AREA and SEG. 193
14. Combining Certain GTFPARM Options . 258
15. Overview of IEASYSxx Parameters . 335
16. HOTIO Parameters . 383
17. 3390 Configurations That Require Higher-Than-Default MIH Values. 387
18. LISTBC and SEND Results Based on CHKBROD and USEBROD Settings when Installation is

Using Individual User Logs. 437
19. Language Codes . 473
20. Values for msgarea . 479
21. IBM-Supplied Program Properties Table (PPT) Values. 534
22. Examples of data set Names that Use System Symbols 542
23. SID Parameter Syntax Priority List . 544
24. Which SMF Exits Are Called for This Subsystem? 548

© Copyright IBM Corp. 1991, 2002 xix

||

xx z/OS V1R4.0 MVS Initialization and Tuning Reference

About this document

This document describes the members of SYS1.PARMLIB for z/OS™ (5694-A01) and z/OS.e (5655-G52),
and the processes related to initializing the system. For each member, the document describes the
meaning and use of each parameter, syntax rules, syntax examples, value ranges that are syntactically
acceptable, default values, and performance notes where applicable.

This document is a companion to the z/OS MVS Initialization and Tuning Guide.

For information about how to install the software products that are necessary to run z/OS, see z/OS and
z/OS.e Planning for Installation.

Who should use this document
This document is for anyone whose job includes installing hardware and software, and customizing the
software. This document is intended to be a reference on how to code system parameters and make other
changes required. Usually, these tasks are performed by a systems programmer.

The document assumes the user can:

v Code JCL statements to execute programs or cataloged procedures.

v Code in assembler language and read assembler, loader, linkage editor, and binder output.

This document is also for anyone who tunes the system. System tuning requires you to determine where
the system needs adjustment, to understand the effects of changing the system parameters, and to
determine the changes to the system parameters that will bring about the desired effect.

MVS™ Workload Management
Many of the performance functions described in this document can be defined using MVS Workload
Management (WLM). For more information see: z/OS MVS Planning: Workload Management and z/OS
MVS Programming: Workload Management Services.

Where to find more information
Where necessary, this document references information in other documents, using the shortened version
of the document title. For complete titles and order numbers of the documents for all products that are part
of OS/390, see z/OS Information Roadmap.

The following table lists the titles and order numbers of documents for other IBM products.

Short Title Used in This Document Title Order Number

VM

VM/ESA® Running Guest Operating
Systems

VM/ESA Running Guest Operating Systems SC24-5522

MVS

MVS Hiperbatch Guide MVS Hiperbatch Guide GC28-1470

System Automation

System Automation for OS/390®

Planning and Installation
System Automation for OS/390 Planning and Installation GC28-1549

NetView ®

NetView Administration Reference NetView Administration Reference SC30-3361

© Copyright IBM Corp. 1991, 2002 xxi

Short Title Used in This Document Title Order Number

ACF/TCAM

TCAM Installation Reference TCAM Version 2 Installation Reference SC30-3133

Hardware Titles

PR/SM™ Planning Guide ES/9000® Processor Resource/Systems Manager™

Planning Guide
GA22-7123

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most messages you encounter, as
well as for some system abends and codes. Using LookAt to find information is faster than a conventional
search because in most cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for example, TSO/E prompt,
ISPF, z/OS UNIX System Services running OMVS). You can also download code from the z/OS Collection
(SK3T-4269) and the LookAt Web site that will allow you to access LookAt from a handheld computer
(Palm Pilot VIIx suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host system. You can
obtain the LookAt code for TSO/E from a disk on your z/OS Collection (SK3T-4269) or from the News
section on the LookAt Web site.

Some messages have information in more than one document. For those messages, LookAt displays a list
of documents in which the message appears.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM Resource Link™ Web
site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to these documents
requires an IBM Resource Link user ID and password, and a key code. With your z/OS order you received
a Memo to Licensees, (GI10-0671), that includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered for access to them
and received an e-mail confirmation informing you that your request has been processed.

Printed licensed documents are not available from IBM.

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xxii z/OS V1R4.0 MVS Initialization and Tuning Reference

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or IBM Resource Link to
print licensed documents.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters and Documentation APARs
for z/OS and z/OS.e, see the online document at:

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are incorporated into z/OS
publications.

How to read syntax conventions
This section describes how to read syntax conventions. It defines syntax notations and provides syntax
examples that contain these items.

Table 1. Syntax conventions

Notation Meaning Example

Book Syntax Sample Entry

Apostrophes Apostrophes indicate a
parameter string and
must be entered as
shown.

SEND ’message’,NOW SEND ’listings ready’,NOW

Comma Commas must be entered
as shown.

DISPLAY C,K DISPLAY C,K

Ellipsis ... Ellipsis indicates that the
preceding item or group
of items can be repeated
one or more times. Do
not enter the ellipsis.

VARY (devspec[,devspec]...),ONLINE VARY (282,283,287),ONLINE

Parentheses
and special
characters

Parentheses and special
characters must be
entered as shown.

DUMP COMM=(text) DUMP COMM=(PAYROLL)

Underline Underline indicates a
default option. If you
select an underlined
alternative, you do not
have to specify it when
you enter the command.

K T [,REF]
[,UTME=nnn]

K T

Lowercase
parameter

Lowercase indicates a
variable term. Substitute
your own value for the
item.

MOUNT devnum MOUNT A30

or

mount a30

Uppercase
parameter

Uppercase indicates the
item must be entered
using the characters
shown. Enter the item in
either upper or
lowercase.

DISPLAY SMF DISPLAY SMF

or

display smf

About this document xxiii

|

|
|

|
|

|
|

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

Table 1. Syntax conventions (continued)

Notation Meaning Example

Book Syntax Sample Entry

Single
brackets

Single brackets represent
single or group-related
items that are optional.
Enter one or none of
these items.

DISPLAY DMN[=domainum] DISPLAY DMN=5

Stacked
brackets

Stacked brackets
represent group-related
items that are optional.
Enter one or none of
these items.

[TERMINAL]
[NOTERMINAL]

NOTERMINAL

Single braces Single braces represent
group-related items that
are alternatives. You must
enter one of the items.
You cannot enter more
than one.

{COMCHECK | COMK} COMK

Stacked
braces

Stacked braces represent
group related items that
are alternatives. You must
enter one of the items.
You cannot enter more
than one.

MN {DSNAME}
{SPACE }
{STATUS}

MN SPACE

Or-bar (|) An or-bar indicates a
mutually exclusive choice.
When used with brackets,
enter one or none of the
items. When used with
braces, you must enter
one of the items.

ACTIVATE|RECOVER=SOURCE RECOVER=SOURCE

Stacked items
with or-bars (|)
and brackets

Stacked items with
or-bars indicates a
mutually-exclusive choice.
Enter one or none of
these items.

CD RESET [,SDUMP]
|,SYSABEND
|,SYSUDUMP
|,SYSMDUMP
|,ALL

CD RESET,SYSUDUMP

xxiv z/OS V1R4.0 MVS Initialization and Tuning Reference

Summary of changes

Summary of changes
for SA22-7592-03
z/OS Version 1 Release 4

This document contains information previously presented in z/OS MVS Initialization and Tuning Reference,
SA22-7592-02, which supports z/OS Version 1 Release 3.

New information

v Information is added to indicate this document supports z/OS.e. A new parameter, LICENSE, is added
to IEASYSxx to indicate if a system is z/OS or z/OS.e.:

v The following new information is added to the BPXPRMxx parmlib member:

– New parameters:

- AUTHPGMLIST specifies pathname of the HFS file that contains the lists of sanctioned
pathnames and program names.

– New options, INCLUDE or EXCLUDE, and a system list are added to the AUTOMOVE parameter to
direct the placement of a file system if the owning system goes down.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial words only, and
procedures that have a different look and format. The changes are ongoing improvements to the
consistency and retrievability of information in our documents.

Summary of changes
for SA22-7592-02
z/OS Version 1 Release 3

The document contains information previously presented in z/OS MVS Initialization and Tuning Reference,
SA22-7592-01, which supports z/OS Version 1 Release 2.

New information

v The following new information is added to the BPXPRMxx parmlib member:

– New parameters:

- MAXSHAREPAGES specifies the maximum amount of shared system storage pages that can be
used by z/OS UNIX® System Services (z/OS UNIX) functions.

- SHRLIBRGNSIZE specifies the maximum size of the shared library region for address spaces that
load system shared library modules.

- SHRLIBMAXPAGES is intended to control the maximum number of pages that can be allocated in
the system to contain user shared library modules.

- AUTOMOVE|NOAUTOMOVE apply in a sysplex where systems are participating in shared HFS.

– A new option, ASNAME, is added to the FILESYSTYPE parameter to identify the name of a
procedure used to start the address space that is initialized by the physical file system.

v CUNUNIxx is a new parmlib member that contains information used by Unicode conversion services.

v A new option, IKJTSO=xx, is added to IEASYSxx to specify the parmlib member from which TSO/E
settings are obtained.

v New parameters are added to the IKJTSOxx parmlib member:

– BROADCAST identifies the broadcast data set and its processing options.

© Copyright IBM Corp. 1991, 2002 xxv

– SYSPLEXSHR indicates whether the broadcast data set is shared outside systems in the sysplex.

v A new parameter, MULCFUNC|NOMULFUNC, is added to SMFPRMxx to specify whether users of the
IFAUSAGE service that registered specifying SCOPE=FUNCTION must use IFAUSAGE with the
REQUEST=FUNCTIONxxx parameters.

v Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can no
longer use the IEAICSxx member, the IEAIPSxx member, or most options in the IEAOPTxx member.
The information has been left here in the document for reference purposes, and for use on backlevel
systems.

v An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes, including changes to improve
consistency and retrievability.

Summary of changes
for SA22-7592-01
z/OS Version 1 Release 2

The document contains information previously presented in z/OS MVS Initialization and Tuning Reference,
SA22-7592-00, which supports z/OS Version 1 Release 1.

New information

v New options are added to the MOUNT and ROOT parameters on the BPXPRMxx member to tag files
with a Coded Character Set ID (CCSID) and to provide automatic data conversion when the CCSIDs of
a program and a file are different.

v A new parameter, AUTOCVT, has been added to the the BPXPRMxx parmlib member. This parameter
activates and deactivates automatic conversion of I/O data using coded character sets for the program
and its associated files.

v A new parameter, RESOLVER_PROC, is added to specify how resolver address space is processed by
z/OS UNIX during initialization.

v The TYPE keyword on GRSRNLxx parameter has been changed by the addition of a new option,
PATTERN. This allows use of wildcard characters within resource names.

v A new parameter has been added to the SMFPRMxx parmlib member. MEMLIMIT specifies the default
value used by SMF jobs that do not have an explicit memory limit.

This document contains terminology, maintenance, and editorial changes, including changes to improve
consistency and retrievability.

Summary of changes
for SA22-7592-00
z/OS Version 1 Release 1

The document contains information also presented in OS/390 MVS Initialization and Tuning Reference.

Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the
change. Technical changes include:

v Chapter 17, “CONSOLxx (Console configuration definition)” on page 165 Parmlib member is updated to
define SMCS consoles.

v Updates to the ARCHLVL parameter in the LOADxx parmlib member.

xxvi z/OS V1R4.0 MVS Initialization and Tuning Reference

Part 1. Overview

© Copyright IBM Corp. 1991, 2002 1

2 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 1. System tailoring

System tailoring is the overall process by which an installation selects its operating system. The process
consists of the specification of system options through these mechanisms:

v MVS hardware configuration definition (HCD), which is described in “MVS hardware configuration
definition”.

v Initialization-time selections which appear in the topic “System tailoring at initialization time”.

v Implicit system parameters which appear in the topic “Implicit system parameters” on page 21.

v After IPL, system tailoring through operator commands. One example of a command that will perform a
system tailoring function is the SETPROG command (for example, SETPROG LPA,ADD). You will get
the same result whether you activate a function by issuing a SETPROG command or by activating the
PROGxx parmlib member.

For more information on how to use commands to start, load, initialize and control your system see
z/OS MVS System Commands.

An installation can identify one or more active versions of the operating system. For instance, the
installation might choose to identify a specific version to be used only during off-shift hours.

To identify a version of the operating system, the installation assigns a unique 16-character EBCDIC
identifier by using the AMASPZAP program immediately after system initialization, or by creating an
alternate nucleus. For more information on AMASPZAP, see z/OS MVS Diagnosis: Tools and Service Aids.
For more information on creating an alternate nucleus, see “Specifying an alternate nucleus” on page 8.

The operator verifies the version identifier when it appears in the system message IEA101A SPECIFY
SYSTEM PARAMETERS. If the installation does not supply a version identifier, the system uses the basic
control program (BCP) identifier.

MVS hardware configuration definition
The hardware configuration definition (HCD) allows you to use the HCD dialog to perform the following
tasks for hardware configuration:
v Define operating system configuration
v Define the channel subsystem (CSS) configuration
v Define ESCON® director (ESCD) and switch configurations
v Activate configuration data
v Maintain I/O definition files
v Query and print configuration data
v Migrate existing configuration data

For information on using the HCD dialogue, see z/OS HCD User’s Guide.

System tailoring at initialization time
Initialization-time choices that help to tailor the system can come from several sources:

v Various types of IPLs.

v Operator action, described in “Operator entry of parameters” on page 5.

v SYS1.PARMLIB and additional parmlib data sets are described in “Description and use of the parmlib
concatenation” on page 6. This data set is one of the main sources of IPL-time parameters.

v Specifying an alternate nucleus or master catalog, described in Specifying an alternate nucleus and
“Specifying an alternate master (system) catalog” on page 8.

© Copyright IBM Corp. 1991, 2002 3

v Specifying different master scheduler JCL, described in “Understanding the master scheduler job control
language” on page 9, which includes information on when you might need different master scheduler
JCL and how to establish the JCL you need.

v The JES2 or JES3 initialization data set. (See either z/OS JES2 Initialization and Tuning Guide or z/OS
JES3 Initialization and Tuning Guide.)

Types of IPL
There are several types of IPL:

v Cold Start: Any IPL that loads (or reloads) the PLPA, but does not preserve VIO data set pages. The
first IPL after system installation is always a cold start because the PLPA is initially loaded. Subsequent
IPLs are cold starts when the PLPA is reloaded either to alter its contents or to restore its contents if
they were destroyed.

v Quick Start: Any IPL that does not reload the PLPA and does not preserve VIO data set pages. (The
system resets the page and segment tables to match the last-created PLPA.)

v Warm Start: Any IPL that does not reload the PLPA, but does preserve journaled VIO data set pages.

The first IPL after system installation
At the first IPL after system installation, the system automatically loads the PLPA from the LPALST
concatenation. The page data sets for this IPL are those specified in the IEASYS00 parmlib member, plus
any specified by the operator.

After the first IPL, you must run IFCDIP00 to initialize the LOGREC data set. This routine must also be run
whenever the LOGREC data set is reallocated.

An IPL at which the PLPA is reloaded
The PLPA must be reloaded: (1) at the first IPL after system initialization, when the system loads it
automatically, (2) at an IPL after the installation has added or modified one or more modules in the
LPALST concatenation, has tested the alteration, and now wants to put the replacement module(s) in the
PLPA, and (3) at an IPL after the PLPA page data set has been damaged (and is therefore unusable) and
its contents must be restored. The PLPA can also be reloaded for other reasons (such as when the
addition of more central storage causes the nucleus and the PLPA to overlap). Reloading the PLPA should
be discretionary; that is, it should not be a common occurrence. It should be done only when necessary
because the associated I/O slows down the IPL and because previously existing VIO data set pages are
not preserved.

To reload the PLPA from the LPALST concatenation, the operator would enter CLPA (create link pack
area) as one of the responses to the SPECIFY SYSTEM PARAMETERS prompt. For more information on
loading the PLPA, see the CLPA parameter in Chapter 47, “IEASYSxx (system parameter list)” on
page 335.

An IPL after power-up
The IPL performed after power-up is called a “quick start”, because the PLPA from the previous IPL can be
used without reloading from the LPALST concatenation. For a “quick start”, the CVIO system parameter is
used; VIO data set pages are purged, page data sets added (optionally reserved for non-VIO paging). The
operator or the IEASYSxx parmlib member can add additional page data sets by specifying the PAGE
parameter (with or without the NONVIO system parameter). For information on the CVIO, PAGE, and
NONVIO parameters, see Chapter 47, “IEASYSxx (system parameter list)” on page 335.

An IPL after a system crash
If the operator does not enter the CLPA or CVIO system parameters, the operator can “warm start” the
system after a system crash. Existing journaled VIO data set pages and PLPA pages are retained. The
specified parmlib parameter list (IEASYSxx) would not include the CVIO or CLPA system parameters. (The
specification of one or more IEASYSxx members by the operator at IPL time is described in the next topic,
“Operator entry of parameters” on page 5.)

4 z/OS V1R4.0 MVS Initialization and Tuning Reference

Any definitions of existing page data sets as non-VIO local page data sets are preserved. Also the
operator can define a local page data set that previously was used for VIO paging as a non-VIO local
page data set. During system operation, the VIO pages on the newly designated non-VIO local page data
set will migrate to any local page data set used for VIO paging. An installation can remove a local page
data set that was designated on the previous IPL as a non-VIO local paging data set. Removing a local
page data set before a “warm start” requires that the local page data set contain no VIO pages. If the local
page data set contains VIO pages, then the system changes the “warm start” into a “quick start”.2 For
more information on designating non-VIO page data sets, see the NONVIO system parameter in
Chapter 47, “IEASYSxx (system parameter list)” on page 335.

Operator entry of parameters
If an IEASYSxx identifier is not specified in the LOADxx parmlib member, the operator is prompted to
respond to the SPECIFY SYSTEM PARAMETERS message to direct the system components to the
desired parmlib members.

Note: Use the LOAD parameter on the system console to allow the operator to force the prompt for
system parameters. For more information, see z/OS MVS System Commands.

The operator can select the default general parameter list IEASYS00, or enter SYSP=(aa,bb...) to select
one or more alternate general parameter lists, such as IEASYS01, IEASYS02, and so forth. If the operator
responds to the SPECIFY SYSTEM PARAMETERS message without specifying the SYSP parameter, then
the system will use IEASYS00.

The system always processes the IEASYS00 member first, regardless of where you specify IEASYSxx
suffixes. If the same parameter appears in both IEASYS00 and a specified alternate IEASYSxx list, the
value in the alternate list overrides the value in IEASYS00. Also, a parameter value in a later specified
IEASYSxx list overrides the same parameter in an earlier specified list. Table 7 on page 34 shows how the
system overrides suffixes. See the description of the IEASYSxx member for more information.

The operator need not enter parameter values directly, except for those cases in which parameters are
missing, are syntactically invalid, can’t be read, or must be supplemented to satisfy a special case. (An
example of a special case would be the operator entry of the PAGE parameter to increase the amount of
paging space.)

If an error occurs with certain parmlib members, the operator is prompted to manually enter one or more
of the member’s parameters. If the parameter can’t be corrected, the operator can accept the system
defaults. Most parameters have defaults, either as default parmlib members, or as coded values in system
components. If a default doesn’t exist (and if a parameter is not required), the operator can cancel the
parameter. (The defaults are listed in the individual descriptions of parmlib members.)

If the parameter list supplied by the operator is longer than one line (there are 80 characters per line), the
operator can follow the last parameter with a comma or a blank and CONT. For details on how to continue
system parameters, see the description of the REPLY command in z/OS MVS System Commands.

An operator-entered parameter overrides the same parameter specified in parmlib member IEASYS00 or
IEASYSxx, except for:

2. A local page data set specified as NONVIO can contain VIO pages if one of the following conditions exist:

v Directed VIO was turned off while the previous system was active.

v A warning message to the operator indicated that VIO pages spilled to a non-VIO data set because no more space was
available on those page data sets that were being used for VIO.

Chapter 1. System tailoring 5

|
|
|
|

v A parameter for which operator intervention is prohibited (OPI=NO). In this case, the operator-entered
parameter is ignored (unless the parmlib parameter was syntactically invalid and is being corrected from
the console).

v The PAGE parameter. The page data set names entered by the operator are added for the duration of
the IPL to those specified in either IEASYS00 or IEASYSxx. (For information on the PAGE parameter,
refer to Chapter 47, “IEASYSxx (system parameter list)” on page 335.)

Note: To determine the LOAD parameter that was used for the current IPL, check ECVTMLPR field in the
ECVT data area. The ECVT is mapped by the IHAECVT mapping macro. For a description of the
ECVT, see z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC)

Description and use of the parmlib concatenation
This section discusses the parmlib concatenation, its purpose, ways to control the parmlib data set(s), and
general syntax rules for creating most members of the data set(s). Table 2 on page 14 contains an
overview of all the parmlib members.

The parmlib concatenation is a set of up to 10 partitioned data sets defined through PARMLIB statements
in the LOADxx member of either SYSn.IPLPARM or SYS1.PARMLIB which contains many initialization
parameters in a pre-specified form in a single logical data set, thus minimizing the need for the operator to
enter parameters. SYS1.PARMLIB makes the 11th or last data set in the concatenation and is the default
parmlib concatenation if no PARMLIB statements exist in LOADxx. For specific information on how to
define a logical parmlib concatenation, see Chapter 58, “LOADxx (system configuration data sets)” on
page 451. The SYS1.PARMLIB data set itself can be blocked and can have multiple extents, but it must
reside on a single volume. The parmlib concatenation used at IPL must be a PDS. However, after IPL you
may issue a SETLOAD command to switch to a different parmlib concatenation which contains PDSEs.
For information on processing of concatenated data sets see z/OS DFSMS: Using Data Sets.

Parmlib contains both a basic or default general parameter list IEASYS00 and possible alternate general
parameter lists, called IEASYSaa, IEASYSbb, and so forth. Parmlib also contains specialized members,
such as COMMNDxx, and IEALPAxx. Any general parameter list can contain both parameter values and
“directors”. The directors (such as MLPA=01) point or direct the system to one or more specialized
members, such as IEALPA01.

The parmlib concatenation is read by the system at IPL, and later by other components such as the
system resource manager (SRM), the TIOC, and SMF, which are invoked by operator commands. 3

The system always reads member IEASYS00, the default parameter list. Your installation can override or
augment the contents of IEASYS00 with one or more alternate general parameter lists. You can further
supplement or partially override IEASYS00 with parameters in other IEASYSxx members or
operator-entered parameters. You can specify the IEASYSxx members that the system is to use in:
v The IEASYMxx parmlib member
v The LOADxx parmlib member.

The operator selects the IEASYSxx member using the SYSP parameter at IPL. The parameter values in
IEASYS00 remain in effect for the life of an IPL unless they are overridden by parameters specified in
alternate IEASYSxx members or by the operator. See “Step 2. Determine where to specify system
parameters” on page 33 for details about how the system processes system parameter specifications.

How to control parmlib
A parmlib concatenation allows you to have more flexibility in managing parmlib members and changes to
parmlib members. To control parmlib and ensure that it is manageable, you should consider the following:

3. The TIOC is the terminal I/O coordinator, whose parameters are described under member IKJPRM00. SMF is the System
Management Facility whose parameters are described under member SMFPRMxx.

6 z/OS V1R4.0 MVS Initialization and Tuning Reference

v Use the ability to have up to 10 installation-defined parmlib data sets to separate your parmlib members
along organization or function lines and use appropriate RACF® security for each data set.

v Include members with installation changes in one of the 10 installation-defined parmlib data sets to
avoid having the member overlaid by IBM maintenance on SYS1.PARMLIB.

Note: If a member exists more than once within the parmlib concatenation, the first occurrence is used.

v Use an installation-defined parmlib data set to contain any parmlib members to be used on test
systems. They can be included in front of your ″standard″ parmlib concatenation without forcing
changes to the ″standard″ parmlib concatenation.

v Delete unsupported parameters and members. Because most components treat unsupported
parameters from previous releases as syntax errors, you should probably remove the old parameters or
build parmlib from scratch. This action will minimize the need for operator responses during an IPL.
Then, you can save space by removing unsupported members.

v Use the parmlib members for the appropriate functions. For example, use COMMNDxx to contain
commands useful at system initialization. Use IEACMDxx for IBM*-supplied commands. Use IEASLPxx
for SLIP commands. See each member for further information.

v Update parmlib with new and replacement members, as you gain familiarity with the new release.

v Keep track of which parameters are included in particular parmlib members. This bookkeeping is
necessary for two reasons: 1) The system doesn’t keep track of parmlib members and their parameters
and 2) The default general parameter list IEASYS00 is always read by the system and master
scheduler initialization. The parameters in IEASYS00 can be overridden by the same parameters when
they are specified in alternate general lists, such as IEASYS01, or IEASYS02. Then, certain
parameters, such as FIX, APF, and MLPA, direct the system to particular specialized members (in this
example, IEAFIXxx, and IEALPAxx). The installation should keep records of which parameters and
which values are in particular members, and which general members point to which particular
specialized members (COMMNDxx, IEALPAxx, and so forth). A grid or matrix for such bookkeeping is
very helpful.

v Allocate sufficient space for parmlib. One way to estimate space is to count the number of 80-character
records in all members which are to be included in one parmlib data set and factor in the blocksize of
the data set. Then add a suitable growth factor (e.g., 100-300%) to allow for future growth of alternate
members. Consult Table 2 on page 14 to determine which members can have multiple alternates. To
recapture space occupied by deleted members, use the “compress” function of IEBCOPY. However,
should the data set run out of space, you may copy the members to a larger data set, create a new
LOADxx member in which you replace the PARMLIB statement for the full data set with a PARMLIB
statement for the new larger data set and then issue a SETLOAD command to switch to the
concatenation with the new data set.

v Ensure EXITxx resides in SYS1.PARMLIB, since it can only be accessed from SYS1.PARMLIB.

v GTFPARM must also reside in SYS1.PARMLIB unless an alternate data set is used, as discussed in
Chapter 30, “GTFPARM (generalized trace facility parameters)” on page 257.

v Decide which volume(s) and device(s) should hold the parmlib concatenation. The data set must be
cataloged, unless it resides on SYSRES or it’s volume serial number is included on the PARMLIB
statement in LOADxx. The data set could be placed on a slow or moderate speed device. For
information about the placement of parmlib data sets and the IODF data set, see OS/390 MVS System
Dataset Definition.

v Use a security product (like RACF*) to protect the data set(s). The purpose is to preserve system
integrity by protecting the appendage member (IEAAPP00) and the authorized program facility members
(IEAAPFxx and PROGxx) from user tampering.

General syntax rules for the creation of members
The following general syntax rules apply to the creation of most parmlib members. Exceptions to these
rules are described under specific members. The general rules are:
v Logical record size is 80 bytes.
v Blocksize must be a multiple of 80.

Chapter 1. System tailoring 7

v Any columns between 1 and 71 may contain data.
v Statements are entered in uppercase characters.
v Suffix member identifiers can be any combination of A-Z and 0-9, though some member identifiers may

allow other characters.
v Columns 72 through 80 are ignored.
v Continuation is indicated by a comma followed by one or more blanks after the last entry on a record.
v Leading blanks are suppressed. A record therefore need not start at a particular column.
v Suffix member identifiers (such as LNK=A2) can be any alphanumeric combination.
v Comments are most often indicated by using /* and */ as the delimiters in columns 1-71, for example:

/*comment*/

/* and */ characters within a single-quoted string are usually not treated as comment delimiters.

Some parmlib members require other methods. Check specific parmlib members for information about
specifying comments.

Sharing parmlib members
You can set up parmlib so two or more MVS systems can share parmlib members — even if those
systems require unique values in those members. When coding parmlib members, you can use system
symbols to temporarily take the place of unique values. Each system defines its own unique values for the
system symbols. As with variables in program, each system replaces the system symbols with the defined
values when the system symbols are processed. The ability to share parmlib members that require unique
values allows you to view the sysplex as a single system image with as little as one SYS1.PARMLIB data
set.

For complete details about how to set up parmlib so two or more systems can share it, see Chapter 2,
“Sharing parmlib definitions” on page 25.

Specifying an alternate nucleus
Another less common way to change the system at an IPL is to cause the IPL program to read a member
of a nucleus data set that is different from IEANUC01, the default nucleus member. One reason for such a
nucleus switch may be the need to apply a PTF to the nucleus. You can IPL a secondary (alternate)
nucleus by either of the following methods:

v Editing the alternate nucleus character of the LOAD parameter string before selecting the “initialize
SCP” function. Use the system control (SYSCTL) frame of the system console. Modify the last character
of the eight-character parameter string to specify the suffix for IEANUC0x. The IPL program retrieves
this character from the system console frame and concatenates it as a suffix to IEANUC0 to form the
alternate SYS1.NUCLEUS member name.

v Using the NUCLEUS statement of the LOADxx member to specify the desired alternate IEANUC0x
member. See Chapter 58, “LOADxx (system configuration data sets)” on page 451 for more information.

Note: When you specify an alternate nucleus, the proper architectural extension of the nucleus must also
exist. For example, if you request IEANUC05 and you run in ESA/390 mode, nucleus extension
IEANUC15 must also exist. See 456 for more information about architectural extensions to the
nucleus.

Specifying an alternate master (system) catalog
Another way to change the system at an IPL is to tell the system to select an alternate master catalog.
Use one of the following methods:

v Identify the data set that contains the alternate master catalog on the SYSCAT statement in the
LOADxx parmlib member.

v Tell the system to read a member of SYS1.NUCLEUS that is different from SYSCATLG, the default
member. Respond to system message IEA347A with a two-character suffix. The two characters are
appended to SYSCAT to form the member name that the system is to read.

8 z/OS V1R4.0 MVS Initialization and Tuning Reference

The system prompts the operator for a SYSCAT suffix only if you:

v Do not specify the SYSCAT statement in LOADxx

v Specify, through the SYSCTL frame, an initialization message suppression indicator (IMSI) on the LOAD
parameter that tells the system to prompt for the master catalog response.

Understanding the master scheduler job control language
The master scheduler JCL data set (commonly called master JCL) controls system initialization and
processing. It contains data definition (DD) statements for all system input and output data sets that are
needed to communicate between the operating system and the primary job entry subsystem, which can be
JES2 or JES3.

To change system initialization or processing, you can change the information in the member or use an
alternate data set. You might need to change the master JCL at an IPL. For example, if you plan to use
jobs as the source JCL for started tasks, IBM recommends that you modify the master JCL. See “Setting
up started tasks with the Master JCL” on page 11 for more information.

You can also modify the master scheduler JCL data set to include START commands for other
subsystems, along with DD statements necessary to communicate with them. You can also delete DD
statements that do not apply to your installation’s interactive configuration.

This section describes:
v Where the master JCL resides
v How to change the master JCL
v How to set up started tasks with the master JCL
v How to write your own master JCL.

Where does the master JCL reside?
IBM supplies default master JCL in the MSTJCL00 load module in SYS1.LINKLIB. Figure 1 shows
MSTJCL00 as it exists before it is assembled and link-edited into SYS1.LINKLIB:

MSTJCL00 contains:

v DD statements needed to define the internal reader data sets for started task control and TSO/E logons

v SYS1.UADS, a system data set used in TSO/E logons and terminal communications.

MSTJCL00 does not contain the START command that starts the primary job entry subsystem during
master scheduler initialization. You can define and start the primary job entry subsystem using the
PRIMARY parameter in the IEFSSNxx parmlib member.

Your installation can either use the default master JCL (shown in Figure 1) or specify an alternate version
of the master JCL, as described in the next section.

MSTJCL00 CSECT
DC CL80’//MSTJCL00 JOB MSGLEVEL=(1,1),TIME=1440’
DC CL80’// EXEC PGM=IEEMB860’
DC CL80’//STCINRDR DD SYSOUT=(A,INTRDR)’
DC CL80’//TSOINRDR DD SYSOUT=(A,INTRDR)’
DC CL80’//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR’
DC CL80’//SYSUADS DD DSN=SYS1.UADS,DISP=SHR’
DC CL80’/*’
END

Figure 1. MSTJCL00 Load Module in SYS1.LINKLIB

Chapter 1. System tailoring 9

Changing the master scheduler JCL
When making changes to the master JCL, keep the following in mind:

v If you add DD statements to the master JCL, create the associated data sets before you IPL the system
that is to use them. If the system cannot allocate a data set that is defined in the master JCL, system
initialization fails.

v If you specify the START command in the master JCL for the primary job entry subsystem, specify the
NOSTART parameter for the subsystem in the IEFSSNxx parmlib member. For the syntax of the
NOSTART parameter, see the description of IEFSSNxx in this book.

v No work can be done that requires JES input or output services until the primary job entry subsystem is
started.

To make changes to the master JCL, you can specify an alternate version of the master JCL in one of the
following:
v A MSTJCLxx parmlib member (recommended)
v A MSTJCLxx load module in SYS1.LINKLIB.

If you plan to specify an alternate version of the master JCL in the MSTJCLxx load module in
SYS1.LINKLIB, remember that you will have to assemble the alternate version and link-edit it into
SYS1.LINKLIB each time you make a change. It is easier to change the master JCL when it is specified in
the MSTJCLxx parmlib member, because the assemble and link-edit are not required.

Note: IBM supplies the IEESMJCL member of SYS1.SAMPLIB as an example of alternate master JCL.
The CSECT name in IEESMJCL is MSTJCL05. When specifying an alternate version of the master
JCL, IBM recommends that you modify IEESMJCL according to your needs. The statements in
IEESMJCL are only examples. They are not necessarily the same values that IBM supplies in the
default load module MSTJCL00.

Coding the parameter in IEASYSxx
The MSTRJCL parameter in the IEASYSxx parmlib member specifies the data set that is to contain the
master JCL:

v If the system finds a MSTJCLxx parmlib member with a suffix that matches the value specified or
defaulted on the MSTRJCL parameter, it uses the master JCL in the MSTJCLxx parmlib member and
does not process the MSTJCLxx load module in SYS1.LINKLIB.

v If the system does not find a MSTJCLxx parmlib member that matches the value specified or defaulted
on MSTRJCL, it uses the master JCL in the corresponding MSTJCLxx load module in SYS1.LINKLIB.

Specifying the master JCL in parmlib
Do the following to specify the master JCL in a MSTJCLxx parmlib member:

1. Code the master JCL in the MSTJCLxx member, as described in Chapter 62, “MSTJCLxx (master
scheduler JCL)” on page 495.

2. Code the MSTRJCL=xx system parameter in the IEASYSxx parmlib member or in response to the
SPECIFY SYSTEM PARAMETERS prompt. (See Chapter 47, “IEASYSxx (system parameter list)” on
page 335 for the syntax of the MSTRJCL=xx system parameter.)

Specifying the master JCL in the MSTJCLxx load module
Do the following to specify an alternate version of the master JCL in a MSTJCLxx load module in
SYS1.LINKLIB:

1. Code the master JCL in the alternate data set. Assemble the data set. Then link-edit the data set as a
module in SYS1.LINKLIB (or a library concatenated to SYS1.LINKLIB, using a LNKLSTxx or PROGxx
member of of the parmlib concatenation).

2. Code the MSTRJCL=xx system parameter in the IEASYSxx parmlib member or in response to the
SPECIFY SYSTEM PARAMETERS prompt. (See Chapter 47, “IEASYSxx (system parameter list)” on
page 335 for the syntax of the MSTRJCL=xx system parameter.)

10 z/OS V1R4.0 MVS Initialization and Tuning Reference

3. Ensure that SYS1.PARMLIB does not contain a MSTJCLxx member that matches the suffix specified
on the MSTRJCL=xx system parameter. (If such a member exists, the system uses the master JCL in
that member, and does not process the master JCL in the MSTJCLxx load module.)

Setting up started tasks with the Master JCL
The source JCL for a started task can be a job (source JCL that begins with a JOB statement) or a
cataloged procedure. See z/OS MVS JCL Reference for information that describes the advantages of
using one form of source JCL over another (using a job rather than a procedure).

If the source JCL for a started task is a job, the member containing the JCL must be part of a data set in
the IEFPDSI DD or the IEFJOBS DD concatenation of MSTJCLxx. (If the member is not part of a data set
in the IEFPDSI or IEFJOBS concatenation of MSTJCLxx, the procedures that act as source JCL for other
started tasks will not be found.) IBM recommends that you define a new data set in MSTJCLxx (pointed to
by the IEFJOBS DD statement) that will contain the tailored JCL to support started tasks.

To create source JCL that is a job (with, for example, JOB, JES2 JECL, and OUTPUT statements) for a
started task, you must first decide whether these jobs should be mixed with procedures (part of the
IEFPDSI concatenation) or placed into a separate data set (part of the IEFJOBS concatenation) containing
only jobs.

Using IEFJOBS to define started tasks
If MSTJCLxx contains a DD named IEFJOBS, the source JCL for a started task can be placed in one of
the data sets within the IEFJOBS concatenation. Doing so allows jobs and the procedures they invoke to
have the same name. These jobs can contain the minimum set of JCL needed to define the job level
characteristics (for example, JOB statements, JCLLIB, and JECL), and then either invoke an existing
procedure or use the INCLUDE keyword to invoke the desired set of JCL.

Use a name that allows you to quickly identify the data set. For example, the entry in MSTJCLxx could
appear as:
//IEFJOBS DD DSN=SYS1.STCJOBS,DISP=SHR

For this example, you would put the source JCL for the started tasks in the SYS1.STCJOBS data set.

Consider these reasons for using IEFJOBS to define started tasks:

v MVS and other products ship procedures placed in procedure libraries. Your modifications to the
members that contain your source JCL for started tasks might be lost if a new version of the procedure
is received and placed into the procedure library.

v Defining data sets for IEFJOBS allows you to have the member name containing the source JCL invoke
a procedure of the same name. For example, member name DUMPCHK in the IEFJOBS data set
SYS1.STCJOBS is a job that invokes procedure DUMPCHK in SYS1.PROCLIB. This minimizes the
effect on commands that might be issued from a variety of sources, and allows job parameters to be
added transparently.

Note: Do not attempt to change the IEESYSAS procedure to a started job, or place a member named
IEESYSAS in the IEFJOBS data set concatenation. IEESYSAS is reserved for use by the system
for starting address spaces.

v Maintaining procedures in procedure libraries and jobs in an IEFJOBS data set can reduce potential
confusion. For example, if you place a job in a procedure library, a user could mistakenly assume that
the job is a procedure and invoke it as a procedure within a job; a job invoked as a procedure within a
job fails.

Using IEFPDSI to define started tasks
As shipped, MSTJCL00 contains an IEFPDSI DD statement that points to only one procedure library
(SYS1.PROCLIB) used by the master subsystem. You can place individual jobs in any other procedure
libraries pointed to by the IEFPDSI DD statement.

Chapter 1. System tailoring 11

As an alternative to placing individual jobs in any of the other procedure libraries pointed to by the
IEFJOBS DD statement, you can instead put jobs in the members of SYS1.PROCLIB or other data sets in
the IEFPDSI concatenation. In this case, you must make sure that there is not another member of the
same name in one of the data sets in the concatenation ahead of the data set containing the member with
the source JCL.

Started task processing
When you start a started task, the system determines whether the START command refers to a procedure
or a job. (The system validates that the IEFJOBS DD exists within the MSTJCLxx member.) If the
IEFJOBS DD exists, the system searches the IEFJOBS DD concatenation for the member requested in
the START command. If there is no member by that name in the IEFJOBS concatenation, or if the
IEFJOBS concatenation does not exist, the system searches the IEFPDSI DD for the member requested
in the START command.

If a member is found, the system examines the first record for a valid JOB statement and, if one exists,
uses the member as the JCL source for the started task.

If the member does not have a valid JOB statement in its first record, the system assumes that the source
JCL is a procedure and creates JCL to invoke the procedure. After JCL source has been created (or
found), the system processes the JCL.

Writing your own master scheduler JCL
To write your own master scheduler JCL, specify the following JCL statements for the master scheduler
JCL data set:

//MSTJCLxx JOB
A JOB statement is required.

// EXEC
An EXEC statement is required with PGM=IEEMB860. Program IEEMB860 is the master
scheduler that does the IPL processing.

The EXEC statement must contain a time limit of 1440 or the program must be defined as a
system task in the program properties table (PPT) to ensure that the master scheduler does not
time out. See the description of the SCHEDxx parmlib member in this book for information about
allowing your installation to specify programs in the PPT.

The master scheduler (IEEMB860) is defined in the PPT with several options; among them is
NODSI (no data set integrity). NODSI means that the master scheduler JCL defined data sets are
not enqueued or shared by MVS. This keeps the master scheduler from having to deal with
enqueue contention for data sets, such as SYS1.PARMLIB. It also means that it is possible to
move members within the data set while the system is trying to read them. This may result in I/O
errors. Any manipulation of the data sets defined to the master scheduler JCL should be done with
extreme caution.

//STCINRDR DD
This DD statement defines the internal reader where started tasks are to be sent.

//TSOINRDR DD
This DD statement defines the internal reader where TSO logon started tasks are to be sent.

//IEFJOBS DD
This DD statement defines the data set that contains job source JCL for started tasks. This data
set can be a PDSE and can be SMS managed. The data set may also be a concatenation.

//IEFPDSI DD
This DD statement defines the data set that contains procedure source JCL for started tasks.
Normally this data set is SYS1.PROCLIB; it may be a concatenation. For useful work to be
performed, the data set must at least contain the procedure for the primary JES.

12 z/OS V1R4.0 MVS Initialization and Tuning Reference

//IEFPARM DD
Optionally, this DD statement defines SYS1.PARMLIB or an equivalent for use by the master
scheduler address space following master scheduler initialization; it may be a concatenation.
Some subsystems and address spaces use other techniques to read parameter information from
SYS1.PARMLIB or other sources.

If you specify this DD statement and there are parmlib statements in the LOADxx member of
SYS1.PARMLIB, IEFPARM is ignored, a warning message is issued and the LOADxx parmlib data
sets are used. If the specified parmlib statements in LOADxx cannot be found, IEFPARM is
ignored, a warning message is issued and the system uses SYS1.PARMLIB as the default. If there
are no parmlib data sets specified in LOADxx, the system uses the parmlibs on the IEFPARM DD
statement.

If you do not specify this DD statement, the system uses the parmlib data sets specified in the
LOADxx member of SYS1.PARMLIB. If no parmlib data sets were specified in LOADxx, or if the
specified parmlib data sets cannot be found, the system uses SYS1.PARMLIB as the default. If no
SYS1.PARMLIB is cataloged, the system uses the SYS1.PARMLIB on the SYSRES volume.

//SYSUADS DD
Optionally, this DD statement is defined for TSO/E.

//SYSRACF DD
Optionally, this DD statement is defined for RACF. IBM recommends the use of ICHRDSNT for the
specification of the primary and backup RACF databases. See z/OS Security Server RACF
System Programmer’s Guide for more information.

Note: You can only specify a primary RACF database name with the SYSRACF DD.

/* Ends the JCL.

Also:

v The master scheduler JCL can contain only one step.

v MVS system commands can be placed in the master scheduler JCL. These commands are read in
before the master scheduler is executed. They are normally processed before those commands that are
specified in the COMMNDxx member of Parmlib.

v OUTPUT JCL and DD SYSOUT statements can be placed in the master scheduler JCL.

v The master scheduler JCL can contain a JOBLIB or STEPLIB DD statement (which are usually used for
testing).

v Other DD statements that may be needed during master scheduler processing, such as RACF-related
DD statements, can be placed in the master scheduler JCL.

v The master scheculer JCL no longer has to point to the broadcast data set. You now specify the
broadcast data set in the IKJTSOxx member. The master JCL will no longer allocate the broadcast data
set. TSO/E will use either the default (SYS1.BRODCAST) or the BROADCAST parameter in IKJTSOxx
to allocate the broadcast data set. If you wish to go on using SYS1.BRODCAST, no action is required. If
you want to use a broadcast data set other than SYS1.BRODCAST, specify it in IKJTSOxx.

v All data sets defined in the master scheduler JCL must be cataloged in the master catalog.

v The master scheduler JCL cannot contain any EXEC PROC statements.

v The master scheduler JCL runs in the master scheduler’s address space. The TIOT size is 4K, which
means that approximately 250 unit allocations can be done in the master scheduler’s address space.
Therefore, be careful not to exceed this limit when allocating data sets in the master scheduler JCL.

v The master scheduler JCL does not support the following JCL statements:
– ELSE
– ENDIF
– IF/THEN
– INCLUDE
– JCLLIB

Chapter 1. System tailoring 13

v The master JCL can contain the JCL statements COMMAND and SET.

v The master JCL can contain system symbols. Remember, however, that the system does not process
symbols in MSTJCLxx in the same way that it processes symbols in parmlib members. Because
MSTJCLxx contains JCL, the system processes symbols in MSTJCLxx during JCL processing. The
results of symbolic substitution reflect the substitution rules that are in effect during JCL processing.

See Chapter 2, “Sharing parmlib definitions” on page 25 for general information about defining and using
system symbols in parmlib. See z/OS MVS JCL Reference for details about using system symbols in
JCL.

v The master JCL cannot contain the &SYSUID symbol. &SYSUID, which is normally allowed in JCL, is
not defined for the master JCL.

Overview of parmlib members
Table 2 contains an overview of parmlib members:

Table 2. Characteristics of Parmlib Members
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

ADYSETxx: Parameters that control dump analysis and elimination (DAE) processing.

yes optional yes Both IPL and
SET DAE
command.

no Error message
requires the
operator to
correct the
parmlib
member SET
DAE
command.

Error message
requires the
operator to
start DAE
again (using
the SET DAE
command)
after the
problem is
fixed.

N/A yes yes

ALLOCxx: Parameters that control installation defaults for allocation values.

yes, in SYS1.
SAMPLIB

optional yes IPL no Error message
requires the
operator to
correct the
parmlib
member

Error message
is issued.

Error message
is issued.

yes yes

APPCPMxx: Parameters that define or modify the APPC/MVS configuration.

yes, in SYS1.
SAMPLIB

optional yes START APPC
or SET APPC
operator
command

yes Error message
requires the
operator to
correct the
parmlib
member

Error message
is issued.

Error message
is issued.

yes yes

ASCHPMxx: Parameters that define scheduling information for the ASCH transaction scheduler.

yes, in SYS1.
SAMPLIB

optional yes START ASCH
or SET ASCH
operator
command

yes Error message
requires the
operator to
correct the
parmlib
member

Error message
is issued.

Error message
is issued.

yes yes

BLSCECT: Parameters that control dump formatting performed by IPCS, and by the system (through the ABEND and SNAP macros).

yes optional no Both at IPL
and at START
BLSJPRMI

no Error message
is issued.

Error message
is issued.

N/A no yes

BLSCUSER: Parameters that specify IPCS customization.

no optional no Both at IPL
and at START
BLSJPRMI

no Error message
is issued.

Error message
is issued.

N/A no yes

BPXPRMxx: Parameters that control the OS/390 UNIX System Services environment and the hierarchical file system (HFS). The system uses these values when initializing the
OS/390 UNIX System Services kernel.

yes, in SYS1.
SAMPLIB

optional no IPL no Error message
requires the
operator to
correct the
parmlib
member.

Error message
is issued.

Error message
is issued.

yes yes

CLOCKxx: Parameters that control operator prompting to set the TOD clock, specifying the difference between the local time and GMT, and ETR usage.

14 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 2. Characteristics of Parmlib Members (continued)
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

yes optional no IPL yes Prompts
operator to
respecify, or
cancel
parameter
through
ENTER key.

Prompts
operator to
respecify, or
cancel
parameter
through
ENTER key.

Prompts
operator to
respecify, or
cancel
parameter
through
ENTER key.

yes yes

CNGRPxx: Parameters that define console groups as candidates for switch selection if a console fails.

no optional no Both IPL and
SET CNGRP
command.

no Error message
is issued.

The operator is
prompted for a
new CNGRPxx
member.

Error message. yes yes

CNLcccxx: Defines how translated messages are to be displayed at your installation.

yes optional no Both IPL and
SET MMS
command.

no Error message
is issued.

Error message
is issued.

Error message
is issued.

no yes

COFDLFxx: Allows a program to store DLF objects that can be shared by many jobs in virtual storage managed by Hiperbatch™.

yes optional yes Both IPL and
START DLF
command.

no Error message
is issued.

Error message
is issued.

Error message
is issued.

yes yes

COFVLFxx: Allows an authorized program to store named objects in virtual storage managed by VLF.

yes optional yes START VLF
command.

no Error message
is issued.

Error message
is issued.

Error message
is issued.

yes yes

COMMNDxx: Commands to be issued by the control program immediately after initialization. JES commands may not be included.

no optional no IPL no Invalid
commands are
ignored and an
error message
is issued.

No commands
are processed.

N/A yes (see Note
4 at end of
table)

yes

CONFIGxx: Allows the installation to define a standard configuration that is compared with current configuration and to reconfigure processors, storage, and channel paths.

no optional no DISPLAY M
command with
CONFIG option
and CONFIG
command with
MEMBER
option.

no Invalid
commands are
ignored and an
error message
is issued.

Processing is
terminated and
an error
message is
issued.

N/A yes yes

CONSOLxx: Parameters to define an installation’s console configuration, initialization values for communications tasks, the default routing codes for all WTO/WTOR messages
that have none assigned, and the characteristics of the hardcopy message set. CONSOLxx also contains parameters that define the hardcopy medium and designate the
alternate console group for hardcopy recovery.

yes,
IEACONxx in
SYS1.
SAMPLIB

required (unless
joining a
sysplex)

no IPL Yes, if L option
is specified
with the CON
parameter in
IEASYSxx or
by the
operator.

Error message
is issued.

The operator is
prompted for a
new
CONSOLxx
member.

Error message. yes yes

COUPLExx: Describes the systems complex (sysplex) environment for the system.

yes Required yes IPL Note:
Options
changed
through
SETXCF
command

no Error message
is issued. The
operator may
also be
prompted for a
new
COUPLExx
member.

The operator is
prompted for a
new
COUPLExx
member.

Error message. yes yes

CSVLLAxx: Allows an installation to list the entry point name or LNKLST libraries that can be refreshed by the ‘MODIFY LLA, UPDATE=xx’ command.

no optional no MODIFY LLA
and START
LLA commands

yes Error message
is issued.

Error message
is issued.

Error message
is issued.

yes yes

CSVRTLxx: Defines the run-time library services (RTLS) configuration. CSVRTLxx can be used to specify names of libraries to be managed, as well as storage limits for
caching modules from the libraries.

yes optional no IPL or SET
RTLS=xx
command

no Error message
is issued.

Error message
is issued.

Error message
is issued.

yes yes

CTncccxx: Specifies component trace options.

Yes Depends on the
component

no IPL or TRACE
CT command

no Error message
is issued.

Error message
is issued.

Error message
is issued.

yes yes

CUNUNIxx: Specifies parameters for Unicode conversion services.

Chapter 1. System tailoring 15

Table 2. Characteristics of Parmlib Members (continued)
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

No Optional No Both Yes, messages
are issued
when Unicode
conversion
services are
active

Error message
is issued.

Error message
is issued.

Error message
is issued.

No No

DEVSUPxx: Allows an installation to specify whether data will be stored in a compacted format on a 3480 or 3490 tape subsystem with the Improved Data Recording Capability
feature.

no optional no IPL no Error message
is issued.

Error message
is issued.

Error message
is issued.

no yes

DIAGxx: Contains diagnostic commands that control the common storage tracking and GETMAIN/FREEMAIN/STORAGE (GFS) trace functions.

yes optional no IPL or SET
DIAG
command

no Error message
is issued.

Error message
is issued.

Error message
is issued.

yes yes

EPHWP00: Allows z/OS UNIX to use man pages.

yes Required for
OS/390 System
Services to use
man pages.

no Any BookRead
invocation.

no Error message
is issued.

Error message
is issued.

Error message
is issued.

no no

EXITxx: Allows an installation to specify installation exits for allocation decisions.

no optional no IPL no Error message
is issued.

Error message
is issued.

Error message
is issued.

yes no

EXSPATxx: Allows an installation to specify actions taken to recover from excessive spin conditions without operator involvement.

no optional no SET EXS
command

no Error message
is issued.

Error message
is issued.

Error message
is issued.

yes yes

GRSCNFxx: Configuration parameters for systems that are to share resources in a global resource serialization complex.

yes Required only if
GRS=START,
GRS=JOIN or
GRS= TRYJOIN
is specified.

Ignored if
GRS=NONE is
specified.

yes, by
specification of
the RESMIL
parameter.

IPL no Error message
requires the
operator to
either correct
the parmlib
member and
restart the
system or reply
NONE.

Error message
requires the
operator to
either restart
the system
after the
problem is
fixed or reply
NONE.

N/A yes yes

GRSRNLxx: Resource name lists (RNLs) that the system uses when a global resource serialization complex is active.

yes Required only if
GRS=START,
GRS=JOIN or
GRS= TRYJOIN
is specified and
GRSRNL=
EXCLUDE is not
specified.

Ignored if
GRS=NONE is
specified.

yes IPL or SET
GRSRNL
command

no At IPL: Error
message
requires the
operator to
either correct
the parmlib
member and
restart the
system or reply
NONE. On
SET GRSRNL
command:
Error message
and the
command is
not done.

At IPL: Error
message
requires the
operator to
either restart
the system
after the
problem is
fixed or reply
NONE. On
SET GRSRNL
command:
Error message
and the
command is
not done.

N/A yes yes

GTFPARM: Parameters to control GTF.

yes Optionally used.
Can be modified
by installation.

Indirectly
because SRM
sysevent trace
option is a
tuning aid.

START GTF Yes,
automatically at
START GTF.

On any error,
prompts for all
parameters.

Same as with
syntax error.

N/A no no

IEAABD00: Default parameters for an ABEND dump when a SYSABEND DD statement has been specified.

yes Optional.
However, if
member is
unavailable,
ABEND dumps
may not be
possible without
DUMPOPT lists.

no IPL no Message lists
valid
parameters
that were
accepted.
Invalid
parameters are
rejected.

Error message.
Parameters are
rejected.

Error message
is issued.

no yes

IEAAPFxx: Names of authorized program libraries.

16 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 2. Characteristics of Parmlib Members (continued)
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

no optional.
SYS1.LINKLIB
and
SYS1.SVCLIB
are always
authorized.

no IPL no Prompts
operator to
respecify bad
parameters or
cancel
parameters
through
ENTER key.

Same as with
syntax error.

N/A no yes

IEAAPP00: Names of authorized installation-written I/O appendage routines.

no optional no IPL no Error message.
Partial
appendage
name table is
built, if
possible.

Same as with
syntax error.

N/A yes yes

IEACMD00: IBM-supplied commands that are processed during system initialization.

yes optional yes IPL no Ignores invalid
command
name.

No commands
are processed.

N/A yes yes

IEADMCxx: Parameters for DUMP command.

no optional no DUMP
command

no Error message.
Parameters are
rejected.

Error message.
Parameters are
rejected.

N/A yes yes

IEADMP00: Default parameters for an ABEND dump when SYSUDUMP DD statement has been specified.

yes Optional.
However, if
member is
unavailable,
ABEND dumps
may not be
possible without
DUMPOPT lists.
Can be modified
by installation.

no IPL no Message lists
valid
parameters
that were
accepted.
Invalid
parameters are
rejected.

Error message.
Parameters are
rejected.

N/A no yes

IEADMR00: Default parameters for an ABEND dump when SYSMDUMP DD statement has been specified.

yes Optional.
However, if
member is
unavailable,
ABEND dumps
may not be
possible without
DUMPOPT lists.
Can be modified
by installation.

no IPL no Message lists
valid
parameters
that were
accepted.
Invalid
parameters are
rejected.

Error message.
Parameters are
rejected.

N/A no yes

IEAFIXxx: Names of modules to be fixed in central storage for the duration of the IPL.

no optional yes IPL yes, if L option
is specified
with FIX
parameter in
IEASYSxx, or
by the
operator.

Prompts
operator to
respecify bad
parameters or
cancel them
through
ENTER key.

Same as with
syntax error.

Error message.
Obsolete
module names
are ignored.

yes yes

IEAICSxx: Parameters of an installation control specification that associate units of work (transactions) with performance groups. Performance groups are used by the system
resources manager to control and report on transactions.

no optional yes Both IPL and
SET ICS
command.

yes, if L option
is specified
with the
ICS=xx
parameter in
IEASYSxx, or
by the
operator.

Prompts
operator to
respecify or
cancel through
ENTER key. If
parameter is
cancelled, no
IEAICSxx
member is put
into effect;
performance
groups are
assigned
through the
JCL or LOGON
PERFORM
parameter
value.

Same as with
syntax error.

N/A yes yes

IEAIPSxx: Parameters of an installation performance specification that control workload manager of system resources manager.

Chapter 1. System tailoring 17

Table 2. Characteristics of Parmlib Members (continued)
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

IEAIPS00 is
supplied
by IBM.
IEAIPSxx
is not.

IEAIPS00 is
required.
IEAIPSxx is
optional.

yes Both IPL and
SET IPS
command.

yes, if L option
is specified
with the
IPS=xx
parameter in
IEASYSxx, or
by the
operator.

Prompts
operator to
respecify
alternate IPS
member or to
default to
IEAIPS00. If no
IEAIPS00 or
IEAIPS00 is
invalid uses
system
defaults.

Same as with
syntax error.

N/A yes yes

IEALPAxx: Names of reenterable modules that are to be loaded as a temporary extension to the PLPA.

no optional yes IPL yes, if L option
is specified
with the MLPA
parameter in
IEASYSxx, or
by the
operator.

Prompts
operator to
respecify, or
cancel
parameter
through
ENTER key.

Same as with
syntax error.

Error message.
Ignores
obsolete
module names.

yes yes

IEAOPTxx: Parameters that control resource and workload management algorithms in the system resources manager.

IEAOPT00-
yes

IEAOPTxx-
no

optional yes Both IPL and
SET OPT
command.

yes, if L option
is specified
with the OPT
parameter in
IEASYSxx, or
by the
operator.

Prompts
operator to
respecify or
cancel
parameter
through
ENTER key. If
parameter is
cancelled,
various
defaults are
used.

Same as with
syntax error.

N/A yes yes

IEAPAKxx: “Pack List” names of groups of modules in the LPALST concatenation that the system will load between page boundaries to minimize page faults.

No.
Optionally,
installation
can provide
before IPL.

optional yes IPL no Bypasses the
pack group that
contains the
error.
Processes the
next group
pack.

The pack
groups read
before the
errors are
processed.
Other pack
groups are
omitted.

Error message.
Ignores
obsolete
modules
names.

yes yes

IEASLPxx: Contains valid SLIP commands.

Yes, in SYS1.
PARMLIB.

required if SET
SLIP=00
command is
specified in
IEACMD00.

no Both IPL and
SET SLIP
command

no Normal SLIP
response to
prompt the
operator.

Processing
stops.

Syntax error
message is
issued.

yes yes

IEASVCxx: Allows the installation to define its own SVCs in the SVC table.

no optional no IPL Yes, if L option
is specified
with the SVC
parameter in
IEASYSxx, or
by the
operator.

Message is
issued and the
statement in
error is not
processed.
Processing
continues with
the next
statement.

Same as with
syntax error.

Same as with
syntax error.

yes yes

IEASYMxx: Specifies, for one or more systems in a multisystem environment, the static system symbols and suffixes of IEASYSxx members that the system is to use. One or
more IEASYMxx members are selected using the IEASYM parameter in the LOADxx parmlib member.

no optional no IPL L parameter
must be
specified with
parameter or
number.

Prompts
operator to
respecify or
cancel
parameter
through
ENTER key.
Parameters
processed
before the error
are discarded.
Also, in some
error situations,
a wait state
occurs.

Same as with
syntax error.

Same as with
syntax error.

yes yes

18 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 2. Characteristics of Parmlib Members (continued)
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

IEASYSxx: System parameters that are valid responses to the SPECIFY SYSTEM PARAMETERS message. Multiple system parameter lists are valid. The list is chosen by the
operator SYSP parameter or through the SYSPARM statement of the LOADxx parmlib member (see Chapter 58, “LOADxx (system configuration data sets)” on page 451 for
more information).

no See Note 2 at
end of table.

See Note 3 at
end of table.

IPL See Note 1 at
end of table. (L
parameter
must be
specified with
parameter or
number.

Prompts
operator to
respecify, or
cancel
parameter
through
ENTER key.
Parameters
processed
before the error
are retained.

Parameters
processed
before the error
are retained.
Operator is
asked to
specify an
alternate
member. If he
does, new
parameters
override those
retained.

Obsolete
parameters are
treated as
syntax errors.

yes yes

IECIOSxx: Parameters that control missing interrupt handler (MIH) intervals and update hot I/O detection table (HIDT) values.

no optional no IPL or SET IOS
command (to
change the
MIH values
only).

no Message is
issued and
default value is
substituted.

Same as with
syntax error.

Obsolete
parameters are
treated as
syntax errors.

yes yes

IEFSSNxx: Parameters that identify what subsystems are to be initialized.

yes required yes, depending
on the function
of each
subsystem.

IPL no Message
issued
identifying
erroneous
record. Next
record is read
and processed.

Processing of
the parmlib
members is
terminated and
an error
message is
issued.

N/A yes yes

IFAPRDxx: Parameters that define a product enablement policy.

yes optional no Both IPL and
SET PROD
command.

no, but
information is
available
through
DISPLAY.

Skips to next
statement in
member.

Processing is
terminated and
an error
message is
issued.

Skips to next
statement in
member.

yes yes

IGDDFPKG: One or more statements that specify which DFSMS/MVS® functional components and separately orderable features are licensed for use on a particular MVS
system or across a sysplex.

no optional no IPL no Message is
issued and
default value is
substituted.

Message is
issued and
default value is
substituted.

Message is
issued and
default value is
substituted.

no yes

IGDSMSxx: Initialize the Storage Management Subsystem (SMS) and specify the names of the active control data set (ACDS) and and the communications data set
(COMMDS).

no required no Both IPL and
SET SMS
command.

yes Default value is
substituted.

Same as with
syntax error.

Obsolete
parameters are
ignored.

yes yes

IKJPRMxx: TIOC parameters that control TSO/TCAM time sharing buffers.

no optional yes MODIFY
tcamproc
command, if
TS=START is
specified in
command.

no Default value is
substituted.

Same as with
syntax error.

Obsolete
parameters are
ignored.

no yes

IKJTSOxx: For TSO/E specifies authorized commands and authorized program, programs that are authorized when called through the TSO service facility, commands that may
not be issued in the background, and defaults for SEND and LISTBC processing.

yes, in SYS1.
SAMPLIB

optional no IPL or TSO/E
PARMLIB
command

no Error message
is issued.
Processing
continues.

Same as with
syntax error.

N/A yes yes

IPCSPRxx: Parameters that are used during an IPCS session.

yes optional no IPCS
command
initialization

no Error message
is issued. IPCS
session
continues.

Same as with
syntax error.

Same as with
syntax error.

no yes

IVTPRM00: Sets Communications Storage Manager ICSM) parameters.

yes, as a
VTAM®

component.

optional yes Initialized by
first CREATE_
POOL request
received.

yes Error message
is issued.
Processing
continues.

Same as with
syntax error.

Same as with
syntax error.

yes yes

LNKLSTxx: List of data sets to be concatenated to form the LNKLST concatenation. You can also use PROGxx to define the concatenation.

Chapter 1. System tailoring 19

Table 2. Characteristics of Parmlib Members (continued)
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

Yes, in SYS1.
SAMPLIB

required if
PROGxx is not
used for the
LNKLST
concatenation;
otherwise,
ignored if
PROGxx is
used.

no IPL Yes, if L option
is specified
with LNK
parameter in
IEASYSxx, or
by the
operator.

Prompts
operator to
respecify, or
cancel
parameter
through
ENTER key.

No data sets
are
concatenated
to
SYS1.LINKLIB.
Operator can
re-IPL to
specify an
alternate
LNKLSTxx
member.

Error message.
Data sets not
found will not
be
concatenated
to
SYS1.LINKLIB

yes yes

LOADxx: Specifies data sets MVS uses to configure your system.

No. (See the
IPXLOADX
member of
SYS1.
SAMPLIB for
JCL to create
a sample
LOADxx
member.)

required no IPL - from
LOAD
parameter on
system console

no Wait state is
loaded. Error
message is
issued.

Wait state is
loaded.

Error message
is issued.

Supports
&SYSR1 as a
volser. No
other system
symbol
support.

no

LPALSTxx: List of data sets to be concatenated to SYS1.LPALIB from which the system builds the pageable LPA (PLPA).

no optional no IPL Yes, if L option
is specified
with LPA
parameter in
IEASYSxx, or
by the
operator.

Any valid data
set definitions
preceding the
syntax error
are
concatenated
to
SYS1.LPALIB.

No data sets
are
concatenated
to
SYS1.LPALIB.
Operator can
reIPL to specify
an alternate
LPALSTxx
member.

N/A yes yes

MMSLSTxx: Specifies information that the MVS message service (MMS) uses to control the languages that are available in your installation.

yes, in SYS1.
SAMPLIB

optional no IPL via the
CONSOLxx
member option.
Modify with
SET MMS
command

Yes, through
the DISPLAY
command

Message is
issued for each
invalid
member.

Parameters are
rejected.

Same as with
syntax error.

yes yes

MPFLSTxx: Parameters that the message processing facility uses to control message processing and display.

no optional no IPL via the
CONSOLxx
member option.
Modify with
SET MPF
command

Yes, through
the DISPLAY
command.

Message is
issued for each
invalid
member.

Message is
issued.
Processing
continues.

Same as with
syntax error.

yes yes

MSTJCLxx: Contains the master scheduler job control language (JCL) that controls system initialization and processing.

yes, in SYS1.
LINKLIB

required no IPL yes Abend issued
and the
statement in
error is not
processed. The
system
abnormally
ends master
scheduler
initialization.

Same as with
syntax error.

Same as with
syntax error.

yes (see Note
4 at end of
table)

yes

NUCLSTxx: Specifies members of SYS1.NUCLEUS to be included in, or excluded from, the nucleus region at IPL-time.

no optional no IPL no Wait state is
loaded. Error
message is
issued.

Wait state is
loaded.

N/A no no

PFKTABxx: Parameters contain the definitions for program function key tables (PFK tables).

no optional no IPL or SET
PFK command.

no N/A yes yes

PROGxx: Contains statements that define the format and contents of the APF-authorized program library list, control the use of installation exits and exit routines, define the
LNKLST concatenation, and specify alternate data sets for SYS1.LINKLIB, SYS1.MIGLIB, and SYS1.CSSLIB to appear at the beginning of the LNKLST concatenation and
SYS1.LPALIB to appear at the beginning of the LPALST concatenation.

no optional;
required if
LNKLSTxx is not
used for the
LNKLST
concatenation.

no IPL or SET
PROG
command.

Yes through
DISPLAY
PROG

Error message
is issued

Error message
is issued

Error message
is issued

yes yes

20 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 2. Characteristics of Parmlib Members (continued)
Supplied by
IBM (IBM-
supplied
members
use ’00’ for
’xx’)

Required or
Optional

Directly
affects
Performance

Read at IPL or
at command

Allows listing
of parameters
at IPL or
command

Response to Errors (N/A = not applicable)

Support for
System
Symbols

Support for
concatenated
parmlibSyntax Error Read Error

Unsupported
Parameters

SCHEDxx: Provides centralized control over the size of the master trace table, the completion codes to be eligible for automatic restart and programs to be included in the
PPT.

no optional no Both IPL and
SET SCH
command

Yes, (L) is
specified in
IEASYSxx or in
response to the
specify system
parameters
prompt.

Diagnostic
error message
is issued.
Different
processing is
done for each
statement type
in IEASYSxx.

Diagnostic
error message
is issued and
the next record
is read.

yes yes

SMFPRMxx: Parameters that define SMF options.

yes, in SYS1.
SAMPLIB

optional yes IPL or SET
SMF command

Yes, if
PROMPT (list)
or PROMPT
(ALL)
parameter is
specified.

Prompts
operator to
enter
parameter or
re-IPL.

Same as with
syntax error.

Obsolete
parameters are
ignored.

yes yes

TSOKEYxx: VTIOC parameters that are used by TSO/VTAM time sharing.

no optional yes START TSO
command

Yes,
automatically at
START TSO.

Default value is
substituted.

Default value is
substituted.

N/A yes yes

VATLSTxx: Volume attribute list that defines the “mount” and “use” attributes of direct access volumes.

no optional yes IPL No. Operator
has option to
get list only if
error occurs.

Error message.
Bypasses bad
entry.
Processes
remaining
entries.

Operator is
given choice of
processing
remaining
list(s) if multiple
lists, or
specifying new
VATLST
VATLSTxx
member, or
reIPLing.

N/A yes yes

XCFPOLxx: Specifies the actions that a system in a sysplex on PR/SM is to take when another system in the sysplex becomes inactive.

yes optional no SETXCF
PRSMPOLICY
command.

no Error message
requires the
operator to
correct the
parmlib
member

Error message
requires the
operator to
correct the
parmlib
member

Error message
requires the
operator to
correct the
parmlib
member

yes no

Note 1: These parameters can be listed at IPL: APF, DUMP, FIX, ICS, MLPA, SYSP, and OPT.

Note 2: The only mandatory parameter is PAGE. Other parameters have coded defaults.

Note 3: Performance-oriented parameters in IEASYSxx: CMD, FIX, IPS, MLPA, OPT, REAL, RSU, WTOBFRS, WTORPLY.

Note 4: System symbols in COMMNDxx and MSTJCLxx are processed differently than system symbols in other parmlib members. See the descriptions of COMMNDxx and
MSTJCLxx in this book for details.

Implicit system parameters
Various system requirements, although not involving explicit parameters, affect the way the system
performs. These system requirements may be considered as “implicit” parameters. They involve DD
statements, data sets, hardware choices, and so forth. Some examples are:

v SYSABEND, SYSMDUMP, and SYSUDUMP DD statements. Without these statements, the parameters
in parmlib members IEAABD00, IEADMR00, and IEADMP00 and the dump option lists in ABEND macro
instructions are meaningless because an ABEND dump cannot be taken.

v The SMF data sets. If these data sets are not allocated on direct access volumes and cataloged, no
SMF recording occurs.

v Addition of new modules to the LPALST concatenation through use of IEBCOPY, the Linkage Editor or
the binder. Adding new modules affects the size and usefulness of the PLPA that is loaded by specifying
the CLPA parameter at IPL.

v Choice of the device on which the PLPA paging data sets will reside. This choice affects the speed at
which PLPA modules can be paged into central storage and thus influences system performance.

Chapter 1. System tailoring 21

v Definition of page data sets through the DEFINE PAGESPACE command. The PAGE parameter, issued
at IPL through parmlib and/or the operator, is significant only if the specified data sets have been
previously formatted by the DEFINE PAGESPACE command. (For information on this command, see
z/OS DFSMS Access Method Services for Catalogs.)

Managing system security — APF-authorized library list
The authorized program facility (APF) allows your installation to identify system or user programs that can
use sensitive system functions. To be APF-authorized, programs must reside in APF-authorized libraries,
and be link-edited with authorization code AC=1. The system maintains a list of APF-authorized libraries
that contains the following information for each library:
v The library name
v An identifier for the volume that contains the library.

The system automatically places SYS1.LINKLIB and SYS1.SVCLIB in the first two APF list entries. Your
installation can specify the remaining entries in the APF list.

Note: When LNKAUTH=APFTAB is specified, the system considers SYS1.MIGLIB and SYS1.CSSLIB to
be APF-authorized when they are accessed as part of the concatenation (even when they are not included
in the APF list).

Choosing an APF list format
You can specify the list of APF-authorized libraries in a dynamic or static format. There is only one APF
list, the format of which is either static or dynamic. The dynamic format allows you to:

v Update the APF list without having to reIPL the system, and

v Specify as many APF-authorized libraries as you need; there is no system-imposed maximum number.

In contrast, you can update a static APF list only at IPL, and it can contain a maximum of 255 entries. IBM
recommends that you use a dynamic APF list to take advantage of the dynamic update capabilities.

Before you change the format of the APF list to dynamic, ensure that programs and vendor products are
converted to use dynamic APF services (see Chapter 32, “IEAAPFxx (authorized program facility list)” on
page 265 for information about converting to a dynamic APF list) and that the proper program products are
installed (see z/OS and z/OS.e Planning for Installation).

Table 3 describes restrictions associated with changing the format of the APF list:

v The first column shows the format of the APF list set at IPL. The next three columns show changes to
the APF list that could occur, in order, during normal processing.

v Under the “Format change allowed?” column, the table indicates whether a format change is allowed
when the APF list is in the last format listed in the first four columns.

v Under the “Contents of APF list” column, the table shows the contents of the APF list when the format is
the last format listed in the first four columns.

Table 3. Restrictions on Changing the Format of the APF List

Format set at
IPL

First format
change

Second format
change

Third format
change

Format
change
allowed? Contents of APF list

Static Not made Not made Not made Yes The libraries included at IPL

Dynamic Not allowed Not allowed Not allowed No The libraries included at IPL,
and any updates that occur
during normal processing

22 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 3. Restrictions on Changing the Format of the APF List (continued)

Format set at
IPL

First format
change

Second format
change

Third format
change

Format
change
allowed? Contents of APF list

Static Dynamic Not made Not made Yes The libraries included at IPL,
and any updates that occur
during normal processing

Static Dynamic Static Not made Yes The libraries included at IPL,
but not the updates that
occurred during normal
processing (when the format
was dynamic)

Static Dynamic Static Dynamic Yes The libraries included at IPL,
and any updates that occurred
during normal processing
(during both instances when
the format is dynamic)

IBM recommends that you do the following when changing the format of the APF list:

1. IPL with the APF list in a static format; then, when you are ready, change the format to dynamic during
normal processing (if you IPL with a dynamic format and you find an error, you cannot convert the
format back to static).

2. Convert from a dynamic format back to a static format only when you find an error when using the
dynamic APF list. For example, a program may not be converted to use CSVAPF services to access
the list (see the description of the CSVAPF macro in z/OS MVS Programming: Authorized Assembler
Services Reference ALE-DYN for an example of how to perform this conversion). After you fix the
error, you can change the format back to dynamic.

3. Specify a dynamic format for the APF list at the next IPL.

For information about restrictions associated with changing the format of the APF list, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Specifying the APF list
The PROGxx and IEAAPFxx parmlib members allow you to define the format and contents of the APF list.
You can use either member, but IBM recommends using PROGxx, which offers the following advantages
over IEAAPFxx:

v You can specify multiple PROGxx parmlib members using the PROG=xx system parameter

v You can specify a dynamic or static APF list format; the dynamic format allows you to update the APF
list at any time during normal processing or at IPL.

v You can specify an unlimited number of libraries in the APF list.

Note: You can use both members, but the resulting list is dynamic only when you specify dynamic format
in PROGxx.

If you specify a dynamic APF list format in PROGxx, you can specify the PROG=xx system parameter to
set one or more current PROGxx parmlib members at IPL, or the operator can enter a SET PROG=xx
command to set a current PROGxx parmlib member during normal processing. When the operator enters
a SET PROG=xx command to update a dynamic APF list, the updated APF list remains active only for the
duration of the current IPL. For information on how to use the SET PROG=xx command to specify the
current PROGxx parmlib member, see z/OS MVS System Commands.

If you currently use the IEAAPFxx parmlib member to define the APF list, you can convert the format of
IEAAPFxx to a PROGxx format using the IEAAPFPR REXX exec provided by IBM, as described in z/OS

Chapter 1. System tailoring 23

MVS Migration, which also describes the required program products for dynamic APF and provides
information about converting vendor products and programs to use dynamic APF services.

Specifying installation exits
The PROGxx and EXITxx parmlib members allow you to specify installation exits. You can use either of
these members, but IBM recommends using PROGxx. With PROGxx, you can do the following, at IPL or
while the system is running:
v Add exit routines to an exit
v Change the state of an exit routine
v Delete exit routines from an exit
v Change the attributes of an exit
v Undefine implicitly defined exits
v Specify multiple PROGxx parmlib members using the PROG=xx system parameter.

You can use the PROG=xx system parameter at IPL to specify the particular PROGxx parmlib member the
system is to use; or the operator can enter a SET PROG=xx command to set a current PROGxx parmlib
member during normal processing. When the operator enters a SET PROG=xx command, the change
remains in effect only for the duration of the current IPL. For information on how to use the SET PROG=xx
command, see z/OS MVS System Commands.

If you currently use the EXITxx parmlib member to specify installation exits, you can convert the format of
EXITxx to the PROGxx format by using the IEFEXPR REXX exec provided by IBM, as described in z/OS
MVS Migration.

The system also allows you to specify SMF exits through the SMFPRMxx parmlib member. You can
associate exit routines with these SMF exits by adding EXIT statements to PROGxx that are equivalent to
those in SMFPRMxx. The EXIT statements in SMFPRMxx list the exits; the EXIT statements in PROGxx
list the associated exit routines. The EXIT statements in SMFPRMxx must remain. See 549 for an
example of how to add EXIT statements to PROGxx.

Specifying LNKLST concatenations
The PROGxx and LNKLSTxx parmlib members allow you to specify the LNKLST concatenation. You can
use either of these members, but IBM recommends using PROGxx. See “PROG” on page 367.

24 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 2. Sharing parmlib definitions

This chapter describes how to set up parmlib so two or more systems can share it. The chapter describes:
v Objectives for sharing parmlib
v Filter parameters in LOADxx
v What system symbols are
v System-provided system symbols
v Planning tasks for sharing parmlib
v Defining system symbols and changing existing system symbol definitions
v Using system symbols in parmlib.
v A preprocessor to verify symbols without IPLing
v Displaying static system symbols
v Diagnosing problems with static system symbols
v Using indirect volume serial support

Objectives for sharing parmlib
In a multisystem environment, your objective should be to share one parmlib concatenation with as many
systems as possible.

v Examine your installation configuration and determine the best way to consolidate all LOADxx
information for all MVS images in a sysplex into one LOADxx member using the HWNAME,
LPARNAME and VMUSERID parameters. The LOADxx parameters HWNAME, LPARNAME and
VMUSERID provide segmentation of the processor hardware name, the logical partition name and the
VM Userid. For more information on filter parameters, see Chapter 58, “LOADxx (system configuration
data sets)” on page 451.

v Determine how many members of parmlib you can share with other systems. For example, if two
systems use different CLOCKxx members, and only one value in each member is different, chances are
that the two systems can share one CLOCKxx member.

v If you can’t share members, determine if you can share system parameter definitions in one IEASYSxx
member. For example, if you must use separate CLOCKxx members for two different systems, you can
code the CLOCK=xx parameter in a shared IEASYSxx member that specifies the unique CLOCKxx
member for each system.

System symbols are the elements that represent unique values in shared members. When determining
which members are to be shared, you must consider which system symbols are available to you, the
values of those system symbols, and how you can use them to optimize the sharing of parmlib.

The following sections explain how to use system symbols and plan for parmlib sharing.

What are system symbols?
System symbols are elements that allow systems to share parmlib definitions while retaining unique values
in those definitions. System symbols act like variables in a program; they can take on different values,
based on the input to the program. When you specify a system symbol in a shared parmlib definition, the
system symbol acts as a “place holder”. Each system that shares the definition replaces the system
symbol with a unique value during initialization.

Before you begin to share parmlib definitions, you must understand the types of system symbols and the
elements that comprise them.

The following terms describe the elements of system symbols:

© Copyright IBM Corp. 1991, 2002 25

Symbol Name
The name that is assigned to a symbol. It begins with an ampersand (&) and optionally ends with a
period (.).

Substitution Text
The character string that the system substitutes for a symbol each time it appears. Substitution text
can identify characteristics of resources, such as the system on which a resource is located, or the
date and time of processing. When you define static system symbols in the IEASYMxx parmlib
member (see “Step 5. Create an IEASYMxx parmlib member” on page 36), the substitution text can
contain other static system symbols; the resolved substitution text refers to the character string that is
produced after all symbols in the substitution text are resolved.

The following terms describe the types of symbols:

Dynamic System Symbol
A system symbol whose substitution text can change at any point in an IPL. Dynamic system symbols
represent values that can change often, such as dates and times. A set of dynamic system symbols is
defined to the system; your installation cannot provide additional dynamic system symbols.

Static System Symbol
A symbol whose substitution text is defined at system initialization and remains fixed for the life of an
IPL. (One exception, &SYSPLEX, has a substitution text that can change at one point in an IPL; see
“Step 6. Code support for system symbols in LOADxx” on page 40 for details.) Static system symbols
are used to represent fixed values such as system names and sysplex names.

Static system symbols have two types:

v System-defined static system symbols already have their names defined to the system. Your
installation defines substitution texts or accepts system default texts for the static system symbols,
which are:
– &SYSCLONE
– &SYSNAME
– &SYSPLEX
– &SYSR1 (Note: Your installation cannot define substitution text for &SYSR1.)
– &SYSALVL (Note: Your installation cannot define substitution text for &SYSALVL.)

v Installation-defined static system symbols are defined by your installation. The system
programmer specifies their names and substitution texts in the SYS1.PARMLIB data set.

In addition to the system symbols listed above, the system allows you to define and use the following
types of symbols:

v JCL symbol: A symbol that represents variable information in JCL. You can define JCL symbols on
EXEC, PROC, and SET statements in JCL, and use them only in:
– JCL statements in the job stream
– Statements in cataloged or in-stream procedures
– DD statements that are added to a procedure.

For more information about using JCL symbols, see z/OS MVS JCL Reference.

v IPCS symbol: A symbol that IPCS uses to represent data areas in dumps that are processed with IPCS
subcommands.

For more information about using IPCS symbols, see z/OS MVS IPCS User’s Guide.

The following sections describe the static and dynamic system symbols that you can define and use in
parmlib.

26 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

Note
Although IBM recommends the use of ending periods on system symbols, the text of this chapter
does not specify them, except in examples, out of consideration for readability.

Static system symbols
The system substitutes text for static system symbols when it processes parmlib members. For static
system symbols that the system provides, you can define substitution texts in parmlib or accept the default
substitution texts. You can also define at least 800 additional static system symbols. See “Setting up a
shared parmlib” on page 30 for more information about how to define static system symbols.

Table 4 describes the static system symbols:

Table 4. Static System Symbols
System Symbol Description Length of Text Where Defined Valid Releases Default Substitution

Text

&SYSALVL The architecture level
of the system.

1 char LOADxx parmlib
member

Release 10 and higher The value specified for
ARCHLVL in the
LOADxx parmlib
member

&SYSCLONE Shorthand notation for
the name of the
system; often used in
fields that are limited to
two characters.

1-2 chars IEASYMxx parmlib
member

5.2 and higher Last two characters of
substitution text
defined to &SYSNAME
system symbol.

&SYSNAME The name of the
system.

1-8 chars IEASYMxx or
IEASYSxx parmlib
member

5.1 and higher The processor
identifier. See “Step 3.
Determine where to
specify the system
name” on page 34 for
details.

&SYSPLEX The name of the
sysplex.

1-8 chars COUPLExx or LOADxx
parmlib member

5.1 and higher If LOADxx does not
specify the sysplex
name, &SYSPLEX
defaults to LOCAL until
the COUPLExx
member is processed.

&SYSR1 The IPL Volume Serial
name.

1-6 chars Set by system to IPL
volume serial

Release 4 and higher None

Chapter 2. Sharing parmlib definitions 27

|
|
|
|

Table 4. Static System Symbols (continued)
System Symbol Description Length of Text Where Defined Valid Releases Default Substitution

Text

Installation defined
system symbols

Additional system
symbols may be
defined by your
installation.

The maximum number
of symbols you can
have depends on their
size. IBM guarantees
you the ability to define
800 symbols of your
own, but you can
probably define more.
You may have as many
symbols as you can fit
into the symbol table.
The symbol table can
be up to 32512 bytes
long, including a
4–byte header. Each
entry in the table
consists of:

v 16–bytes, plus

v The symbol name,
including the
preceding ″&″ and
trailing ″.″ (for
example,
″&MYSYM.″)

v The substitution text
value (for example,
″MYVALUE″)

1-8 chars IEASYMxx parmlib
member

5.2 and higher None

Dynamic system symbols
Table 5 describes the dynamic system symbols and the releases for which they are valid. The names of
the following system symbols are changed from previous releases of MVS:

New Symbol
Old Symbol

&YYMMDD
&DATE

&LYYMMDD
&LDATE

&HHMMSS
&TIME

&LHHMMSS
<IME

To maintain compatibility, the original system symbols are still supported by the DUMPDS command.
However, IBM recommends that you change to use the new system symbols because the substitution
texts for the old system symbols might cause buffer overflows.

Table 5. Dynamic System Symbols

System Symbol Description Valid Releases

&DATE The date, based on Greenwich Mean Time (GMT). Equivalent to
&YR2.&MON.&DAY.. Use &LDATE for local date.

5.1

28 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
||

Table 5. Dynamic System Symbols (continued)

System Symbol Description Valid Releases

&DAY The day of the month, based on Greenwich Mean Time (GMT).
Shown in two decimal digits, 01-31. Use &LDAY for local time.

5.1

&HHMMSS The time. Equivalent to &HR.&MIN.&SEC.. Use &LHHMMSS for
local time.

5.2

&HR The hour of the day, based on GMT. Shown in two decimal digits,
00-23. Use &LHR for local time.

5.1, 5.2

&JDAY The Julian day of the year, based on GMT. Shown in three decimal
digits, 001-366. Use &LJDAY for local time.

5.1, 5.2

&JOBNAME The name of the job. Shown in 1-8 characters. In the special case
when the job name is *MASTER*, &JOBNAME resolves to
#MASTER# to avoid the error of using the asterisk as part of a data
set name.

5.1, 5.2

&MIN The minute of the hour, based on GMT. Shown in two decimal digits,
00-59. Use &LMIN for local time.

5.1, 5.2

&MON The month, based on GMT. Shown in two decimal digits, 01-12. Use
&LMON for local time.

5.1, 5.2

&SEC The second of the minute, based on GMT. Shown in two decimal
digits, 00-59. Use &LSEC for local time.

5.1, 5.2

&SEQ A sequence number for uniqueness. It is required for names of
automatically allocated dump data sets. Shown in five decimal digits,
00000-99999. &SEQ is resolved only when used with DUMPDS.

5.1, 5.2

&TIME The time that the dump was requested, Equivalent to
&HR.&MIN.&SEC.. Use <IME for local time.

5.1

&WDAY The day of the week, based on GMT. Shown in three characters:
SUN, MON, TUE, WED, THU, FRI or SAT. Use &LWDAY for local
time.

5.1, 5.2

&YR2 The year, based on GMT. Shown in two decimal digits, 00-99. Use
&LYR2 for local time.

5.1, 5.2

&YR4 The year, based on GMT. Shown in four decimal digits, 0000-9999.
Use &LYR4 for local time.

5.1, 5.2

&YYMMDD The date, based on GMT. Equivalent to &YR2.&MON.&DAY.. Use
&LYYMMDD for local time.

5.2

Note: You can specify dynamic system symbols in parmlib. However, be aware that the system
substitutes text for dynamic system symbols when it processes parmlib members. For example, if
you specify &HHMMSS in a parmlib member, its substitution text reflects the time when the
member is processed.

This situation can also occur in other processing. For example, if you specify the &JOBNAME dynamic
system symbol in a START command for a started task, the resolved substitution text for &JOBNAME is
the name of the job assigned to the address space that calls the symbolic substitution service, not the
address space of the started task.

Symbols reserved for system use
When you define additional system symbols in the IEASYMxx parmlib member (see “Step 5. Create an
IEASYMxx parmlib member” on page 36), ensure that you do not specify the names of the following
system symbols, which are reserved for system use:

&DATE &DAY &HHMMSS

Chapter 2. Sharing parmlib definitions 29

&HR &JDAY &JOBNAME
&LDATE &LDAY &LHHMMSS
&LHR &LJDAY &LMIN
&LMON &LSEC <IME
&LWDAY &LYR2 &LYR4
&LYYMMDD &MIN &MON
&SEC &SEQ &SID
&SYSCLONE &SYSNAME &SYSPLEX
&SYSR1 &SYSUID &TIME
&WDAY &YR2 &YR4
&YYMMDD &SYSALVL

If you try to define a system symbol that is reserved for system use, the system might generate
unpredictable results when performing symbolic substitution.

Setting up a shared parmlib
Before you use system symbols to share parmlib definitions that require unique values, you must evaluate
the requirements for system symbols at your installation. Determine which members of parmlib require
unique definitions. Then determine what system symbols you need so two or more systems can share
those members.

Based on that evaluation, you can then:

v Define substitution texts for system-defined static system symbols, or accept their default substitution
texts

v Determine if you need to define additional static system symbols.

The following section explains how to set up parmlib for sharing:

Table 6. Procedure to Set Up Parmlib for Sharing

Step Location

1. Plan to share parmlib definitions. Step 1. Plan to share parmlib members

2. Determine where to specify system parameters for
each system.

Step 2. Determine where to specify system parameters
on page 33

3. Determine where to specify the system name. Step 3. Determine where to specify the system name on
page 34

4. Understand the restrictions associated with an
environment that contains different levels of MVS (a
mixed environment).

Step 4. Know the considerations for a mixed sysplex on
page 35

5. Determine which parmlib members can be managed
more easily through the use of system symbols.

Step 2. Determine where to use system symbols in
parmlib on page 45

6. Create one or more IEASYMxx parmlib members. Step 5. Create an IEASYMxx parmlib member on page 36

7. Code support for system symbols in the LOADxx
parmlib member.

Step 6. Code support for system symbols in LOADxx on
page 40

Step 1. Plan to share parmlib members
When planning to share parmlib members, ask yourself the following questions:

1. Do two or more systems require identical resource names in the parmlib members to be
shared?

If so, you do not need to specify system symbols in the parmlib members; the systems can share the
contents of the parmlib members without the benefit of system symbols. However, if the systems

30 z/OS V1R4.0 MVS Initialization and Tuning Reference

|||

require unique names for resources (such as jobnames) specified in those members, you must specify
system symbols to generate unique values for those names.

For example, if every system that shares parmlib uses the same set of APF authorized libraries, the
systems can share the PROGxx parmlib member. Because the definitions in PROGxx are identical for
each system, there is no need to specify system symbols in PROGxx.

2. What resource definitions are good candidates for sharing?

If your goal is to greatly simplify your operating environment, the answer is: As many as possible! If
two or more systems require different names for a resource, define the resource with a system symbol
in parmlib; then define different substitution texts for the system symbol on each system that is to
share the parmlib definition. Now you have one convenient place to maintain the definition. If you
follow the same process with all parmlib definitions that require unique values, you can view a
multisystem environment as a single system image with one point of control.

Be aware that there are also reasons you might not want to share certain resource definitions. Perhaps
the release level of MVS prevents you from using system symbols on a particular system; or perhaps
one or more systems do not require a particular resource. Whatever the case, your installation must
examine the resources it defines in parmlib and determine the extent to which they can be shared.

An example of a resource definition that can be shared is a definition for a page data set. Because
systems cannot share page data sets, installations must define unique page data sets for each system
in a sysplex. You might want to assign unique names to the page data sets so you can easily identify
them. Suppose that you had three systems, named SYS1, SYS2, and SYS3, that share the same
IEASYSxx member. To specify unique names for the page data sets on the different systems, you
could specify the following in the IEASYSxx parmlib member:
PAGE=PAGE.&SYSNAME..LOCAL1

When each system processes IEASYSxx, it calls into use a predefined page data set with the name
that results from the symbolic substitution, as follows:
v PAGE.SYS1.LOCAL1 on system SYS1
v PAGE.SYS2.LOCAL1 on system SYS2
v PAGE.SYS3.LOCAL1 on system SYS3

3. Do I need to share system parameters that specify unique values in the IEASYSxx parmlib
member?

When the systems in your environment require unique parmlib members, you can specify system
symbols in one or more shared IEASYSxx members to indicate unique member suffixes. Do this only
when it is not possible to share the same members. In other words, try to specify system symbols in
parmlib definitions first, as described in “Step 2. Determine where to use system symbols in parmlib”
on page 45. If you cannot share a member with any degree of efficiency, create a new member with a
unique suffix; then specify a system symbol in IEASYSxx that resolves to the suffix you want to use on
each system.

For example, suppose systems SYS1, SYS2, and SYS3 require unique CLOCKxx parmlib members.
You can do the following:

a. Create three unique members: CLOCKS1, CLOCKS2, and CLOCKS3.

b. Specify the following in the shared IEASYSxx member:
CLOCK=&SYSCLONE.

If your installation accepts the default substitution text for &SYSCLONE (the last two characters in the
system name), the CLOCK parameter in IEASYSxx specifies the following for each system:
v CLOCKS1 on system SYS1
v CLOCKS2 on system SYS2
v CLOCKS3 on system SYS3

4. Do I want to provide substitution texts for static system symbols, or do I want to accept the
system defaults?

The system provides default substitution texts for the &SYSCLONE, &SYSNAME, and &SYSPLEX
system symbols. See the descriptions of the default substitution texts in Table 4 on page 27. If the

Chapter 2. Sharing parmlib definitions 31

default texts are not acceptable to your installation, you can define your own substitution texts in
parmlib. For example, if a system always runs on the same logical partition (LPAR), the system might
be able to accept the default for the &SYSNAME system symbol (because &SYSNAME can default to
the LPAR name).

5. Do I need to define additional static system symbols?

The static system symbols that are defined to the system might be sufficient to uniquely identify
resources. If your installation requires additional static system symbols, you can define at least 800
additional static system symbols in the IEASYMxx parmlib member.

6. Do I want to define the &SYSPLEX static system symbol early in system initialization so other
parmlib members can use it?

As of MVS/ESA SP 5.2, you can optionally specify the sysplex name in both the COUPLExx and
LOADxx parmlib members. The sysplex name is also the substitution text for the &SYSPLEX system
symbol. When you specify the sysplex name in both LOADxx and COUPLExx, the substitution text for
&SYSPLEX is defined early in system initialization, which allows all parmlib members to use the
defined substitution text. When the sysplex name is defined only in COUPLExx, the system does not
define the substitution text for &SYSPLEX until late in system initialization. The system substitutes the
text LOCAL for any instances of &SYSPLEX that occur before COUPLExx is processed.

If you plan to use the &SYSPLEX system symbol in parmlib on MVS/ESA SP 5.2 systems, IBM
recommends that you specify the same sysplex name in both LOADxx and COUPLExx. See “Step 6.
Code support for system symbols in LOADxx” on page 40 for details.

7. Do I want to ensure that the substitution text for &SYSCLONE is unique on all systems?

&SYSCLONE is a 1-2 character shorthand notation for the system name (unless your installation
changes the substitution text to another value). IBM recommends that you use &SYSCLONE in places
where the substitution text for &SYSNAME is too long, such as parmlib member suffixes.

Each system in a sysplex must specify a unique SYSCLONE value. Message IXC217I is issued if the
substitution text for the symbol &SYSCLONE is not unique in a sysplex.

8. Do I plan to use system symbols in other interfaces? If so, are there any considerations to
make for those interfaces when I define system symbols in parmlib?

Parmlib is not the only place where you can use system symbols to share resources that require
unique values. After you read this chapter, see the following books for information about sharing
resources in the listed interfaces:

Application or vendor programs
See the section on how to substitute text for system symbols in application programs in z/OS MVS
Programming: Assembler Services Guide.

Dynamic allocations
See the section on coding dsname allocation text units in z/OS MVS Programming: Authorized
Assembler Services Guide.

Job control language (JCL) for started tasks
See the section on how to specify system symbols in JCL in z/OS MVS JCL Reference.

System commands
See the section on using system symbols in system commands in z/OS MVS System Commands.

Time Sharing Option Extensions (TSO/E) Logon Procedures
See the section on how to set up logon processing in z/OS TSO/E Customization.

When defining static system symbols in parmlib, consider that the listed interfaces might want to use
those system symbols.

32 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

|
|
|

|
|

Step 2. Determine where to specify system parameters
The IEASYSxx parmlib member specifies the system parameters that the system is to use. The operator
can specify system parameters during initialization, or accept the system parameters specified in
IEASYSxx. IEASYS00 is the default member; you can specify additional IEASYSxx members as needed.

You can specify the suffixes of IEASYSxx members that the system is to use in any of the following
places:

v The LOADxx parmlib member

v The IEASYMxx parmlib member

v The SYSP parameter, specified in response to the SPECIFY SYSTEM PARAMETERS prompt.

When different systems in a multisystem environment require different IEASYSxx members, consider
specifying the IEASYSxx suffixes in IEASYMxx. You can specify the IEASYSxx suffixes for all systems in
one IEASYMxx member.

The specific advantages to using IEASYMxx over LOADxx are:

v IEASYMxx can specify unique IEASYSxx members for as many systems as you need.

v When you use IEASYMxx, LOADxx can point to IEASYMxx; therefore, you do not have to code unique
LOADxx and IEASYSxx members for each system.

For example, the SYSPARM statements in the following IEASYMxx member specify the IEASYSxx
members to be used for three different systems:

See “Step 5. Create an IEASYMxx parmlib member” on page 36 for more information about how to specify
system parameters in IEASYMxx.

Depending on where you specify the suffixes of IEASYSxx members that the system is to use, the system
overrides or concatenates the members:

v If you specify the suffixes in IEASYMxx or LOADxx, the system concatenates the members according to
the scheme shown in Table 7 on page 34.

v If you specify the suffixes in IEASYMxx or LOADxx and the operator specifies the suffixes at IPL, the
suffixes specified by the operator override suffixes in IEASYMxx or LOADxx.

The system always processes the IEASYS00 member first, regardless of where you specify IEASYSxx
suffixes. If the same parameter appears in both IEASYS00 and a specified alternate IEASYSxx list, the
value in the alternate list overrides the value in IEASYS00. Also, a parameter value in a later specified
IEASYSxx list overrides the same parameter in an earlier specified list. See the description of the
IEASYSxx member for more information.

For example, suppose you create the following IEASYSxx members and specify their suffixes in the
indicated places:

v LOADxx - 01,02

v IEASYMxx - 03,04

SYSDEF HWNAME(MVS3090) LPARNAME(SYSCA)
SYSPARM(01,L)

SYSDEF HWNAME(MVS3090) VMUSERID(VMSYSCB)
SYSPARM(03,L)

SYSDEF HWNAME(SYSCC)
SYSPARM(01,02,L)

Figure 2. Example IEASYMxx Parmlib Member

Chapter 2. Sharing parmlib definitions 33

v Console SYSP (WTOR) - 05,06

The following table shows how the system concatenates or overrides the suffixes:

Table 7. Precedence of System Parameter Specifications

LOADxx IEASYMxx
Console SYSP
(WTOR) (See Note) Resultant IEASYSxx Concatenation

None None None 00 (default)

(01,02) None None (00,01,02)

(01,02) (03,04) None (00,01,02,03,04)

(01,02) (03,04) (05,06) (00,05,06)

None (03,04) None (00,03,04)

None (03,04) (05,06) (00,05,06)

None None (05,06) (00,05,06)

Note: “None” means that no IEA101A prompt was issued. This is different from the case where the IEA101A prompt
is issued, but the user response to the message is null. A null response is equivalent to a response of SYSP=00.

If any of the IEASYSxx suffixes specified in LOADxx, IEASYMxx, or in response to a WTOR are not valid,
the system issues message IEA336A to request that you specify system parameters again.

The number of IEASYSxx members that you use for a multisystem environment depends on the desired
result from your system parameter concatenation and your preferences about how the information is
organized:

Table 8. Recommended Actions for IEASYSxx Members

Desired Result Situation Recommended Action

One IEASYSxx member Different systems require unique
system parameters

Code one IEASYSxx member; specify
system symbols to represent unique
system parameters.

One IEASYSxx member Different systems use the same
system parameters

Code one IEASYSxx member to be
shared by all systems.

Multiple IEASYSxx members Different systems require unique
system parameters

Code separate IEASYSxx members,
for each system, where appropriate;
specify the IEASYSxx members in a
shared IEASYMxx member.

Step 3. Determine where to specify the system name
The name of a system is also the substitution text for the &SYSNAME system symbol. As of MVS/ESA SP
5.2,your installation can specify the name of a system in one or more of the following places:

v The IEASYMxx parmlib member

v The IEASYSxx parmlib member

v By the operator, in response to write to operator with reply (WTOR) message IEA101A SPECIFY
SYSTEM PARAMETERS.

If you define the system name in only one of the listed places, the system uses that definition. Otherwise,
the system determines the name as follows:

v If the system name is specified in both IEASYMxx and IEASYSxx, the system uses the name in
IEASYMxx.

v If the operator specifies the system name in response to the specify system parameters message, the
system uses the name specified on the operator response.

34 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

IBM recommends that you specify the system name in IEASYMxx.

Table 9 shows every possible way to specify the system name and the resulting system action. In the
table, IEASYMXX indicates that the system name is specified in the IEASYMxx parmlib member,
IEASYSXX indicates that it is specified in the IEASYSxx parmlib member, and WTOR indicates that it is
specified in response to the specify system parameters prompt:

Table 9. Precedence of System Name Specifications

IEASYMxx IEASYSxx Console SYSNAME
(WTOR)

Resultant System Name

IEASYMXX IEASYMXX

IEASYMXX IEASYSXX IEASYMXX

IEASYMXX WTOR WTOR

IEASYMXX IEASYSXX WTOR WTOR

IEASYSXX IEASYSXX

IEASYSXX WTOR WTOR

WTOR WTOR

If the system name is not defined in any of the listed places, the system name becomes, by default, one of
the following:

v The processor name that is defined to HCD (if not in LPAR mode)

v The LPAR name that is defined to the processor (if in LPAR mode)

v A VM userid, if the system is running as a guest of VM/ESA.

Step 4. Know the considerations for a mixed sysplex
If you have systems in a multisystem environment that are below the MVS/ESA SP 5.2 level, the extent to
which you can use system symbols parmlib members is limited to:

v The system symbols that are supported in the pre-MVS/ESA SP 5.2 system

v The parmlib members that support system symbols in the pre-MVS/ESA SP 5.2 system.

If you specify a system symbol in a parmlib member that the pre-MVS/ESA SP 5.2 system does not
support, or if you specify the name of an unsupported system symbol in any parmlib member, the system
does not substitute text for the system symbol.

The following parmlib members supported system symbols in MVS/ESA SP 5.1:

COMMNDxx
If you specify the DUMPDS command in the COMMANDxx member, you can specify system
symbols in that command.

IEASYSxx
You can specify system symbols on certain parameters related to data set names, such as PAGE
and SWAP.

SMFPRMxx
You can specify system symbols on the DSNAME and the SID parameters.

Follow these rules when using system symbols in parmlib on pre-MVS/ESA SP 5.2 systems:

v Specify system symbols only in the COMMNDxx, IEASYSxx, and SMFPRMxx members, as explained
previously.

v Do not specify the &SYSCLONE system symbol (it is not supported on pre-MVS/ESA SP 5.2 systems).

Chapter 2. Sharing parmlib definitions 35

v Do not specify the static system symbols that your installation defines in IEASYMxx (they are not
supported on pre-MVS/ESA SP 5.2 systems).

v Understand that the &SYSPLEX system symbol has limited support in MVS/ESA SP 5.1. In MVS/ESA
SP 5.1. the substitution text for &SYSPLEX can be defined only in the COUPLExx parmlib member;
therefore, parmlib members that are processed before COUPLExx cannot obtain the specified
substitution text for &SYSPLEX.

For a list of parmlib members support system symbols as of MVS/ESA SP 5.2, see “Overview of parmlib
members” on page 14.

Step 5. Create an IEASYMxx parmlib member
The main purpose of IEASYMxx is to provide a single place to specify system parameters for each system
in a multisystem environment. IEASYMxx contains statements that do the following:

v Define static system symbols

v Specify IEASYSxx parmlib members that contain system parameters.

You can apply the statements in IEASYMxx to any system in your environment. Therefore, only one
IEASYMxx member is required to define static system symbols and specify system parameters for all
systems.

In IEASYMxx, you can define at least 800 additional static system symbols for each system in a
multisystem environment. In other words, you can define as many additional static system symbols in
IEASYMxx as you like, so long as the resulting symbol table would not exceed the maximum symbol table
size of 32512 bytes.

The LOADxx parmlib member specifies the IEASYMxx member that the system is to use. For information
about how to specify the suffix of the IEASYMxx member in LOADxx, see “Step 6. Code support for
system symbols in LOADxx” on page 40.

Contents of IEASYMxx
IEASYMxx contains SYSDEF statements that optionally do the following for each system:

v Define substitution texts for the existing &SYSCLONE and &SYSNAME system symbols, and apply
those definitions to one or more systems.

v Define additional static system symbols and apply those definitions to one or more systems (at least
800 additional static system symbols are allowed across all of your IEASYMxx members).

v Control which definitions apply to which systems by specifying values for comparison to the current
system hardware name or logical partition (LPAR) name.

See the description of IEASYMxx in this book for descriptions of the parameters that each SYSDEF
statement can contain.

Scope of statements in IEASYMxx
You can code the statements in IEASYMxx so only one IEASYMxx member is needed to define static
system symbols and system parameters for all systems in a multisystem environment. If you wish, you can
code additional IEASYMxx members to organize the definitions more clearly.

When coding IEASYMxx, remember the following rules about the scope of the statements:

v The system processes IEASYMxx members from left to right, in the order which they are specified in
the LOADxx parmlib member. Definitions that are specified in previous IEASYMxx members remain in
effect until they are overridden by subsequent definitions. For example, suppose you specify the
following IEASYMxx members in LOADxx:
IEASYM (01,02,L)

36 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|
|

|
|

The system first processes the IEASYM01 parmlib member. Then the system processes IEASYM02.
The definitions from IEASYM01 remain in effect unless definitions from IEASYM02 override them.

v At the beginning of IEASYMxx, you can specify global statements that apply to all systems that use the
IEASYMxx member. Global statements should specify the values of SYSPARM and SYMDEF that are
most common to the systems in your sysplex. Global statements do not use the HWNAME,
LPARNAME, and VMUSERID parameters to identify specific systems to which definitions apply.

When specific systems require values that are different from those on global statements, you can
override the global statements with local statements (see below).

v Local statements apply to a subset of systems in your sysplex. Using the HWNAME, LPARNAME, and
VMUSERID parameters, local statements identify one or more CPCs or LPARs that are to use specific
system symbols and system parameters. The HWNAME, LPARNAME, and VMUSERID values specified
on a SYSDEF statement are compared to those of the current system. If they match exactly, the other
parameters on the SYSDEF statement are used. If not, the other parameters are ignored for this
system.

v The system processes IEASYMxx members in the order which they are specified. When two definitions
for the same resource appear in IEASYMxx, the most recent definition overrides the previous definition.
Keep this rule in mind when specifying global and local statements: If global statements appear after
local statements in IEASYMxx, the local statements do not override the global statements.

Procedure for coding IEASYMxx: IBM recommends that you code one IEASYMxx member that
contains only global statements. Specify that member as the first member in the IEASYMxx concatenation
in LOADxx (for example, IEASYM01 in the example above). Then code other IEASYMxx members that
specify local statements, which override the global statements specified in the first IEASYMxx member.
This practice ensures that global and local statements always appear in the proper order.

Rules for coding IEASYMxx
Follow these rules when coding IEASYMxx:

1. Define new system symbols that are 1- through 8 characters long, excluding the required ampersand
and the optional period. For example, you can define a system symbol called &PAGESYM3, which
contains an 8-character name, using the following SYMDEF statement:
SYMDEF(&PAGESYM3=’LOCAL3’)

2. Do not define resolved substitution texts that are longer than system symbol names (including the
required ampersand and excluding the optional period). Before being resolved, a substitution text can
contain other system symbols that extend its length beyond the length of the symbol name. However,
the substitution text for those symbols must resolve to form a string that is less than the length of the
symbol name.

For example, consider the &PAGESYM3 system symbol definition:
SYMDEF(&PAGESYM3=’LOCAL3’)

The LOCAL3 substitution text above is valid because it contains six characters, which is less than the
9 characters in the symbol name, &PAGESYM3 (note that the optional period is not included). The
following definition is also valid:
SYSNAME(SYS1)
SYMDEF(&PAGESYM3=’LOC&SYSNAME.3’)

Note that although the LOC&SYSNAME3 substitution text appears longer than the &PAGESYM3
symbol, the &SYSNAME system symbol in LOC&SYSNAME3 resolves to a character string that makes
the final resolved substitution text, LOCSYS13, shorter than the symbol name.

If you specify a substitution text that, when resolved, is longer than a symbol name, the system
prompts for a valid substitution text.

Chapter 2. Sharing parmlib definitions 37

Recommendation: Define system symbols that are eight characters long (the maximum) so you can
define substitution texts that are up to nine characters long (the eight characters in the system symbol
name plus the ampersand at the beginning of the name).

3. Do not define new system symbols that begin with the characters SYS. Those names are reserved for
existing system symbols (like &SYSNAME).

4. You can specify an optional period at the end of a system symbol definition. For example, both of the
following statements are valid and define the same system symbol:
SYMDEF(&PAGESYM1=’LOCAL1’)
SYMDEF(&PAGESYM1.=’LOCAL1’)

5. When coding a single quotation mark as part of a substitution text for an installation-defined static
system symbol, specify two consecutive single quotes. In the following example, &SYMBOL4 is
assigned the string O’HARE :
SYMDEF(&SYMBOL4=’O’’HARE’) /* &SYMBOL4 is assigned O’HARE */

6. If you intend to use a system symbol to represent a parmlib member suffix in IEASYSxx, see the
description of IEASYSxx in this book for special considerations.

If the system finds an error in IEASYMxx, the system issues message IEA013E. If a statement in error
applies to the processor or LPAR on which this system is being initialized, the system then issues
message IEA011A to prompt for a new IEASYMxx parmlib member.

Example of coding IEASYMxx: Use the following example as a model when coding IEASYMxx for your
installation. The example explains how to code IEASYMxx for the sysplex shown in Figure 4 on page 39.

1. Enter a global SYSDEF statement that specifies:

v The IEASYSxx member, IEASYS01, that specifies system parameters for systems SYSCA, SYSCB,
and SYSCD. SYSCC requires two IEASYSxx members, which are specified on a local SYSDEF
statement later in the parmlib member.

v The global definition for the installation-defined system symbol &LNKSYM;

SYSDEF SYSPARM(01,L)
SYMDEF(&LNKSYM=’GLOBALP’)

2. Enter a local SYSDEF statement that identifies the LPAR on which system SYSCA is running. The
statement specifies:

v The hardware name and LPAR name (the system name defaults to the LPAR name)

v A local definition for the installation-defined system symbol &LNKSYM, which is to override the
global definition specified earlier. The local definition for &LNKSYM will be used only by system
SYSCA.

SYSDEF HWNAME(MVS3090) LPARNAME(SYSCA)
SYMDEF(&LNKSYM=’LOCALP1’)

3. Enter a local SYSDEF statement that identifies the CPC on which system SYSCC is running. The
statement specifies:

v The hardware name for the CPC (the system name defaults to the hardware name)

v The IEASYSxx members that contain the system parameters for system SYSCC. The IEASYSxx
members will be used only by system SYSCC. The other systems will use the IEASYSxx members
identified in the global definition.

SYSDEF HWNAME(SYSCC)
SYSPARM(01,02,L)

In this example, no local SYSDEF statements are necessary for systems SYSCB or SYSCD because they
do not require unique definitions for system symbols or system parameters.

The complete IEASYMxx parmlib member is:

38 z/OS V1R4.0 MVS Initialization and Tuning Reference

SYSDEF SYSPARM(01,L)
SYMDEF(&LNKSYM=’GLOBALP’)

SYSDEF HWNAME(MVS3090) LPARNAME(SYSCA)
SYMDEF(&LNKSYM=’LOCALP1’)

SYSDEF HWNAME(SYSCC)
SYSPARM(01,02,L)

Figure 3. Complete IEASYMxx Parmlib Member

Figure 4. Coding IEASYMxx for a Four-System Sysplex

Chapter 2. Sharing parmlib definitions 39

The following is an example of how to use one IEASYMxx member to specify global statements
(IEASYMA4) and another to specify local statements (IEASYMA5). IEASYMA4 defines system symbols for
all systems that share the member:

IEASYMA5 defines local system symbols and system parameters for processors J50 and J60:

See Figure 7 on page 41 for a sample LOADxx member that points to IEASYMA4 and IEASYMA5.

Step 6. Code support for system symbols in LOADxx
The LOADxx parmlib member provides sysplex-related definitions early in system initialization so other
parmlib members can use those definitions. It optionally specifies the IEASYMxx parmlib member that the
system is to use.

If you use IEASYMxx to define names for the systems in your environment, you are not required to code a
unique LOADxx member for each system. Releases prior to MVS SP™ 5.2.0 required unique IEASYSxx
members because system names, which are specified in IEASYSxx, must be unique. Because LOADxx
pointed to IEASYSxx, LOADxx had to also be unique on each system.

Contents of LOADxx
LOADxx specifies the following parameters that relate to replication:

Parameter
Description

IEASYM
Specifies the suffixes of one or more IEASYMxx members that define system symbols and specify
system parameters.

SYSPARM
Specifies the suffixes of one or more IEASYSxx parmlib members that contain system parameters

SYSDEF SYMDEF(&LNKLST1=’CS,52’)
SYMDEF(&LNKLST2=’44,42,L’)
SYMDEF(&LPALST1=’52,CS’)
SYMDEF(&LPALST2=’ST,L’)
SYMDEF(&MLPALS1=’44’)
SYMDEF(&MLPALS2=’43,42’)
SYMDEF(&SVCNAME=’44’)
SYMDEF(&MVSRLSE=’52’)
SYMDEF(&SMFPARM=’44’)

Figure 5. IEASYMA4 Parmlib Member

SYSDEF HWNAME(J50)
SYSPARM(02)
SYSNAME(J50)
SYSCLONE(J5)
SYMDEF(&NODE=’55’)
SYMDEF(&LOGCLS=’M’)

SYSDEF HWNAME(J60)
SYSPARM(02)
SYSNAME(J60)
SYSCLONE(J6)
SYMDEF(&NODE=’56’)
SYMDEF(&LOGCLS=’O’)

Figure 6. Example IEASYMxx Parmlib Member

40 z/OS V1R4.0 MVS Initialization and Tuning Reference

SYSPLEX
Specifies the name of the sysplex (which is the substitution text for the &SYSPLEX system
symbol)

Procedure for coding LOADxx
Do the following to code the parameters in LOADxx that relate to the sharing of system resources:

1. Optionally specify the sysplex name on the SYSPLEX parameter in the LOADxx parmlib member. For
example, to name a sysplex EXMPLEX, code:
SYSPLEX EXMPLEX

Note: LOADxx defines the substitution text for &SYSPLEX early in system initialization so other
parmlib members can use it. Therefore, if you plan to use the &SYSPLEX system symbol in
parmlib, specify the sysplex name in LOADxx. You can also specify the sysplex name on the
SYSPLEX parameter in the COUPLExx parmlib member. To ensure that the name in
COUPLExx matches the one in LOADxx, IBM recommends that you specify the following in
COUPLExx:
SYSPLEX(&SYSPLEX.)

If you do not specify the SYSPLEX parameter in LOADxx, the system temporarily assigns the value
LOCAL to the &SYSPLEX system symbol. When the system processes the SYSPLEX parameter in
COUPLExx, it assigns the value specified on that parameter to &SYSPLEX. If the value is
SYSPLEX(&SYSPLEX;), the value of &SYSPLEX remains LOCAL.

2. On the IEASYM statement, specify the suffixes of the IEASYMxx members that the system is to use.

3. Determine if you need to specify one or more IEASYSxx suffixes on the SYSPARM parameter:

v If the systems in your environment require unique system parameters, specify the system
parameters in IEASYMxx (see “Step 5. Create an IEASYMxx parmlib member” on page 36); do not
respecify the system parameters in LOADxx.

v If the systems in your environment use the same system parameters, they can share the same
LOADxx member; specify the system parameters in LOADxx.

If you specify system parameters in both LOADxx and IEASYMxx, the system uses the scheme shown
in Table 9 on page 35 to determine which IEASYSxx members to use.

The following is an example of a LOADxx member that includes support for system symbols. The IEASYM
statement specifies that IEASYMxx members IEASYMA4 and IEASYMA5 are to be used. The SYSPLEX
statement specifies a sysplex name of UTCPLXJ4.

Using system symbols in parmlib
After you set up parmlib for sharing, do the following to specify system symbols in parmlib definitions:

Table 10. Procedure to Specify System Symbols in Parmlib Definitions

Step Location

1. Know the rules for using system symbols in parmlib. Step 1. Know the rules for using system symbols in
parmlib on page 42

2. Determine where to use system symbols in parmlib. Step 2. Determine where to use system symbols in
parmlib on page 45

IODF A1 IODFST B710 A1
IEASYM (A4,A5)
SYSPLEX UTCPLXJ4
SYSCAT CMNJ4C113CCATALOG.J40CAT

Figure 7. Example LOADxx Parmlib Member

Chapter 2. Sharing parmlib definitions 41

|
|
|

Table 10. Procedure to Specify System Symbols in Parmlib Definitions (continued)

Step Location

3. Verify system symbols in parmlib. Step 3. Verify system symbols in parmlib on page 46

Step 1. Know the rules for using system symbols in parmlib
Follow these rules and recommendations when using system symbols in parmlib:

1. Specify system symbols that:

v Begin with an ampersand (&)

v Optionally end with a period (.)

v Contain 1-8 characters between the ampersand and the period (or the next character, if you do not
specify a period).

Note: Symbols are character strings and can only be used as such. Even though a character string
may consist of only numeric characters, it cannot be used as a number. For example, a symbol
cannot be used for the start or number value in a substring.

If the system finds a system symbol that does not end with a period, it substitutes text for the system
symbol when the next character is one of the following:

v Null (the end of the text is reached)

v A character that is not alphabetic, numeric, or special (@,#, or $).

v

Recommendation: End all system symbols with a period. Omitting the period that ends a system
symbol could produce unwanted results under certain circumstances. For example, if the character
string (2) follows a system symbol that does not have an ending period, the system processes the (2)
as substring syntax for the system symbol, regardless of how you intended to use the string in the
command. For more information about substringing system symbols, see “Using substrings of system
symbols” on page 43.

2. Use a small set of system symbols so they are easy to manage and remember.

3. Code two consecutive periods (..) if a period follows a system symbol. For example, code
&DEPT;.POK when the desired value is D58.POK and the substitution text D58 is defined to the
system symbol &DEPT;.

4. When using system symbols in data set name qualifiers, keep the rules for data set naming in mind.
For example, if you use &SYSNAME as a data set qualifier, ensure that the substitution text begins
with an alphabetic character.

5. Ensure that resolved substitution texts do not extend parameter values beyond their maximum lengths.
For example, suppose the following command is to start CICS®:

S CICS,JOBNAME=CICS&SYSNAME.,...

The resolved substitution text for &SYSNAME cannot exceed four characters because jobnames are
limited to eight characters (the four characters in CICS plus up to four character in &SYSNAME). A
substitution text of SYS1 is valid because it resolves to the jobname CICSSYS1. However, a
substitution text of SYSTEM2 is not valid because it resolves to the jobname of CICSSYSTEM2, which
exceeds the allowable maximum of eight characters.

6. If you use &SYSNAME, ensure that its substitution text is unique on each system. See “Step 3.
Determine where to specify the system name” on page 34 for more information.

7. Do not specify system symbols in the values on the OPI and SYSP parameters in the IEASYSxx
parmlib member.

42 z/OS V1R4.0 MVS Initialization and Tuning Reference

8. Do not specify system symbols that were introduced in MVS/ESA SP 5.2 in parmlib members that are
processed by pre-MVS/ESA SP 5.2 systems. See “Step 4. Know the considerations for a mixed
sysplex” on page 35 for more information.

9. Do not specify any system symbols in parmlib members that do not support system symbol
substitution. See “Overview of parmlib members” on page 14 for information about the parmlib
members that support system symbols.

Using substrings of system symbols
Substringing allows you to specify a subset of characters in a substitution text. This function is particularly
useful when specifying a symbol in a field that accepts only a small number of characters.

The syntax for substringing symbols is:
&SYMBOL(start:number).

-or-
&SYMBOL(start).

In the syntax:

start The character position where the substring is to start. The first character in the original system
symbol is position 1, the second is position 2, and so on. If start is positive, the system counts
from the starting position to the end of the string. If start is negative (in other words, a minus sign
appears before it), the system counts backwards from the ending position of the string.

number
The number of characters, from the starting position to the ending position of the string, that the
substring is to contain. If number is not specified, the substring length defaults to 1. Do not specify
a negative number for number.

For example, assume that you want to specify &SYSNAME as the second-level qualifier in a data set
name, and you want to limit the qualifier to two characters. If the system defined a four-character value to
&SYSNAME, such as SYS1, you can specify the third and fourth characters of SYS1 using the following
notation:
HILEVELQ.&SYSNAME(3:2)..LOWLVLQ

In this case, the system substitutes the third and fourth characters of SYS1 (which are S1) as the
second-level qualifier, yielding:
HILEVELQ.S1.LOWLVLQ

Procedure for substringing symbols: Follow these steps when specifying substrings for symbols:

1. Start the substring notation with a left parenthesis and end it with a right parenthesis.

If you specify only the left and right parentheses, the “substring” is the entire substitution text. For
example, if the system symbol &YR4; is assigned the substitution text 1994 in all cases below, the
following system symbols specify the same substitution text:

Symbol Resulting Substring
&YR4 1994
&YR4() 1994

2. Specify the character position, from the start of the original string, where the substring is to begin. For
example:

Symbol Resulting Substring
&YR4(4) 4
&YR4(2) 9

Use a minus sign (-) before the start position to indicate that the system is to count backwards from
the end of the substitution text. For example:

Chapter 2. Sharing parmlib definitions 43

Symbol Resulting Substring
&YR4(-4) 1
&YR4(-1) 4

3. Specify the number of characters, from the starting position, that the substring is to contain. Separate
this number from the start position with a colon (:). For example:

Symbol Resulting Substring
&YR4(3:2) 94
&YR4(-4:2) 19

Errors in substringing: It is important that you specify substrings carefully. The syntax can become
complicated, and it is very easy to make mistakes. When the system finds an error in substring notation, it
tries to assign a value whenever possible. For example, when a substring length of zero is specified, the
system assigns a length of one.

The following are errors that might occur in substring syntax. Always, assume that the dynamic system
symbol &YR4. is assigned the substitution text 1994.

System Symbol Description of Error System Action Resulting
Substring

&YR4(-5:1) The start position is not valid (it
exceeds the length of the substitution
text).

The system assigns start position
one.

1

&YR4(0:1) The start position is zero. The system assigns start position
one.

1

&YR4(4:0) The length is zero. The system assigns a length of one. 4

&YR4(5:1) The start position is beyond the
length of the substitution text.

The system assigns a length of zero. Null

&YR4(3:3) The length exceeds the length of the
substitution text beyond the specified
start position.

The system assigns the substring
from the start position to the end of
the substitution text.

94

&YR4(-2:a) The “a” character is not valid
substring notation.

The system treats the substring
notation as normal text.

1994(-2:a)

&YR4.(3:3) The optional period indicates the end
of the string. The system does not
apply the substring notation to the
string.

The system treats the substring
notation as normal text.

1994(3:3)

Using double ampersand notation: You can use double ampersand notation to:

v Defer the processing of a symbol until a later time

v Tell the system to process an ampersand as a literal character (instead of a character that indicates the
beginning of a symbol).

When the system finds two consecutive ampersands at the beginning of a valid symbol, the first
ampersand is removed and the second is kept in place. A subsequent process can then substitute text for
the symbol in later processing, or the second ampersand can remain as a literal character.

Note: Defer the processing of system symbols only if a function specifically states that it supports double
ampersand notation (for example, the naming of dump data sets with the DUMPDS command,
which is described in z/OS MVS System Commands). If a function does not specifically state that it
supports double ampersand notation, the system might not perform the desired substitution.

When you code:
&&DAY.

44 z/OS V1R4.0 MVS Initialization and Tuning Reference

The system removes the first ampersand:
&DAY.

Step 2. Determine where to use system symbols in parmlib
System symbols offer the greatest advantage when two or more systems require different data sets, jobs,
procedures, or entire parmlib members. This section provides examples of how to specify system symbols
when naming certain resources in parmlib.

Data sets:

A good example of using system symbols in data set names is the DSNAME parameter in the SMFPRMxx
parmlib member, which specifies data sets to be used for SMF recording. Assume that each system in
your sysplex requires one unique data set for SMF recording. If all systems in the sysplex use the same
SMFPRMxx parmlib member, you could specify the following naming pattern to create different SMF
recording data sets on each system:
SY&SYSCLONE..SMF.DATA

When you IPL each system in the sysplex, the &SYSCLONE system symbol resolves to the substitution
text that is defined on the current system. For example, if a sysplex consists of two systems named SYS1
and SYS2, accepting the default value for &SYSCLONE produces the following data sets:
SYS1.SMF.DATA on system SYS1
SYS2.SMF.DATA on system SYS2

Note that the use of &SYSCLONE provides unique data set names while establishing a consistent naming
convention for SMF recording data sets.

Parmlib Members:

You can apply the same logic to system images that require different parmlib members. For example,
assume that system images SYS1 and SYS2 require different CLOCKxx parmlib members. If both
systems share the same IEASYSxx parmlib member, you could specify &SYSCLONE in the value on the
CLOCK parameter:
CLOCK=&SYSCLONE;

When each system in the sysplex initializes with the same IEASYSxx member, &SYSCLONE resolves to
the substitution text that is defined on each system. Accepting the default value for &SYSCLONE produces
the following:
CLOCK=S1 (Specifies CLOCKS1 on system SYS1)
CLOCK=S2 (Specifies CLOCKS2 on system SYS2)

Started Task JCL:

If JCL is for a started task, you can specify system symbols in the source JCL or in the START command
for the task. You cannot specify system symbols in JCL for batch jobs, so you might want to change those
jobs to run as started tasks.

If a started task is to have multiple instances, determine if you want the started task to have a different
name for each instance. Started tasks that can be restarted at later times are good candidates. The
different names allow you to easily identify and restart only those instances that require a restart. For
example, you might assign different names to instances of CICS because those instances might be
restarted at later points in time. However, instances of VTAM, which are generally not restarted, might
have the same name on different systems.

When you start a task in the COMMNDxx parmlib member, you can specify system symbols as part of the
job name. Assume that system images SYS1 and SYS2 both need to start customer information control

Chapter 2. Sharing parmlib definitions 45

system (CICS). If both system images share the same COMMNDxx parmlib member, you could specify the
&SYSNAME system symbol on a START command in COMMNDxx to start unique instances of CICS:
S CICS,JOBNAME=CICS&SYSNAME;,...

When each system in the sysplex initializes with the same COMMNDxx member, &SYSNAME resolves to
the substitution text that is defined on each system. If &SYSNAME is defined to SYS1 and SYS2 on the
respective systems, the systems start CICS with the following jobnames:
CICSSYS1 on system SYS1
CICSSYS2 on system SYS2

Note that the resolved substitution text for &SYSNAME is eight characters long, which is the maximum
length for jobnames.

Step 3. Verify system symbols in parmlib
IBM provides you with tools to verify symbol usage in parmlib. The parmlib symbolic preprocessor tool
allows you to test symbol definitions before you IPL the system to use them. This tool shows how a
parmlib member will appear after the system performs symbolic substitution. For information about setting
up and using the parmlib symbolic preprocessor tool, see Appendix B, “Symbolic Parmlib Parser” on
page 577.

If you only need to verify a new parmlib member’s use of the current system symbols, you can run the
IEASYMCK sample program to see how the contents of the parmlib member will appear after symbolic
substitution occurs.

IEASYMCK is located in SYS1.SAMPLIB. See the program prolog for details.

Displaying static system symbols
You can enter the DISPLAY SYMBOLS operator command to display the static system symbols and
associated substitution texts that are in effect for a system. See z/OS MVS System Commands for
information about how to enter DISPLAY SYMBOLS.

Diagnosing problems with static system symbols
You can use the SYMDEF interactive problem control system (IPCS) subcommand to diagnose problems
in static system symbol definitions. See z/OS MVS IPCS Commands for information about how to use the
SYMDEF subcommand.

Indirect volume serial support
Indirect volume serial support allows the system to dynamically resolve volume and device type
information for non-VSAM data sets that reside on either the system residence volume (SYSRES) or one
or more logical extensions to the SYSRES volume. If all the SYSRES data sets do not fit on a single
DASD volume, you can use additional volumes as ″logical extensions″ to SYSRES and refer to them
indirectly. This allows you to change the volume serial number or device type of SYSRES or its logical
extension volumes without having to recatalog the non-VSAM data sets on that volume.

The indirect volume serial is specified by one of two methods, either six asterisks (******) or a system
symbol. The method used depends on whether the data set will be cataloged on the SYSRES volume or
on one of the SYSRES logical extension volumes.

v For data sets that will reside on the SYSRES volume, you can specify either:

– a string of six asterisks (******) in place of the volume serial, or

– the &SYSR1 static symbol in place of the volume serial. (See “Restrictions” on page 48.)

46 z/OS V1R4.0 MVS Initialization and Tuning Reference

The system dynamically resolves ****** or &SYSR1 to the volume serial of the volume from which the
system was IPLed (the SYSRES volume).

v For data sets that will reside on the logical extensions to SYSRES, you must specify a static system
symbol in place of the volume serial. This static symbol must be defined in the IEASYMxx parmlib
member.

Note: If you establish a naming convention for your SYSRES volume and associated logical
extensions, you can define a system symbol in IEASYMxx that allows you to derive the logical
extensions from whatever SYSRES volume is IPLed. This eliminates the need to update the
IEASYMxx parmlib member if your installation IPLs with different SYSRES volumes. A naming
convention example is shown in the following section.

Using indirect volume serial support
The following information is a guide to help you use indirect volume serial support:

v Use access method services (IDCAMS) DEFINE NONVSAM to catalog the data sets that will reside on
SYSRES or its logical extension volumes.

For a data set that will be cataloged on the SYSRES volume, specify ****** or the &SYSR1 static
symbol in the VOLUMES parameter and a value of 0000 on the DEVICETYPES parameter.

For a data set that will be cataloged on a SYSRES logical extension volume, specify a static system
symbol in the VOLUMES parameter. IBM recommends using &SYSR2 for the first logical extension
volume, &SYSR3 for the second, and so on. If you decide to use symbols with names different than
&SYSR2, &SYSR3, and so on, keep in mind that the symbol name must be no smaller than the volume
serial it represents, and no longer than six characters. This length includes the & but not the period.

v Define static symbols &SYSR2, &SYSR3, and so on, in the IEASYMxx parmlib member. (The system
sets &SYSR1 to the volume serial of the IPL volume. You cannot define &SYSR1.)

For example, if the logical extension for the SYSRES volume used to IPL your production system is
P1RES2 and the logical extension for the SYSRES volume used to IPL your test system is TSTRS2,
your IEASYMxx member might contain statements such as:
/* Symbols for production system, P1 */
SYSDEF .

.

.
SYMDEF(&SYSR2=’P1RES2’) /* Logical extension volume for P1 */

/* Symbols for test system, TST */
SYSDEF .

.

.
SYMDEF(&SYSR2=’TSTRS2’) /* Logical extension volume for TST */

If your installation IPLs with different SYSRES volumes and you establish a naming convention for the
SYSRES and its logical extension volumes, you can create a single IEASYSMxx member that can be
used regardless of which SYSRES volume is used to IPL the system. To do this, use substrings of the
SYSRES volume serial (&SYSR1) in defining the symbols for the extension volume serials. For
example, if you have the following SYSRES volumes and logical extensions:

SYSRES Extensions

S01RES S01RS2,S01RS3

S02RES S02RS2,S02RS3

DEVRES DEVRS2,DEVRS3

you can refer to them using a single IEASYMxx parmlib member with the following statements:
SYSDEF .

.
SYMDEF(&SYSR2=’&SYSR1(1:3).RS2’) /* second SYSRES logical

Chapter 2. Sharing parmlib definitions 47

extension */
SYMDEF(&SYSR3=’&SYSR1(1:3).RS3’) /* third SYSRES logical

extension */
.
.

v If you use parmlib member PROGxx to specify authorized libraries, and any of those libraries are on
SYSRES and its logical extensions, you can use static system symbols to identify the volumes. If,
however, you still use parmlib member IEAAPFxx for this purpose, symbols will not work.

Note: You can use the CSVLNKPR tool to convert IEAAPFxx to PROGxx. See z/OS MVS Migration for
more information.

v In RACF, you may be able to remove the volser from PROGRAM profiles that refer to SYSRES and its
logical extensions. See z/OS Security Server RACF Security Administrator’s Guide for more information.

v In DFSMShsm™, a recovered or recalled data set catalog entry will not reflect system symbols used for
indirect volume serials and may not return to its original volume. You may want to prevent migration of
these data sets. See APAR OW24928 for more information.

Restrictions
v Indirect volume serial support can only be used for data sets residing on SYSRES and its logical

extensions. These are typically data sets that are installed as part of a system build process. Use with
user or application data sets is not supported.

v Cataloged data sets must be non-VSAM and non-SMS-managed.

v The volume must be mounted and online when a request is made to retrieve information from the
catalog.

v You are responsible for managing volumes where the data sets reside. If you move a data set from one
volume to another, you must make the related changes. Changes include:

– setting up parmlib, proclib, and JCL.

– establishing system management procedures such as security, backup, and recovery.

v The following cannot be catalogued with a system symbol:

– SYS1.PARMLIB

– Any parmlib data set listed in LOADxx without a volume name.

Any parmlib data set (including SYS1.PARMLIB) can be catalogued with six asterisks (******).

48 z/OS V1R4.0 MVS Initialization and Tuning Reference

Part 2. Members of SYS1.PARMLIB

© Copyright IBM Corp. 1991, 2002 49

50 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 3. ADYSETxx (dump suppression)

ADYSETxx allows an installation to control dump analysis and elimination (DAE) processing, which
suppresses dumps that it considers unnecessary because they duplicate previously taken dumps. DAE
suppresses ABEND dumps that would be written to a SYSMDUMP data set (SYSMDUMPs), Transaction
dumps (IEATDUMP), and SVC dumps, when the symptom data of a dump duplicates the symptom data of
a dump of the same dump type previously taken. DAE uses the ADYSETxx parmlib member to determine
the actions DAE is to perform.

To change the ADYSETxx parmlib member specification, enter the SET DAE command.

DAE can take the following actions for SYSMDUMP dumps, Transaction dumps, and SVC dumps in either
a single system or in a sysplex:

v Matching, which means that DAE compares each dump occurrence for a dump type (SVC dump, or
SYSMDUMP and Transaction dumps) to dumps previously recorded in the DAE data set.

v Updating, which means that DAE records either a unique symptom or an occurrence of a duplicate
symptom string in the DAE data set.

v Suppressing, which means that DAE prevents a dump from being taken if the dump’s symptom data
duplicates the symptom data of a previous dump (of the same dump type) recorded in the DAE data
set. Dump suppression must also be permitted through one of the following:

– The SUPPRESS option is specified in the ADYSETxx parmlib member, and the VRADAE key is
contained in the variable recording area of the SDWA.

– The SUPPRESSALL option is specified in the ADYSETxx parmlib member, and the VRANODAE key
is absent from the variable recording area of the SDWA.

Reference Books

v See z/OS MVS System Data Set Definition for information about the DAE data set.

v See z/OS MVS Diagnosis: Tools and Service Aids for information about DAE.

v See z/OS MVS System Commands for information about the SET DAE command.

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax rules for ADYSETxx
The following rules apply to the creation of ADYSETxx:

v Use one of the following rules for comments:

– Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

– An asterisk (*) in column one indicates a comment record. Note that comment records cannot be
continued and that comments cannot appear on a parameter record.

v DAE= must appear first on a parameter record, and START or STOP must appear on the record.
(Specify one or the other; START and STOP are mutually exclusive parameters.)

v Use commas or blanks to separate parameters and to separate subparameters. If you use a parameter
(such as RECORDS or SVCDUMP) that requires a subparameter, you must enclose the subparameter
in parentheses.

© Copyright IBM Corp. 1991, 2002 51

Syntax format of ADYSETxx

Syntax Examples:
DAE=START,RECORDS(400),SVCDUMP(MATCH,UPDATE)
DAE=START,SYSMDUMP(MATCH,UPDATE,SUPPRESS),RECORDS(600)
DAE=START,SVCDUMP(MATCH,UPDATE,SUPPRESSALL,NOTIFY(5,60))
DAE=START,SVCDUMP(MATCH,SUPPRESSALL),SHARE(DSN,OPTIONS),DSN(SYS1.DAESHARE)
DAE=START,SVCDUMP(UPDATE,SUPPRESS),SHARE(DSN,OPTIONS),

DSN(SYS1.DAESHRE2),GLOBAL(DSN,OPTIONS)
DAE=STOP
DAE=STOP,GLOBALSTOP

IBM-supplied defaults for ADYSETxx
IBM supplies three ADYSETxx parmlib members:

v ADYSET00 automatically starts DAE. It contains:
DAE=START,RECORDS(400),SVCDUMP(MATCH,SUPPRESSALL,UPDATE,NOTIFY(3,30))

SYSMDUMP(MATCH,UPDATE,SUPPRESSALL)

Note: At system initialization, the ADYSET00 member is automatically in effect (DAE is active) because
the IEACMD00 parmlib member contains the command SET DAE=00. If you do not want
automatic activation of DAE, modify ADYSET00 to specify DAE=STOP.

v ADYSET01 allows the operator to stop DAE processing by issuing the command SET DAE=01.
ADYSET01 contains:
DAE=STOP

Note: If the systems in a sysplex are sharing the DAE data set, IBM recommends that you update the
ADYSET01 member as follows:
DAE=STOP,GLOBALSTOP

This will stop DAE on each system in the sysplex that shares the DAE data set. For more on
dump suppression, see z/OS MVS Diagnosis: Tools and Service Aids.

v ADYSET02 allows the operator to start DAE processing by issuing the command SET DAE=02.
ADYSET02 contains the same options as ADYSET00.

Statements/parameters for ADYSETxx
DSN(data set name)

Specifies the data set name to be used as the DAE data set. The data set must be accessible from
each system that wants to share the data set.

The data set name cannot be longer than 20 characters. SYS1.DAE is the default if you are not
sharing the DAE data set. If you specify SHARE(DSN) and omit the DSN parameter, the DAE data set
name is the data set already in use in the sysplex. For example, if the systems of the sysplex are
sharing the DAE data set named SYS1.DAESHARE and the next system to join the sysplex specifies
SHARE(DSN) without specifying the DSN parameter, that system will share the DAE data set
SYS1.DAESHARE already in use by the sysplex.

DAE={START[,RECORDS(400|n)] }
{ [,SVCDUMP([MATCH][,SUPPRESS|SUPPRESSALL][,UPDATE][,NOTIFY(3,30)])]}
{ [,SYSMDUMP([MATCH][,SUPPRESS|SUPPRESSALL][,UPDATE])] }
{ [,SHARE(DSN[,OPTIONS])] }
{ [,DSN(data set name)] }
{ [,GLOBAL([DSN][,OPTIONS])] }
{STOP [,GLOBALSTOP] }

ADYSETxx

52 z/OS V1R4.0 MVS Initialization and Tuning Reference

If you share the DAE data set across the systems in a sysplex, IBM recommends that you use a data
set name other than SYS1.DAE.

GLOBAL([DSN][,OPTIONS])
Specify GLOBAL when you want to change either the data set name, the DAE options
(MATCH/SUPPRESS|SUPPRESSALL/UPDATE), or both for each system in the sysplex sharing the
DAE data set.

When you specify GLOBAL(DSN), you must also specify SHARE(DSN) and DSN with the name of the
DAE data set the sysplex is to use. DAE then begins to use the new DAE data set on all systems in
the sysplex sharing the DAE data set. If you specify GLOBAL(DSN) without specifying DSN or without
specifying SHARE(DSN), the system issues error message ADY002I.

When you specify OPTIONS, you can change the following for each system sharing the DAE options:

v The SYSMDUMP dump options: MATCH, SUPPRESS, SUPPRESSALL, or UPDATE.

v The SVCDUMP dump options: MATCH, SUPPRESS, SUPPRESSALL, NOTIFY, or UPDATE.

When you specify GLOBAL(OPTIONS), you must also specify SHARE(OPTIONS). If you specify
GLOBAL(OPTIONS) without specifying SHARE(OPTIONS) and SVCDUMP and/or SYSMDUMP, the
system issues error message ADY002I.

GLOBALSTOP
Specifies that DAE is to be stopped on each system in the sysplex currently sharing the DAE data set.
This parameter is valid only when both of the following are true:

1. You specify STOP in this parmlib member.

2. You specified SHARE(DSN) when DAE was started.

If you do not specify GLOBALSTOP, you must specify STOP on each system in the sysplex.

MATCH
Specifies that DAE is to compare the symptoms from the current dump to those that have already
been recorded in the DAE data set. (Coding MATCH does not indicate that DAE will suppress
duplicate dumps or update the DAE data set.)

NOTIFY(nnnn,tttt)
Specifies the threshold at which an event notification facility (ENF) signal (event code 47) will be
generated to notify a listener about SVC dumps completed, or suppressed, for a particular symptom
string. The values, nnnn and tttt are decimal digits ranging from 1 to 9999 that specify the number of
dumps and time interval in minutes. The time interval is measured from successive dump completions
or suppressions and not dump initiations. The default is 3 dumps in 30 minutes for a particular
symptom string.

Notes:

1. NOTIFY is only valid when used with SVCDUMP.

2. UPDATE must be specified in order for NOTIFY to be effective.

RECORDS(nnnn)
Specifies the maximum number of symptom records to be placed in virtual storage, where nnnn is a
decimal digit in the range 1 through 9999.

Note that the system obtains records in multiples of 20. Therefore, if you specify RECORDS(23), the
system will round up the number of records you specified to the next multiple of 20, and place 40
records in storage instead of the 23 specified.

Each record includes information on each symptom, including:
v The date of the first and last occurrence of an error.
v The time of the first and last occurrence of an error.
v The system name of the first and last system to encounter an error.
v The actual symptom.

ADYSETxx

Chapter 3. ADYSETxx (dump suppression) 53

The default is 400 records.

SHARE(DSN[,OPTIONS])
Specify SHARE when you want each system in the sysplex to share either:

v The DAE data set or

v The DAE data set and options for SVCDUMP and SYSMDUMP.

When you specify OPTIONS, you can set up the following for each system sharing the DAE options:

v The SYSMDUMP dump options: MATCH, SUPPRESS or SUPPRESSALL, and UPDATE.

v The SVCDUMP dump options: MATCH, SUPPRESS or SUPPRESSALL, UPDATE, and
NOTIFY(3,30).

Specify OPTIONS only with DSN.

START
Specifies that DAE is to be started. If already active, DAE is first stopped and then started again.

Note: If you specify only DAE=START, the system does not issue an error message. However, unless
you also specify SVCDUMP and/or SYSMDUMP, DAE does not perform dump processing and
elimination.

STOP
Specifies that DAE is to be stopped and that all storage used by DAE is to be freed. This includes
closing and unallocating the DAE data set.

SUPPRESS
Specifies that duplicate dumps are to be suppressed when all other criteria for matching and
suppressing dumps are met, including that the VRADAE key is present in the variable recording area
of the SDWA. (Coding SUPPRESS indicates that DAE will also match symptoms from the current
dump to those already recorded; it does not indicate that DAE will update the DAE data set with any
new symptoms.)

SUPPRESS and SUPPRESSALL are mutually exclusive. If you specify both SUPPRESS and
SUPPRESSALL, the system issues message ADY001I.

If you specify SUPPRESSALL, DAE will suppress more dumps because the VRADAE key in the
SDWA is not required to suppress a dump. If you omit both SUPPRESS and SUPPRESSALL, DAE
will not suppress any dumps.

SUPPRESSALL
Specifies that duplicate dumps are to be suppressed when all criteria for matching and suppressing
dumps are met with the exception of the VRADAE key. When SUPPRESSALL is specified, the system
does not require the VRADAE key to be present in the variable recording area of the SDWA.

If SUPPRESSALL is specified and the VRANODAE key is present in the variable recording area of the
SDWA, DAE will not suppress the dump. (Coding SUPPRESSALL indicates that DAE will also match
symptoms from the current dump to those already recorded; it does not indicate that DAE will update
the DAE data set with any new symptoms.)

SUPPRESSALL and SUPPRESS are mutually exclusive. If you specify both SUPPRESS and
SUPPRESSALL, the system issues message ADY001I.

If you specify SUPPRESSALL, DAE will suppress more dumps because the VRADAE key in the
SDWA is not required to suppress a dump. If you omit both SUPPRESS and SUPPRESSALL, DAE
will not suppress any dumps.

SVCDUMP(dump options)
Requests that DAE process SVC dumps, using one or more of the following subparameters:
v MATCH
v SUPPRESS or SUPPRESSALL

ADYSETxx

54 z/OS V1R4.0 MVS Initialization and Tuning Reference

v UPDATE
v NOTIFY

NOTIFY(3,30) is the default if UPDATE is specified with SVCDUMP.

SYSMDUMP(dump options)
Requests that DAE process SYSMDUMPs and transaction dumps using one or more of the following
subparameters:
v MATCH
v SUPPRESS or SUPPRESSALL
v UPDATE

There is no default.

To enable suppression of duplicate SYSMDUMPs and transaction dumps, specify
SYSMDUMP(MATCH,SUPPRESS,UPDATE)

or
SYSMDUMP(SUPPRESSALL,UPDATE)

then enter,
SET DAE=xx

at the MVS console.

To suppress all SYSMDUMPs and transaction dumps, enter
CHNGDUMP SET,SYSMDUMP,NODUMP

from the MVS console.

UPDATE
Specifies that the DAE data set is to be updated with the results of matching. The update can be a
new record for a new set of symptoms or an increase to the count of occurrences for a duplicate set
of symptoms. (Coding UPDATE indicates that DAE will also match symptoms from the current dump to
those already recorded; it does not indicate that DAE will suppress any duplicate dumps.)

If you do not specify UPDATE, DAE will not update the DAE data set. Specify UPDATE if you plan to
suppress dumps, or to be notified when a threshold is reached for SVC dumps completed or
suppressed for a particular symptom string.

ADYSETxx

Chapter 3. ADYSETxx (dump suppression) 55

ADYSETxx

56 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 4. ALLOCxx (allocation system defaults)

Use the ALLOCxx member of SYS1.PARMLIB to define installation defaults for:
v Unit names (dynamic allocation, unit-affinity-ignored, and redirection from TAPE)
v Space attributes
v TIOT size
v Handling allocation requests
v Catalog error policies.

These installation defaults for handling allocation requests can be overridden by installation exit routines
specified in the EXITxx parmlib member. For information about the allocation exit routines, see z/OS MVS
Installation Exits.

Parameter in IEASYSxx (supplied by the operator):
ALLOC= {aa }

{(aa,bb...)}

The two-character identifier (aa,bb, and so forth) is appended to ALLOC to identify the ALLOCxx
member(s) of parmlib. Multiple members can be specified. If you specify a parameter in more than one
member, the system uses the value in the first member, and ignores the values in the subsequent
members.

Syntax rules for ALLOCxx
The following syntax rules apply to ALLOCxx:

v Use columns 1 through 71. Do not use columns 72 through 80 for data; these columns are ignored.

v At least one delimiter (space or comma) is required between a statement and keyword. Delimiters are
not required between keywords.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

© Copyright IBM Corp. 1991, 2002 57

Syntax format of ALLOCxx

SPACE PRIMARY(nnnnnnn)
SECONDARY(nn)
DIRECTORY(n)

{TRK }
MEASURE {CYL }

{AVEBLK BLKLNGTH(nnnn) {ROUND } }
{ {NOROUND} }

{CONTIG}
PRIM_ORG {MXIG }

{ALX }

{RLSE }
{NORLSE}

UNIT NAME(unit-name)
UNITAFF(unit-name)

REDIRECTED_TAPE TAPE
DASD

TIOT SIZE(nn)

SDSN_WAIT WAITALLOC {NO }
{YES }

VOLUME_ENQ POLICY {WTOR }
{CANCEL}
{WAIT}

{WTOR }
VOLUME_MNT POLICY {CANCEL}

{WTOR }
SPEC_WAIT POLICY {WAITHOLD}

{WAITNOH}
{CANCEL }

MAXNWAIT(nnn)

POLICYNW {WTOR }
{CANCEL}

{WTOR }
ALLC_OFFLN POLICY {WAITHOLD}

{WAITNOH}
{CANCEL }

MAXNWAIT(nnn)

POLICYNW {WTOR }
{CANCEL}

CATLG_ERR FAILJOB {YES}
{NO }

ERRORMSG {YES}
{NO }

2DGT_EXPDT POLICY(ALLOW/WARN/FAIL)

ALLOCxx

58 z/OS V1R4.0 MVS Initialization and Tuning Reference

Syntax example of ALLOCxx
2DGT_EXPDT POLICY(ALLOW) /*Allow data set allocation with two-digit date*/

POLICY(WARN) /*Allow data set allocation and warn*/
POLICY(FAIL) /*Fail the allocation and issue message*/

SPACE PRIMARY(10) /*Primary Space Quantity*/
SECONDARY(50) /*Secondary Space Quantity*/
BLKLNGTH(1000) /*Block Length*/
DIRECTORY(0) /*Default to Sequential*/
MEASURE(AVEBLK) /*Average Block Length*/
PRIM_ORG(CONTIG) /*Contiguous Organization*/
RLSE /*Release Unused Space*/

UNIT NAME(SYSALLDA) /*SYSALLDA is Default*/
UNITAFF(CART) /*Cartridge is the default

esoteric for tape*/
REDIRECTED_TAPE(DASD) /*Treat unopened

batch-allocated DASD
data sets, which have
been redirected from
TAPE as DASD. Default
is TAPE.*/

TIOT SIZE(32) /*32K TIOT Size*/

SDSN_WAIT WAITALLOC(NO) /*Do not wait for
special data sets*/

VOLUME_ENQ POLICY(CANCEL) /*Always cancel job*/

VOLUME_MNT POLICY(WTOR) /*Always issue the WTOR*/

SPEC_WAIT POLICY(WAITNOH) /*Wait while
not holding resources*/

MAXNWAIT(7) /*7 "wait nohold"
decisions allowed*/

POLICYNW(CANCEL) /*Cancel if wait is
not allowed*/

ALLC_OFFLN POLICY(WAITNOH) /*Wait
while not holding resources*/

MAXNWAIT(7) /*7 "wait nohold"
decisions allowed*/

POLICYNW(CANCEL) /*Cancel if wait is
not allowed*/

CATLG_ERR FAILJOB(YES) /*Fail the job*/
ERRORMSG(YES) /*Issue the WTO*/

IBM-supplied default for ALLOCxx
See the Statements/Parameters section for IBM-supplied defaults.

Statements/parameters for ALLOCxx
2DGT_EXPDT

Identifies the action to be taken if a new data set allocation request specifies a two-digit year (yyddd)
Expiration Date using one of the following:

v EXPDT — Batch JCL two-digit year Expiration Date Keyword.

v DALEXPDT — Dynamic Allocation Expiration Date specification short form.

ALLOCxx

Chapter 4. ALLOCxx (allocation system defaults) 59

Notes:

1. A two digit year is always treated as 19yy (yyddd).

2. Dates of 00000, 98000, 99000, 99365, and 99366 are allowed regardless of the Policy in force.

POLICY(ALLOW)
Allow the data set allocation with no Expiration Date related message.

POLICY(WARN)
Allow the data set allocation but issue a warning message.

If a 2-digit year is specified on a JCL DD statement (EXPDT), warning message IEF428I is written
to both the System Message and JCL Message portions of the Job Log. If the 2-digit year is
specified on a Dynamic data set allocation (DALEXPDT), warning message IEF405I is written to
the operator and Dynamic code ’0054’x is returned to the SVC 99 caller.

POLICY(FAIL)
Fail the data set allocation and issue a failure message.

If a 2-digit year is specified on a JCL DD statement (EXPDT), failure message IEF429I is written to
both the System Message and JCL Message portions of the Job Log. If the 2-digit year is
specified on a Dynamic data set allocation (DALEXPDT), failure message IEF406I is written to the
operator and Dynamic Allocation Error Return Code ’000C’x with Class 3 Reason Code ’03B8’x is
returned to the SVC 99 caller.

SPACE
Specifies the installation defaults for some space allocation parameters. These defaults apply to only
dynamic allocation and VIO requests. Understand that space allocations specified on JCL (for VIO
requests), on dynamic allocation, or in SMS data classes take precedence over the values coded on
this statement.

PRIMARY(nnnnnnn)
Specifies one of the following:
v For TRK, the number of tracks to be allocated.
v For CYL, the number of cylinders to be allocated.
v For AVEBLK, the number of average data blocks in the data set. Use the BLKLNGTH

parameter to specify the length of the average data block.

When you specify TRK or CYL for a partitioned data set (PDS), the primary quantity includes the
space for the directory. When you specify a block length for a PDS, the primary quantity does not
include the directory space; the system assigns the directory space outside the primary space
assignment.

One volume must have enough available space for the primary quantity. If you request a particular
volume and it does not have enough space available for your request, the system ends the job
step. Allow for track overflow when computing track requirements.

To request an entire volume, specify in the primary quantity the number of tracks or cylinders on
the volume minus the number used by the volume table of contents (VTOC). The volume must not
contain other data sets.

Value Range: 0 - 16777215

Default: 4

SECONDARY(nnnnnnn)
Specifies the number of additional tracks, cylinders, blocks, or records to be allocated, if more
space is needed. The system does not allocate additional space until it is needed.

If PRIMARY specifies the average block length, the system computes the number of tracks for the
secondary quantity from the SECONDARY value multiplied by one of the following, in order:

ALLOCxx

60 z/OS V1R4.0 MVS Initialization and Tuning Reference

1. The SPACE average block length subparameter.
2. The block length in the BLKSIZE field of the data control block.

When you specify SECONDARY and the data set requires additional space, the system allocates
the specified quantity:
1. In contiguous tracks or cylinders, if available.
2. If not, in up to five extents.

The system can allocate up to 16 extents for a data set on a volume. An extent is space that may
or may not be contiguous to other space allocated to the data set. The extents for a data set
include the primary quantity space and user-label space.

Note: BDAM data sets cannot be extended.

When your program has filled the allocated space on a volume for a sequential data set, the
system determines where the following data is written as follows:

v If the disposition of the data set is NEW or MOD and the limit on the number of extents on a
volume has not been reached, the system attempts to allocate the secondary quantity on the
same volume.

v If the disposition of the data set is OLD or SHARE, the system examines the next volume
specified for the data set.

– If space has been allocated on the next volume for the data set, the next volume is used for
the data set.

– If space has not been allocated on the next volume for the data set, secondary space is
allocated on the next volume for the data set.

– If there is not another volume specified for the data set, the system attempts to allocate the
secondary quantity on the current volume.

Note that your program should not write with a disposition of DISP=SHR unless you take
precautions to prevent other programs from writing at the same time.

If the requested volumes have no more available space and if at least one volume is demountable,
the system asks the operator to mount scratch (nonspecific) volumes until the secondary allocation
is complete. If none of the volumes are demountable, the system abnormally ends the job step.

Value Range: 0 - 16777215

Default: 24

DIRECTORY(nnnnnnn)
Specifies the number of 256-byte records needed in the directory of a PDS.

Note: When creating a PDS, you must request space for a directory.

Value Range: 0 - 8388607

Default: 0

MEASURE([TRK|CYL|AVEBLK])
Specifies the unit of measure of the space allocation as one of the following:

TRK Requests that space be allocated in tracks.

CYL Requests that space be allocated in cylinders.

AVEBLK
Requests that the system is to decide how many tracks to allocate based on the average

ALLOCxx

Chapter 4. ALLOCxx (allocation system defaults) 61

block size. The size of the average block is specified using the BLKLNGTH parameter,
and the number of blocks is specified using the PRIMARY parameter.

BLKLNGTH(nnnnn)
Specifies, in bytes, the average block length of the data. The system computes how
many tracks to allocate.

Value Range: 0 - 65535

Default: 8192

ROUND|NOROUND
When MEASURE(AVEBLK) is specified, requests whether (ROUND) or not
(NOROUND) space allocated to the data set must be equal to an integral number of
cylinders.

Default: NOROUND

Default: AVEBLK

PRIM_ORG([CONTIG|MXIG|ALX])
Specifies the organization of the primary space allocation as one of the following:

CONTIG
Requests that space allocated to the data set be contiguous. If CONTIG is specified and
contiguous space is not available, the system ends the job step.

MXIG Requests that space allocated to the data set must be (1) the largest area of available
contiguous space on the volume and (2) equal to or greater than the value specified on
the PRIMARY parameter.

Caution: IBM recommends that you use extreme care when coding this parameter. Large
amounts of storage could be allocated, depending on how much free space is available at
the time the request is made. If you code this parameter, IBM recommends that you also
code the RLSE parameter to release any unused space.

Notes:

1. Do not code MXIG for an indexed sequential data set.

2. MXIG can also be specified in a job’s JCL.

ALX Requests that up to five of the largest separate areas of available contiguous space are to
be allocated to the data set, and each area must be equal to or greater than the value
specified on the PRIMARY parameter.

For example, assume the following space extents (in tracks) are available: 910, 435, 201,
102, 14, 12, and 8.

If your job requests 14 tracks as its primary allocation, and ALX is in effect, the job
receives the following 5 extents: 910, 435, 201, 102, and 14.

However, if the job requests 15 tracks as its primary allocation, it would received 4
extents: 910, 435, 201, and 102. The job does not receive the 14-track extent because it
is less than the primary space allocation.

Caution: IBM recommends that you use extreme care when coding this parameter. Large
amounts of storage could be allocated, depending on how much free space is available at
the time the request is made. If you code this parameter, IBM recommends that you also
code the RLSE parameter to release any unused space.

Note: ALX can also be specified in a job’s JCL.

Default: There is no default for PRIM_ORG.

ALLOCxx

62 z/OS V1R4.0 MVS Initialization and Tuning Reference

RLSE|NORLSE
Requests whether (RLSE) or not (NORLSE) space allocated to an output data set, but not used, is
to be released when the data set is closed, and the CLOSE macro does not specify TYPE=T.
Unused space is released only if the data set is open for output and the last operation was a write.

Coding RLSE for primary allocation does not prohibit use of secondary allocation. The secondary
request for space is still in effect.

The system ignores a request to release unused space when a data set is closed if:

v Another job is sharing the data set.

v Another task in the same job is processing an OPEN, CLOSE, EOV, or FEOV request for the
data set.

v Another data control block is open for the data set.

v The data set is an indexed sequential data set.

Default: RLSE

UNIT
Specifies the installation default for the device on which the system is to place data sets.

REDIRECTED_TAPE(TAPE|DASD)
Allows the installation to specify whether unopened batch-allocated DASD data sets that were
redirected from tape should be treated as DASD or TAPE.

Specifying REDIRECTED_TAPE(TAPE) causes unopened batch allocated data sets that have
been redirected from TAPE to DASD to be deleted during final disposition processing. These
unopened redirected data sets are deleted regardless of the disposition requested.

Specifying REDIRECTED_TAPE(DASD) causes unopened batch allocated data sets that have
been redirected from TAPE to DASD to be processed according to the original disposition, as they
would have been if they had been directed to DASD and not redirected to DASD from TAPE.

Note: Dynamic allocation of SMS DASD data sets that were redirected from TAPE will continue to
be treated as DASD during dynamic allocation.

Default: TAPE

NAME(groupname)
Requests a group of devices to place data sets on. The installation must have assigned the name
to the devices(s) during system initialization or IBM must have assigned the name. This default
applies only to dynamic requests.

A group-name can identify a single device or a group of devices. A group can consist of devices of
the same or different types. For example, a group can contain both direct access storage devices
(DASD) and tape devices.

The system assigns any available device from the group. If a group consists of only one device,
the system assigns that device. If the group consists of more than one device type, the units
requested are allocated from the same device type. For example, if GPDA contains 3330 Disk
Storage and 3350 direct access storage devices (DASD), a request for two units would be
allocated to two 3330s or to two 3350s.

If a data set that was created using the group-name subparameter is to be extended, the system
allocates additional devices of the same type as the original devices. However, the additional
devices may not necessarily be from the same group.

Dynamic Allocation Consideration: If a time-sharing user’s dynamic allocation request does not
include unit information, the system obtains a unit description from the UADS entry.

ALLOCxx

Chapter 4. ALLOCxx (allocation system defaults) 63

If the user is not a time-sharing user, or if the UADS entry does not contain a unit description, the
system uses the unit name specified on the UNIT keyword of the ALLOCxx parmlib member as
the default.

The unit description you supply in your dynamic allocation request can override the unit type for a
cataloged data set. The unit description from the UADS, however, cannot override the unit
information in the catalog.

Value Range: 1 to 8 alphanumeric characters.

Default: SYSALLDA, which contains all DASD defined to the system.

UNITAFF(unit-name)
Specifies the installation default for the unit name on which the system is to place data sets when
the following conditions are true:

v The data set for the referencing DD, that is, the DD that specifies UNIT=AFF, DISP=NEW or
DISP=MOD (MOD treated as NEW), and is not SMS-managed.

v The data set for the referenced DD, that is, the DD statement pointed to by the UNIT=AFF
subparameter, is SMS-managed.

v The allocation is not part of a data set collection involving data set stacking.

v The system cannot obtain a unit name from the primary DD statement in the unit affinity chain.

The installation must have assigned the name to the device(s) during system initialization, or IBM
must have assigned the name.

Unit-name can be a group name. A group-name can identify a single device or a group of devices.
A group can consist of devices of the same or different types. For example, a group can contain
both direct reel tape devices (3400) and cartridge tape devices (3480).

The system assigns any available device from the group. If a group consists of only one device,
the system assigns that device. If the group consists of more than one device type, the units
requested are allocated from the same device type. For example, if TAPEGRP contains both 3400
devices and 3480 devices, a request for two units would be allocated to two 3400s or to two
3480s.

If a data set that was created using the UNITAFF subparameter is to be extended, the system
allocates additional devices of the same type as the original devices. However, the additional
devices might not necessarily be from the same group.

If the name specified by UNITAFF does not exist in the eligible devices table (EDT), the system
default is used instead and a warning message is issued.

Note: In a JES3 environment, if the new UNITAFF subparameter is specified, you must specify
the same unit name for all the systems in a JES3 complex that are at the MVS/SP™ 5.2.2
level or later. If the UNITAFF subparameter is not specified for any given system, make
sure the device preference order is the same on all systems. In this case, a system-derived
default is used, that is, the tape generic highest in the device preference table. The
system-derived default must be the same for all systems in a JES3 complex that are at
MVS SP5.2.2 or later.

Value Range: 1 to 8 alphanumeric characters.

Default: Tape generic highest in the device preference table. This generic must be available on
every IODF used on the system between this IPL and the next IPL.

TIOT
Specifies the installation defaults for the task I/O table (TIOT).

ALLOCxx

64 z/OS V1R4.0 MVS Initialization and Tuning Reference

SIZE(nn)
Specifies the size of the TIOT. The TIOT contains an entry for each DD statement.

The size of the TIOT controls how many DDs are allowed per jobstep. By specifying an integer
from 16 to 64 as the value of this parameter, the installation controls the default DD allowance.

The following table shows the relationship between the size of the TIOT and the maximum number
of DDs allowed:

Maximum number
of DDs allowed
when every DD

Maximum number requests the
SIZE Value of single Unit maximum number
Dec (Hex) Size of TIOT DDs allowed of units (59)
16 10 16384 (16K) 819 64
17 11 17408 (17K) 867 68
24 18 24576 (24K) 1226 97
25 19 25600 (25K) 1277 101
32 20 32768 (32K) 1635 129
40 28 40960 (40K) 2045 162
48 30 49152 (48K) 2454 194
56 38 57344 (56K) 2864 227
64 40 65536 (64K) 3273 259

Notes:

1. Your calculations need to take into account that the size of a TIOT entry, for a DD statement or
a Dynamic Allocation, increases by four (4) bytes for every SMS Candidate volume assigned
(e.g., by your DATACLAS), regardless of whether they’re guaranteed space.

2. Use the following to calculate the maximum number of DDs allowed per Job Step:

a. The TIOT Prefix, Header, and Trailer consume sixty (60) (’3C’x) bytes of the total TIOT
space available to a Job Step.

b. A DD statement requesting a single unit requires twenty (20) bytes (’14’x) of TIOT space.
Example 1:

//TAPEJOB JOB
//STEP1 EXEC PGM=IEFBR14
//DD1 DD UNIT=3490 ** DD requires 20 bytes *

TIOT space requirement for entire step = 80 bytes.

c. A DD statement requesting two (2) units requires twenty four (24) bytes (’18’x) of TIOT
space. Twenty bytes for the basic information for the first unit and an additional four bytes
for the second unit.
Example 2:

//TAPEJOB JOB
//STEP1 EXEC PGM=IEFBR14
//DD1 DD UNIT=(3490,2) ** DD requires 24 bytes *

TIOT space requirement for entire step = 84 bytes.

d. A DD requesting the maximum number of units allowed, fifty nine (59), utilizes two hundred
fifty two (252) bytes (’FC’x) of TIOT space.
Example 3:

//TAPEJOB JOB
//STEP1 EXEC PGM=IEFBR14
//DD1 DD UNIT=(3490,59) ** DD requires 252 bytes *

ALLOCxx

Chapter 4. ALLOCxx (allocation system defaults) 65

TIOT space requirement for entire step = 312 bytes.

e. A Job Step with three (3) DD statements and each DD requesting one more unit than the
previous DD would utilitize the following TIOT space:
//TAPEJOB JOB
//STEP1 EXEC PGM=IEFBR14
//DD1 DD UNIT=3490 ** DD requires 20 bytes *
//DD2 DD UNIT=(3490,2) ** DD requires 24 bytes *
//DD3 DD UNIT=(3490,3) ** DD requires 28 bytes *

TIOT space requirement for entire step = 132 bytes.

Value Range: 16 - 64 kilobytes

Default: 32 kilobytes

SDSN_WAIT
Specifies the installation policy for batch jobs that must wait to enqueue on special types of data set
names.

WAITALLOC([NO|YES])
Specifies whether to cancel jobs that must wait to enqueue on the following types of data set
names:

v GDG absolute generation data set name (unless the absolute generation data set name is
specified on the JCL)

v Real data set name (when its corresponding alias data set name is specified on the JCL).

When YES is specified, and a batch job’s enqueue request cannot be satisfied, the system issues
messages IEF861I, IEF863I and IEF458D. The job waits, holding any resources it might have
acquired. The system operator can choose to cancel the job in response to message IEF458D, or
allow the job to continue waiting until the enqueue becomes available. If the operator cancels the
job, the system writes an informational message to the job log.

When NO is specified, the system cancels the job, releases its resources, and issues message
IEF251I.

Notes:

1. Use caution when specifying YES. Allowing jobs to wait for data set availability can cause
deadlocks with other jobs in the system.

2. When you specify YES, the system does not allow the job to wait for a data set when both of
the following conditions are true:

a. This job plus one (or more) other jobs have the data set allocated as DISP=SHR

b. This job requests that its use of the data set be upgraded from DISP=SHR to DISP=OLD.
The system ends this job and issues message IEF211I.

3. The WAITALLOC option only applies to batch allocation requests (that is, allocation requests
specified in the job’s JCL).

Default: NO

VOLUME_ENQ
Specifies the installation policy for enqueuing on volumes when an allocation request has to wait for a
volume or a series of volumes.

POLICY ([WTOR|CANCEL|WAIT])
Specifies the default action to take. An installation exit can override the policy.

ALLOCxx

66 z/OS V1R4.0 MVS Initialization and Tuning Reference

WTOR
The installation policy is to issue the message and let the operator make the decision about
the allocation request. The system displays one of the following messages on the operator’s
console:
v IEF690I - The following volumes are unavailable to <jobname>...
v IEF235D - <jobname> is waiting for volumes. To cancel wait, reply no.

In addition, the system issues message IEF369D (invalid reply) in response to an invalid reply
to IEF235D.

CANCEL
The installation policy is to cancel a job that needs an unavailable volume. The system
cancels the job, releases its resources, and issues message IEF251I.

WAIT
The installation policy is to let a job that needs an unavailable volume wait until the volume is
available. The system issues message IEF488I.

CAUTION: When WAIT is used as the default, deadlocks with other jobs in the system might
arise for tape volumes.

Default: WTOR

VOLUME_MNT
Specifies the installation policy for mounting a volume when an allocation request requires a volume to
be mounted.

MVS invokes the exit when processing mount requests for single volumes or the first volume of a
multi-volume request. MVS does not invoke the exit for tape mount requests that specify
UNIT=DEFER nor second and subsequent volumes of a multi-volume request. Use the EOV exit
routine to handle second and subsequent volumes (see z/OS DFSMS Installation Exits for
information).

POLICY ([WTOR|CANCEL])
Specifies the default action to take. An installation exit can override the policy.

WTOR
The installation policy is to issue the message and let the operator make the decision about
the volume mount. The system displays one or more of the following messages on the
operator’s console:
v IEF233A - Mount volume <ser>
v IEF233D - Mount volume <ser> or respond to IEF455D message
v IEF455D - Mount <ser> on <device> for <jobname> or reply no.

In addition, the system issues message IEF369D (invalid reply) in response to an invalid reply
to IEF455D.

CANCEL
The installation policy is to cancel a job that needs a volume mounted. The system cancels
the job, releases its resources, and issues message IEF251I.

Default: WTOR

SPEC_WAIT
Specifies the installation policy to be followed when an allocation request must wait for a specific
volume or unit.

POLICY ([WTOR|WAITHOLD|WAITNOH|CANCEL])
Specifies the default action to take. An installation exit can override the policy.

ALLOCxx

Chapter 4. ALLOCxx (allocation system defaults) 67

WTOR
The installation policy is to issue the message and let the operator make the decision about
the wait request. The system displays one or more of the following messages on the
operator’s console:
v IEF238D - Reply [device name] [,] [‘wait’] or ‘cancel’
v IEF244I - Unable to allocate <nnn> units(s). At least <nnn> allocated or offline units are

needed.
v IEF433D - Wait requested — reply hold or nohold
v IEF488I - Must wait for a unit, or volume on unit.

In addition, the system issues one or more of the following messages in response to an invalid
reply to the preceding messages.

v IEF434D - Invalid reply (to message IEF433D). Reply hold or nohold.

v IEF490I - Invalid reply (to message IEF238D) for one of the following reasons:
– Device is not accessible (no paths available, boxed, or cannot be assigned)
– Required system managed volume is not available
– Required volume is not available
– Replied device is not eligible
– Device is found in an offline library.
– Coupling facility error

WAITHOLD
The installation policy is for the system to not release any of the devices that have already
been allocated to this job before it waits for the required units or volumes. The system issues
message IEF488I.

Be aware that using the WAITHOLD policy might cause a deadlock situation, particularly when
the device is being used by a job that is going to wait. The system does not release any
non-sharable devices (that is, non-DASD) that have already been allocated to the job before it
waits for required units and volumes. To avoid this problem, do not specify WAITHOLD.

When devices for a job are held during a wait, and a device that was eligible for allocation to
the job becomes ineligible for allocation (because of its use by a system utility, for example),
the job might fail because it does not have enough devices to complete successfully. Message
IEF700I in the job log identifies this failure. Refer to message IEF700I for information on how
to respond to this failure.

WAITNOH
The installation policy is to let the job wait while not holding the obtained resources. The
system will release those devices that have been allocated to this job, but that cannot be
shared with other jobs. The system issues message IEF488I.

For an example of the WAITHOLD versus WAITNOH options, consider that JOBA owns an
automatically switchable device and is waiting for a printer. JOBB owns the printer JOBA
needs and is waiting for the automatically switchable device JOBA owns.
v If the reply is WAITHOLD for each job, the two jobs will wait until one job is cancelled. This

deadlock can be even more complex depending on the number of jobs waiting.
v If the reply is WAITNOH for each job, allocation responds on a first-come, first-served basis.

After the first job finishes using a resource, it is available to the second.

CANCEL
The installation policy is to cancel the allocation request. If a TSO/E user issued the allocation
request, the user receives an error message. If a batch job or started task issued the request,
the system cancels the job or task, releases its resources, and issues message IEF251I.

Default: WTOR

MAXNWAIT(nnn)
Specifies the number of “WAITNOH” decisions allowed to be made for the specific volume or unit

ALLOCxx

68 z/OS V1R4.0 MVS Initialization and Tuning Reference

allocation request before the default specified on the POLICYNW parameter will take effect. The
WAITNOH decisions counted are those that are specified either through the default on the
POLICY parameter or through an installation exit specified in the EXITxx parmlib member.
“WAITNOH” decisions made by the operator are not included in the MAXNWAIT count.

Value Range: 1 - 255

Default: 5

POLICYNW(CANCEL|WTOR)
Specifies how the system should handle the allocation request under the following circumstances:

v Either WAITHOLD or WAITNOH is specified on the POLICY parameter and the system does
not allow the job to wait for resources.

v The maximum number of “WAITNOH” decisions (specified on the MAXNWAIT parameter) has
been exceeded.

The system is to either cancel the allocation request (CANCEL) or issue a message (WTOR).
When WTOR is selected, the system issues the messages listed earlier under WTOR. When
CANCEL is selected, the system cancels the allocation request depending on how the request
was issued. If a TSO/E user issued the allocation request, the user receives an error message. If
a batch job or started task issued the request, the system cancels the job or task, releases its
resources, and issues message IEF251I.

Default: WTOR

ALLC_OFFLN
Specifies the installation policy to be followed when an allocation request needs a device that is offline,
or must wait for a non-specific volume or unit.

POLICY ([WTOR|WAITHOLD|WAITNOH|CANCEL])
Specifies the default action to take. An installation exit can override the policy.

WTOR
The installation policy is to issue the message and let the operator make the decision about
the needed device. The system displays one or more of the following messages on the
operator’s console:

v IEF157E - <jobname> needs <nnn> units. All eligible units are currently allocated.

v IEF238D - Reply [device name] [,] [‘wait’] or ‘cancel’

v IEF244I - Unable to allocate <nnn> units(s). At least <nnn> allocated or offline units are
needed

v IEF433D - Wait requested — reply hold or nohold.

In addition, the system issues one or more of the following messages in response to invalid
replies to the preceding messages:

v IEF434D - Invalid reply (to message IEF433D). Reply hold or nohold.

v IEF490I - Invalid reply (to message IEF238D) for one of the following reasons:
– Device is not accessible
– Required system managed volume is not available
– Required volume is not available
– Replied device is not eligible
– Device could not be found in the configuration
– Device found in an offline library.

WAITHOLD
The installation policy is for the system to not release any of the devices that have already
been allocated to this job before it waits for the required units or volumes. The system issues
message IEF289E.

ALLOCxx

Chapter 4. ALLOCxx (allocation system defaults) 69

Be aware that using the WAITHOLD policy might cause a deadlock situation, particularly when
the device is being used by a job that is going to wait. The system does not release any
non-sharable devices (that is, non-DASD) that have already been allocated to the job before it
waits for required units and volumes. To avoid this problem, do not specify WAITHOLD.

When devices for a job are held during a wait, and a device that was eligible for allocation to
the job becomes ineligible for allocation (because of its use by a system utility, for example),
the job might fail because it does not have enough devices to complete successfully. Message
IEF700I in the job log identifies this failure. Refer to message IEF700I for information on how
to respond to this failure.

WAITNOH
The installation policy is to let the job wait while not holding the obtained resources. The
system will release those devices that have been allocated to this job, but that cannot be
shared with other jobs. The system issues message IEF289E.

For an example of the WAITHOLD versus WAITNOH options, consider that JOBA owns an
automatically switchable device and is waiting for a printer. JOBB owns the printer JOBA
needs and is waiting for the automatically switchable device JOBA owns.
v If the reply is WAITHOLD for each job, the two jobs will wait until one job is cancelled. This

deadlock can be even more complex depending on the number of jobs waiting.
v If the reply is WAITNOH for each job, allocation responds on a first-come, first-served basis.

After the first job finishes using a resource, it is available to the second.

CANCEL
The installation policy is to cancel the allocation request. If a TSO/E user issued the allocation
request, the user receives an error message. If a batch job or started task issued the request,
the system cancels the job or task, releases its resources, and issues message IEF251I.

Default: WTOR

MAXNWAIT(nnn)
Specifies the number of “WAITNOH” decisions allowed to be made for the allocation request
before the default specified on the POLICYNW parameter will take effect. The WAITNOH
decisions counted are those that are specified either through the default on the POLICY parameter
or through an installation exit in the EXITxx parmlib member. “WAITNOH” decisions made by the
operator are not included in the MAXNWAIT count.

Value Range: 1 - 255

Default: 5

POLICYNW(CANCEL|WTOR)
Specifies how the system should handle the allocation request under the following circumstances:

v Either WAITHOLD or WAITNOH is specified on the POLICY parameter and the system does
not allow the job to wait for the needed device.

v The maximum number of “WAITNOH” decisions (specified on the MAXNWAIT parameter) has
been exceeded.

The system is to either cancel the allocation request (CANCEL) or issue a WTOR. When WTOR is
selected, the system issues the messages listed earlier under WTOR. When CANCEL is selected,
the system cancels the allocation request depending on how the request was issued. If a TSO/E
user issued the allocation request, the user receives an error message. If a batch job or started
task issued the request, the system cancels the job or task, releases its resources, and issues
message IEF251I.

Default: WTOR

CATLG_ERR
Specifies the installation policy for handling certain types of errors that might occur when the system

ALLOCxx

70 z/OS V1R4.0 MVS Initialization and Tuning Reference

processes the disposition of batch unallocated data sets (data sets that have been unallocated at step
termination time). The CATLG_ERR statement applies when the system is unable to:

v Catalog a new data set for which the user specified a disposition of CATLG.

v Catalog an old uncataloged data set for which the user specified a disposition of CATLG.

v Recatalog an old cataloged data set for which the volume list was extended, and for which the user
specified a disposition of CATLG, KEEP or PASS.

v Roll an SMS-managed generation data set into the GDG base.

The CATLG_ERR statement does not apply when the user unallocates a data set before step
termination through the following methods:

v Dynamic deallocation (DYNALLOC macro)

v Having previously specified FREE=CLOSE on the allocation request (DYNALLOC macro or DD
statement in the job’s JCL).

FAILJOB(YES|NO)
Specifies whether the system is to terminate the job if one of the preceding errors occurs.

When a job is terminated by FAILJOB(YES) , the termination is considered a post-execution error.
Post-execution errors, which include but are not limited to FAILJOB(YES) terminations, are
indicated by a 1 in the SMF30SYE bit in the SMF30STI field of the SMF30 subtype4 record.

Notes:

1. The setting of the condition code is not affected.

2. The job is NOT abended, unless the step that encountered the error had itself previously
abended. Terminated means that subsequent steps will not be taken.

3. The normal disposition for data sets is taken, unless the step that encountered the error had
already abended, in which case the abnormal or conditional disposition is taken.

Default: NO

ERRORMSG(YES|NO)
Specifies whether the system is to issue an error message to the operator if one of the preceding
errors occurs. When YES is specified, the system issues message IEF377I. If FAILJOB(YES) was
also specified, the system terminates the job, releases its resources, and issues message IEF378I.

Note: If any of the following conditions are true, the system writes the error message even when
ERRORMSG(NO) is specified:

v The user specified MSGLEVEL=(,1) on the JCL JOB statement.
v The JES installation default sets the message level to MSGLEVEL=(,1).
v The job abnormally terminates.

Default: NO

ALLOCxx

Chapter 4. ALLOCxx (allocation system defaults) 71

ALLOCxx

72 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 5. APPCPMxx (Define APPC/MVS configuration)

The APPCPMxx parmlib member contains a combination of statement types that define or modify the
APPC/MVS configuration. These statements define APPC/MVS local LUs, indicate whether they are
associated with a transaction scheduler, and name their associated administrative VSAM files.

For more information about using APPC, seez/OS MVS Planning: APPC/MVS Management .

An installation can control its APPC/MVS configuration with different versions of the APPCPMxx parmlib
member. One member might contain startup values while other members contain customized values.

To initialize the APPC address space and set up the APPC/MVS configuration, specify APPCPMxx with a
START APPC command. To modify the APPC/MVS configuration after initialization, specify APPCPMxx
with the SET APPC operator command. You can specify more than one APPCPMxx parmlib member on a
START or a SET APPC command. If you specify more than one member on the START or SET command,
APPC processes the statements in the order specified and creates a cumulative configuration. If you
specify one or more members that do not exist, APPC/MVS issues an informational message. For more
information on the START and SET commands, see z/OS MVS System Commands.

If you do not specify a parmlib member with the START command, the system searches for an
APPCPM00 member, by default. If APPCPM00 does not exist, APPC/MVS issues an informational
message.

Changing values
An installation can change configuration values established by an APPCPMxx parmlib member by creating
another APPCPMxx parmlib member containing LUDEL statements that delete previous statements, or the
parmlib member can contain LUADD and SIDEINFO statements with new parameter values to modify
previous statements. Examples of parmlib members used to delete and modify configurations are in z/OS
MVS Planning: APPC/MVS Management.

Note: When modifying previous statements, the parmlib statements have a cumulative effect, and any one
parmlib member might not reflect the current configuration.

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax rules for APPCPMxx
v Use column 1 through 71. Do not use columns 72-80, because the system ignores these columns.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v A statement must begin with a valid statement name followed by at least one blank.

v A statement ends with the beginning of the next valid statement name or End Of File (EOF).

v A statement can be continued even though there is no explicit continuation character.

v A statement contains only uppercase characters. Lower case is not accepted.

v Multiple occurrences of a statement are accepted.

v Keywords must be separated by valid delimiters. Valid delimiters are a comma, a blank, or column 71.

v Multiple occurrences of a delimiter are accepted but treated as one.

v Keyword values must be set off by parenthesis.

v Do not use blanks, commas, or comments in the middle of a parameter, between the parameter and the
left parenthesis before the value, or in the middle of a value.

© Copyright IBM Corp. 1991, 2002 73

Syntax format of APPCPMxx

IBM-supplied default for APPCPMxx
There is no default APPCPMxx parmlib member supplied by IBM. A sample parmlib member, APPCPMXX,
is provided in SYS1.SAMPLIB.

Statements/parameters for APPCPMxx
The statement types for the APPCPMxx parmlib member are listed below and explained in more detail
later.

LUADD
Defines a local LU for the APPC/MVS configuration.

LUDEL
Deletes a local LU and its sessions from the APPC/MVS configuration.

SIDEINFO
Specifies the VSAM KSDS name that contains side information for an installation.

LUADD
The LUADD statement defines a local APPC/MVS LU that is to be added to the APPC configuration.
The LUADD statement contains:

v The LU name

v An indication of whether the LU is associated with a transaction scheduler

v The name of the transaction scheduler, if one is to be associated with this LU

v The amount of time the LU’s sessions will persist in the event the LU becomes unavailable

v The TP profile file associated with the LU

v The level of TP profile from which the LU starts to search

v Optional values to be passed to an alternative transaction scheduler, or to any other member of the
APPC XCF group, such as an APPC/MVS server

v A VTAM generic resource name to associate with the LU

v An indication of whether the LU is enabled to support network-qualified names for its partner LUs.

Each LU managed by APPC/MVS must be defined with an LUADD statement.

LUADD ACBNAME
(luname)

[SCHED(schedname)|NOSCHED]
[BASE]
[PSTIMER(value)]
[TPDATA(dsname)]
[TPLEVEL{(SYSTEM)}]
[{(GROUP)}]
[{(USER)}]
[ALTLU {(scheduler-supplied value)}]
[USERVAR{(scheduler-supplied value)}]
[GRNAME{(genericname)}]
[NQN | NONQN]

LUDEL ACBNAME {(luname)}
{PERSIST | NOPERSIST }

SIDEINFO DATASET(dsname)

APPCPMxx

74 z/OS V1R4.0 MVS Initialization and Tuning Reference

When an installation uses the ASCH transaction scheduler exclusively, only one LU is required. If other
transaction schedulers are used, each scheduler requires a separate LU. An installation might choose
to define additional LUs to isolate TPs for security or testing.

An installation can also define LUs that are not associated with transaction schedulers. These LUs
handle work that is processed by APPC/MVS servers, rather than scheduled by a transaction
scheduler. Such LUs are indicated by coding the NOSCHED keyword on LUADD. Installations can
also use NOSCHED LUs when they want to flow outbound allocate requests without having a
transaction scheduler active. (Note that APPC/MVS servers can also run under LUs that are
associated with transaction schedulers.)

You can modify an LU by overriding a previous LUADD statement with another LUADD statement that
names the existing LU and changes the parameters to be modified. The only parameters you cannot
modify with an overriding LUADD are the SCHED, NOSCHED, ALTLU, USERVAR, GRNAME, NQN
and NONQN parameters. To change these parameters, you must first delete the LU with an LUDEL
statement and then re-identify the LU with a new LUADD that changes the parameters.

Example: The following example defines LU MVSLU01 to be associated with the transaction
scheduler provided with APPC/MVS.

LUADD
ACBNAME(MVSLU01)
SCHED(ASCH)
TPDATA(SYS1.APPCTP)
TPLEVEL(USER)

ACBNAME(luname)
The required name of the LU that APPC/MVS is to remove. If this LU was defined to VTAM, its
association with VTAM is terminated after active conversations end.

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerals 0-9,
national characters (@,$,#) and must begin with an alphabetic or national character.

Note: The SNA LU 6.2 architecture defines a network-qualified LU name to be up to 17 bytes in
length and in the form network_id.network_LU_name, where network_id is the optional 8-byte id
of the network and network_LU_name is the 8-byte local LU name. SAA® CPI Communications
allows the full 17-byte network-qualified LU name. However, for the ACBNAME keyword,
specify only the 8-byte local LU name.

Default: None, this parameter is required.

SCHED(ASCH|schedname)
NOSCHED

An optional parameter that indicates whether the LU is to be associated with a transaction scheduler.
LUs associated with a transaction scheduler cannot become active until that scheduler identifies itself
to APPC/MVS. LUs not associated with a transaction scheduler become active as soon as APPC/MVS
becomes active.

SCHED indicates that the LU is associated with a transaction scheduler. schedname must match the
name the transaction scheduler specifies when it calls the Identify service. For more information about
the Identify service and its scheduler_name parameter, see z/OS MVS System Messages, Vol 3
(ASB-BPX).

NOSCHED indicates that the LU is not to be associated with a scheduler. When NOSCHED is
specified, the LU becomes active as soon as APPC/MVS becomes active. Installations can use
NOSCHED LUs to isolate work from schedulers when the work is to be processed by APPC/MVS
servers. Installations can also use NOSCHED LUs to flow outbound allocate requests without having a
transaction scheduler active.

APPCPMxx

Chapter 5. APPCPMxx (Define APPC/MVS configuration) 75

Value Range: For schedname, the value is a one- to eight-byte character string and each character
must be an uppercase letter (A-Z) or a numeral (0-9).

Note: SCHED and NOSCHED are mutually exclusive keywords; you cannot specify both SCHED and
NOSCHED in a single LUADD statement. Doing so causes the system to ignore the statement
and issue message ATB041I to the system operator.

Default: When you omit both SCHED(schedname) and NOSCHED, the default is SCHED(ASCH).

BASE
An optional parameter that designates the LU as the base LU. Base LUs are default LUs assigned to
handle outbound work. A base LU can be the default LU associated with a particular transaction
scheduler or a NOSCHED LU.

When a NOSCHED LU is defined with the BASE option, the LU becomes the system base LU. That
means the LU is to be the default LU used for outbound allocate requests from MVS programs, such
as batch jobs, TSO/E users, started tasks, and other work requests that attempt to enter the network
without being associated with a scheduler or an LU.

Example: The following example defines a NOSCHED LU, MVSLU02, to be the system base LU.
LUADD
ACBNAME(MVSLU02)
NOSCHED
BASE
TPDATA(SYS1.APPCTEST)
TPLEVEL(SYSTEM)

If you do not define a NOSCHED LU as a base LU, the base LU defined for the APPC/MVS
transaction scheduler (ASCH) becomes the system base LU. If no system base LU exists, APPC/MVS
rejects conversations allocated by MVS programs that are not associated with a scheduler or an LU.

IBM recommends that you define one LU per transaction scheduler as the base LU for the scheduler.
In addition, define a NOSCHED LU as the system base LU if you want to allow outbound requests
from the system when no transaction schedulers are active.

When more than one LU is defined as the base LU, the one most recently defined is the base.

PSTIMER(value)
An optional parameter that sets the maximum amount of time for which the LU’s sessions persist (are
maintained) during interruptions in APPC/MVS or a transaction scheduler’s service.

When you specify a valid value other than NONE, the LU’s sessions persist when the APPC address
space is cancelled, forced, terminated, or automatically restarted. The sessions also persist during
interruptions in scheduler service. Any conversations that were active at the time of the interruption are
lost. When APPC service is resumed, the conversation partners can re-establish these conversations,
if desired.

Sessions do not persist in the event the LU is deleted.

Value Range:
0 or INDEFINITE (Sessions persist indefinitely)
1 - 86400 (Number of seconds the sessions can persist)
NONE (Sessions are not to persist)

Default: NONE

TPDATA(dsname)
An optional parameter that specifies the name of the VSAM key-sequenced data set that contains TP
profiles, along with an optional data base token for the LU. The data base token is used for verifying

APPCPMxx

76 z/OS V1R4.0 MVS Initialization and Tuning Reference

access authority to TP profiles. If this LU is a NOSCHED LU, APPC/MVS uses only the data set’s data
base token, if any. The data set specified on TPDATA must be cataloged in either a user catalog or the
master catalog.

Value Range: Up to 44 characters in length consisting of one- to eight-byte character string of
uppercase letters A through Z, numerals 0-9, national characters (@,$,#) and must begin with an
alphabetic or national character.

Default: SYS1.APPCTP

TPLEVEL({SYSTEM|GROUP|USER})
An optional parameter that identifies the level of TP profiles for which the LU searches in response to
an inbound allocate request. TPLEVEL limits the search to the levels desired.

Each TP can have different levels of TP profiles with scheduling characteristics associated with a user,
a group of users, or all users (system). The TPLEVEL parameter tells the LU which of those levels of
TP profile to search.

Value Range:

SYSTEM means that the LU searches for system-level TP profiles only (NOT for a specific user or
group of users).

GROUP means that the LU searches for TP profiles associated with (1) a specific group of users and
(2) system-level TP profiles, in that order.

USER means that the LU searches for TP profiles associated with (1) a specific user, (2) a group of
users, and (3) system-level TP profiles, in that order.

Note: If you specify NOSCHED, TPLEVEL must be SYSTEM. Also, TP profile entries in the data set
specified in TPDATA are not used for NOSCHED LUs — only the data base token is used.

Default: SYSTEM

ALTLU(scheduler-supplied value)
This parameter allows optional, installation-supplied data to be passed to a member of the APPC XCF
group, such as an alternative transaction scheduler or an APPC/MVS server.

If specified, the data is passed to the APPC XCF group member at the activation and deactivation of
the associated LU. For information about the APPC XCF group, see z/OS MVS System Messages, Vol
3 (ASB-BPX).

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerics 0-9, or
national characters (@, $, #), with the exception that the first character cannot be numeric (0-9).

Default: None

USERVAR(scheduler-supplied value)
This parameter allows optional, installation-supplied data to be passed to a member of the APPC XCF
group, such as an alternative transaction scheduler or an APPC/MVS server.

If specified, the data is passed to the APPC XCF group member at the activation and deactivation of
the associated LU. For information about the APPC XCF group, see z/OS MVS System Messages, Vol
3 (ASB-BPX).

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerics 0-9, or
national characters (@, $, #), with the exception that the first character cannot be numeric (0-9).

Default: None

GRNAME(genericname)
This optional parameter specifies a VTAM generic resource name to be associated with the LU. The
LU may be one of multiple LUs in the same generic resource group, represented by genericname.
This parameter cannot be dynamically modified or added to an existing LU definition.

APPCPMxx

Chapter 5. APPCPMxx (Define APPC/MVS configuration) 77

See z/OS MVS Planning: APPC/MVS Management for advice and restrictions about selecting a
generic resource name, and deciding which LUs should become members of a generic resource
group.

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerals 0-9,
national characters (@, $, #) and must begin with an alphabetic or national character.

Default: None. If the GRNAME parameter is not specified, the LU is activated but is not part of a
generic resource group.

NQN
NONQN

An optional parameter that specifies whether the APPC/MVS LU is enabled to use a network-qualified
partner LU name when first allocating outbound conversations. If you specify NQN, APPC/MVS uses
the 17-byte network-qualified LU name when both verifying the partner LU, and sending the outbound
Allocate request to the partner LU. If you specify NONQN (or allow the system to use the default),
APPC/MVS uses the entire name when verifying the partner, but only the 8-byte network-LU-name
portion when sending the outbound Allocate request, as in OS/390 V1R2 and previous releases.

See z/OS MVS Planning: APPC/MVS Management for the requirements for enabling APPC/MVS LUs
to support network-qualified names.

Default: NONQN

LUDEL
The LUDEL statement deletes a local APPC/MVS LU from the APPC configuration. One LUDEL
statement must be specified for each LU to be deleted. The LUDEL statement contains:

v The LU name

v An indication of whether APPC/MVS should keep all persistent sessions active between this LU and
all of its partners

When an LUDEL statement is processed, incoming allocation requests to the named LU are rejected;
however, all active conversations are allowed to continue until completed. The LU is removed only
after all active conversations have ended.

ACBNAME(luname)
The required name of the LU that APPC/MVS is to remove. If this LU was defined to VTAM, its
association with VTAM is terminated after active conversations end.

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerals 0-9,
national characters (@,$,#) and must begin with an alphabetic or national character.

For an explanation of why SAA CPI partner LU names can be 17 characters, see the note under
the ACBNAME parameter in 75.

Default: None; this parameter is required.

PERSIST | NOPERSIST
An optional parameter that specifies whether APPC/MVS will deactivate all sessions between this
LU and its partners when the LU is deleted. If you specify PERSIST, and if the LU was previously
enabled to support persistent sessions via the PSTIMER keyword on the LUADD statement,
APPC/MVS does not deactivate sessions between the LU and its partners. VTAM keeps these
sessions active as long as the LU is re-added to the APPC configuration on the same OS/390
image within the PSTIMER time limit (single-node persistent sessions) or in any OS/390 image in
the sysplex within the PSTIMER time limit (multi-node persistent sessions). See z/OS MVS
Planning: APPC/MVS Management for further information. If you specify NOPERSIST (or allow the
system to use the default), APPC/MVS deactivates all sessions between this LU and its partners
when the LU is deleted.

Default: NOPERSIST

APPCPMxx

78 z/OS V1R4.0 MVS Initialization and Tuning Reference

SIDEINFO
The SIDEINFO statement names the VSAM key sequenced data set that contains side information.
Only one side information file is allowed per MVS system.

DATASET(dsname)
An optional parameter that specifies the name of the VSAM key sequenced data set that contains
side information. The file must be cataloged in either a user catalog or the master catalog.

Value Range: Up to 44 characters in length consisting of one- to eight-byte character string of
uppercase letters A through Z, numerals 0-9, national characters (@,$,#) and must begin with an
alphabetic or national character.

Default: SYS1.APPCSI

Response to errors in APPCPMxx
If a syntax error is found in an APPCPMxx parmlib member, a message is sent to the originating console
and the statement(s) in error are rejected. All syntactically valid statements are processed normally.

When such an error is reported, the system programmer should create a parmlib member containing
corrected statements and retry the operation.

APPCPMxx

Chapter 5. APPCPMxx (Define APPC/MVS configuration) 79

80 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 6. ASCHPMxx (APPC/MVS transaction scheduler)

The ASCHPMxx parmlib member contains scheduling information for the ASCH transaction scheduler. The
statements define classes of transaction initiators and provide default scheduling information when it is
missing from a TP profile.

References

For more information about using APPC, see z/OS MVS Planning: APPC/MVS Management.

An installation can control scheduling characteristics with different versions of the ASCHPMxx parmlib
member. One member might contain startup values and other members contain customized values.

To start the ASCH address space and set up classes and defaults for the ASCH transaction scheduler,
specify ASCHPMxx with a START ASCH command. To modify classes and defaults after initialization,
specify ASCHPMxx with the SET ASCH operator command. More than one ASCHPMxx parmlib member
can be specified on a START or a SET ASCH command. If you specify more than one member on the
START or SET command, APPC processes the statements in the order specified and creates a cumulative
configuration. For more information about the START and SET commands, see z/OS MVS System
Commands.

If you do not specify a parmlib member with the START command, the system uses the default member,
ASCHPM00. If ASCHPM00 does not exist, APPC/MVS issues an informational message.

Changing values
An installation can change scheduling information established by an ASCHPMxx parmlib member by
creating another ASCHPMxx parmlib member containing CLASSDEL statements that delete previous
statements, or the parmlib member can reissue statements with new parameter values to modify previous
statements.

Examples of deleting and modifying statements are in z/OS MVS Planning: APPC/MVS Management.

Attention: When modifying previous statements, the parmlib statements have a cumulative effect, and
any one parmlib member might not contain the current scheduling characteristics.

Default values
When parmlib statements are initially specified, omitted parameters receive default values. When,
however, parmlib statements are respecified, omitted parameters in the CLASSADD statement assume the
defaults, but omitted parameters on the OPTIONS and TPDEFAULT statements do not assume the
defaults.

For example, in the CLASSADD statement, the MAX parameter has a default value of 1. When you initially
define a class with the START ASCH command and omit MAX, the class defaults to the maximum of 1
initiator. If, however, you initially set MAX to 10, when the class is modified with a SET ASCH command
and MAX is not specified, the max of 10 is overridden with the max of 1 default.

Support for system symbols
You can specify static symbolics in ASCHPMxx. For information about how to use static symbolics, see
Chapter 2, “Sharing parmlib definitions” on page 25.

© Copyright IBM Corp. 1991, 2002 81

Parameter in IEASYSxx (or supplied by the operator):
None

Syntax rules for ASCHPMxx
v Use column 1 through 71. Do not use columns 72-80, because the system ignores these columns.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v A statement type consists of 1-10 characters.

v A statement must begin with a valid statement type followed by at least one blank.

v A statement ends with the beginning of the next valid statement type or End Of File (EOF).

v A statement can be continued even though there is no explicit continuation character.

v Multiple occurrences of a statement type are accepted.

v A statement contains only uppercase characters. Lower case is not accepted.

v Operands must be separated by valid delimiters. Valid delimiters are a comma, a blank, or column 71.

v Multiple occurrences of a delimiter are accepted but treated as one.

v Keyword values must be set off by parenthesis.

v Do not use blanks, commas, or comments in the middle of a parameter, between the parameter and the
left parenthesis before the value, or in the middle of a value.

Syntax format of ASCHPMxx

IBM-supplied default for ASCHPMxx
There is no default ASCHPMxx parmlib member. A sample parmlib member, ASCHPMxx, is provided in
SYS1.SAMPLIB.

Statements/parameters for ASCHPMxx
The statements for the ASCHPMxx parmlib member are listed below and explained in more detail later.

CLASSADD
Identifies a class of transaction initiators to be added to the APPC transaction scheduler
configuration.

CLASSADD CLASSNAME(classname)
[MAX(nnnnn)]
[MIN(nnnnn)]
[RESPGOAL(nnnnnnnn)]
[MSGLIMIT(nnnnn)]

CLASSDEL CLASSNAME(classname)
WORKQ {(PURGE|DRAIN)}

OPTIONS DEFAULT(classname)
SUBSYS(ssname)

TPDEFAULT REGION {(nnnnK)}
{(nnnnM)}

TIME {(NOLIMIT) }
{(minutes,seconds)}

MSGLEVEL(1,n)
OUTCLASS(n)

ASCHPMxx

82 z/OS V1R4.0 MVS Initialization and Tuning Reference

CLASSDEL
Deletes a class of transaction initiators from the APPC transaction scheduler configuration.

OPTIONS
Defines class options.

TPDEFAULT
Supplies default information when it is missing from the scheduler JCL section of a TP profile.

CLASSADD
The CLASSADD statement identifies a class of transaction initiators to the APPC/MVS transaction
scheduler configuration. The CLASSADD contains the class name, the maximum and minimum
number of transaction initiators to assign to the class, the response time goal, and the message limit.
Each class for the APPC transaction scheduler must be defined with a CLASSADD statement.

At least one class definition is required for work assigned to the APPC/MVS transaction scheduler. If
work comes in for a class that is not defined by a CLASSADD statement, the work is rejected.

You can modify a class by overriding a previous CLASSADD statement with another CLASSADD
statement that names the existing class and changes the parameter values to be modified. When
more than one CLASSADD statement exists for the same class, the most recently processed
statement is in effect.

CLASSNAME(classname)
A required parameter that specifies the name of a class of transaction initiators. When a class
name is specified in a TP profile, the APPC/MVS transaction scheduler assigns the TP to run in
that class. If no class name is specified in a TP profile, the default class from the OPTIONS
statement is used. If the class in the TP profile does not match any class name specified on a
CLASSNAME statement and there is no default class, the TP cannot run.

SRM uses the class of transaction initiators as one of the items to determine dispatching priority.

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerals 0-9,
national characters (@, $, #) and must begin with an alphabetic or national character.

Default: None

MAX(nnnnn)
An optional parameter that specifies the maximum number of transaction initiators that are allowed
for a particular class of transaction initiators. After this limit is reached, no new address spaces are
created and incoming requests are queued to wait until existing initiator address spaces become
available. The value should not exceed the maximum number of address spaces allowed by your
installation, and you should be aware of competing products on the system that will also require
address spaces.

If this value is too high, system resources that might be needed elsewhere are not available. If this
value is set too low, transaction programs will wait on the queue until an existing initiator becomes
available, jeopardizing the response time goal for the class. To optimize performance while still
meeting resource goals, specify a value that is a percentage of the total number of possible
transactions running in the class at a time. You can determine the exact percentage after
considering the number of transaction initiators available for all the classes, and experimenting
with various values until one meets performance requirements.

Value Range: 1 - 64000

Default: 1

MIN(nnnnn)
An optional parameter that specifies the minimum number of transaction initiators that are brought
up for a particular class of transaction initiators when the ASCH address space starts or changes
dynamically with a SET command. If the MIN value exceeds the MAX value, the MIN value is set
to the MAX value. The number of transaction initiators available in each class never goes below

ASCHPMxx

Chapter 6. ASCHPMxx (APPC/MVS transaction scheduler) 83

the MIN number. In setting this value, consider the type of transaction programs that will run in this
class. You may want certain classes to have initiators that are always available, while others
classes require fewer initiators.

If this value is set too high, system resources that may be needed elsewhere are left idle. If this
value is too small, the scheduler may waste time and resources creating and deleting transaction
initiators. To optimize performance while still meeting resource goals, specify a value that is a
percentage of the total number of possible transactions running in the class at a time. You can
determine the exact percentage after considering the number of transaction initiators available for
all the classes, and experimenting with various values until one meets performance requirements.

Value Range: 0 - 64000

Default: 0

RESPGOAL(nnnnnnnn)
An optional parameter that specifies the response time goal for TPs executing within this class.
The RESPGOAL value is the total time in seconds that an installation wants to allow for queueing
and running a transaction in this class. To meet this goal, APPC/MVS can create additional
transaction initiators for the class until the MAX value is reached.

To determine how well response time is being met, you can see transaction run times in the
RMF™ Monitor I Workload Activity Report. TP run times can also be obtained via SMF reports.

The response time goal should be set by determining the average run time for transactions in a
class and adding in an allowable queue delay time. The additional queue delay time provides the
APPC transaction scheduler some control to attempt to optimize overall system overhead
associated with creating and deleting transaction initiators.

Value Range: 0.000001 - 31536000 seconds (365 days)

Default: 1

MSGLIMIT(nnnnn)
An optional parameter that, for all TPs running within the class, specifies the maximum number of
messages written to the TP’s message log each time the TP runs. For more information about
selecting a MSGLIMIT value, see the topic about logging transaction program processing in z/OS
MVS Planning: APPC/MVS Management.

Value Range: 1-15000 messages

Default: 500 messages

CLASSDEL
The CLASSDEL statement deletes a class of transaction initiators from the APPC/MVS transaction
scheduler configuration. One CLASSDEL statement must be specified for each class of transaction
initiators that is to be deleted.

CLASSNAME(classname)
A required parameter that specifies the name of an existing class of transaction initiators to be
deleted.

Value Range: A one- to eight-byte character string of uppercase letters A through Z, numerals 0-9,
national characters (@,$,#) and must begin with an alphabetic or national character.

Default: None. A value must be specified.

WORKQ({PURGE|DRAIN})
A parameter that specifies whether a class work queue is to be drained or purged when the work
class is deleted.

When you specify PURGE on the WORKQ keyword, all work that is queued up for this class is
rejected. An error message is returned to the issuers of the ALLOCATE request.

However, work that is currently running is allowed to complete its processing.

ASCHPMxx

84 z/OS V1R4.0 MVS Initialization and Tuning Reference

When you specify DRAIN on the WORKQ keyword, new work for the class is rejected; however,
work that was assigned before the class was deleted is allowed to finish.

Value Range: PURGE or DRAIN

Default: DRAIN.

OPTIONS
The OPTIONS statement defines class options for the APPC transaction scheduler. Options include
naming a default class to be used when a TP profile does not specify a class, and naming a
subsystem to which transaction initiators are assigned.

You can modify these options by overriding a previous OPTIONS statement with another OPTIONS
statement that changes parameter values to be modified. When more than one OPTIONS statement
exists, the most recently processed parameter values are in effect.

DEFAULT(classname)
An optional parameter that specifies the default class of transaction initiators in which to run a TP
when a class name is not specified in a TP profile.

If the TP profile does not specify a class name, and there is no default defined by this parameter,
the request to run the TP is denied. If the DEFAULT parameter names a class that does not exist,
an error message is displayed on the console.

To delete the previously specified default class, specify a null value for DEFAULT. The format for a
null value is: DEFAULT()

Value Range: Null or a one- to eight-byte character string of uppercase letters A through Z,
numerals 0-9, national characters (@, $, #) and must begin with an alphabetic or national
character.

Default: None.

SUBSYS(ssname)
An optional parameter that specifies the name of the subsystem under which all newly created
APPC/MVS transaction initiators are started. This value applies to all defined classes of
transaction initiators.

If you specify a JES subsystem, it must be defined to the system in an IEFSSNxx parmlib
member.

When running APPC transaction programs that do not require JES services (such as SYSOUT
processing), you can specify SUBSYS(MSTR). Also, if you are using a version of JES2 lower than
4.2.0, or a version of JES3 lower than 4.2.1., specify SUBSYS(MSTR) because APPC/MVS does
not support JES services at these lower levels.

To delete the previously specified subsystem, specify a null value for SUBSYS. The format for a
null value is: SUBSYS()

Value Range: Null or one- to four-characters. The name must begin with an alphabetic or national
character (@, $, #), and the remaining characters (if any) can be alphanumeric or national.

Default: Primary JES subsystem.

TPDEFAULT
The TPDEFAULT statement supplies default information when it is missing from the scheduler JCL
section of a TP profile scheduled by the APPC/MVS transaction scheduler. Defaults include the region
size of the TP, time limit for running the TP, the level of messages to appear in the message log, and
the output class for TP SYSOUT.

You can modify defaults by overriding a previous TPDEFAULT statement with another TPDEFAULT
that changes parameter values to be modified. When more than one TPDEFAULT statement exists,
the most recently processed parameter values are in effect.

ASCHPMxx

Chapter 6. ASCHPMxx (APPC/MVS transaction scheduler) 85

REGION({nnnnK|nnnnM})
An optional parameter that specifies the default region size assigned to TP profiles that do not
specify a region size.

Value Range: 0K - 9999K or 0M - 2047M

Default: 2M

TIME(NOLIMIT|mmmm[,ss])
An optional parameter that specifies the default step time limit assigned to TPs that do not specify
a time limit. The time limit is of the following format:
TIME(minutes,seconds) or TIME(NOLIMIT) or TIME(minutes) or
TIME(,seconds)

When time is in minutes only, do not include the comma. When time is in seconds only, include
the comma before the seconds. TIME(NOLIMIT) is equivalent to TIME(1440).

Value Range:
minutes: 1 - 1440
seconds: 1 - 59
NOLIMIT

Default: TIME(1440)

MSGLEVEL(1,n)
An optional parameter that specifies the level of messages generated for TPs that do not specify
MSGLEVEL in the form MSGLEVEL(1,n). This MSGLEVEL is similar to the JCL MSGLEVEL
parameter, but it behaves differently in APPC/MVS. TP profile JCL is processed in two phases,
which are reflected in the two sub-parameters (1,n).

The first sub-parameter 1 controls the listing of statements, procedure statements, and substitution
JCL messages, which occur during TP profile add and modify processing. These statements and
messages are listed in the APPC administration utility output file (SYSPRINT). The value for this
parameter must be 1.

The second sub-parameter n controls the generation of messages that occur when the TP profile
is accessed to run a TP. If you specify 0 for this sub-parameter, allocation/termination messages
are generated only if the TP abnormally terminates. If you specify 1 for this sub-parameter,
allocation/termination messages are always generated.

This sub-parameter works in conjunction with the KEEP_MESSAGE_LOG parameter of the TP
profile. Messages are generated according to the MSGLEVEL parameters and are written to the
TP message log according to the KEEP_MESSAGE_LOG parameter. If the value of
KEEP_MESSAGE_LOG is error and MSGLEVEL is (1,0) or (1,1), messages are written to the log
on error. If the value of KEEP_MESSAGE_LOG is always and MSGLEVEL is (1,1), messages are
always written to the TP message log. (Note when KEEP_MESSAGE_LOG is always and
MSGLEVEL is (1,0), allocation/termination messages are generated only when the TP abnormally
terminates.) If the value of KEEP_MESSAGE_LOG is never, no messages are written regardless
of the value of MSGLEVEL.

The value for the first sub-parameter must be 1, which results in the following format:

MSGLEVEL=(1,messages)

Value Range for messages:
(0) Allocation/termination messages are generated only if the TP abnormally terminates.
(1) Allocation/termination messages are always generated.

Default: MSGLEVEL(1,0)

ASCHPMxx

86 z/OS V1R4.0 MVS Initialization and Tuning Reference

OUTCLASS(n)
An optional parameter that specifies the default value for MSGCLASS when MSGCLASS is not
specified on the JOB statement in the TP profile.

Note: In APPC/MVS, MSGCLASS does not assign the output class for a job log (TP message
log). However, MSGCLASS can have an effect on SYSOUT processing. For more
information, see the MSGCLASS keyword in z/OS MVS JCL Reference.

Value Range: A - Z, 0 - 9

Default: A

ASCHPMxx

Chapter 6. ASCHPMxx (APPC/MVS transaction scheduler) 87

ASCHPMxx

88 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 7. BLSCECT (Formatting exits for dump and trace
analysis)

The BLSCECT member specifies, through embedded parmlib members, the names of IBM-supplied exit
routines. The routines analyze and format dump and trace data. While analyzing a dump or trace, you can
enter interactive problem control system (IPCS) subcommands to run the routines.

IPCS accesses the BLSCECT parmlib member through the IPCSPARM DD statement. If you allocate
FILE(IPCSPARM), IPCS uses this data set for BLSCECT and the embedded parmlib members. If
IPCSPARM is not allocated and IPCS is running on a level of OS/390 that supports parmlib concatenation
(OS/390 R2 or later), the current concatenation is allocated, used, and then freed. If IPCS is running on a
level of OS/390 that does not support parmlib concatenation (pre-OS/390 R2), SYS1.PARMLIB contains
BLSCECT and all parmlib members embedded in BLSCECT.

See “PARMLIB” on page 462 for information on parmlib concatenation.

For information on IPCS, see:
v z/OS MVS IPCS User’s Guide for information on using IPCS
v z/OS MVS IPCS Commands for the IPCS commands and subcommands
v z/OS MVS IPCS Customization for information on formatting exits

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax rules for BLSCECT
IPCS processes each statement as one or more lines of TSO/E Command Language. See z/OS TSO/E
Command Reference and z/OS TSO/E User’s Guide.

Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

IBM-supplied default for BLSCECT
The default member is BLSCECT. When the system reads BLSCECT, it processes the parmlib members
specified on IMBED statements in the order in which the statements appear.

The IBM-supplied BLSCECT member contains an IMBED statement for the BLSCECTX parmlib member.
BLSCECTX contains formatting exit routines for IBM components other than the MVS base control
program.

Statements/parameters for BLSCECT
The statements and parameters used in BLSCECT and in the parmlib members embedded by its IMBED
statements are described for the BLSCUSER parmlib member; see “Statements/parameters for
BLSCUSER, BLSCECT, and embedded parmlib members” on page 93.

IBM recommends that:
v You use the IBM-supplied BLSCECT without changing it or adding to it.
v You use the IBM-supplied BLSCECTX without changing it or adding to it.
v You specify your customization in BLSCUSER.

In this way, you can upgrade to a new release without having to move your customization from the old
BLSCECT to the new BLSCECT and without changing BLSCECTX.

© Copyright IBM Corp. 1991, 2002 89

The IMBED statements in the IBM-supplied BLSCECT and BLXCECTX members are required.

90 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 8. BLSCUSER (Installation customization for dump
and trace analysis)

The BLSCUSER member contains installation-supplied customization to the interactive problem control
system (IPCS). For example, it can contain:

v The name of an installation-supplied routine to analyze a data area or structure.

v Specification of an installation-supplied analysis dialog to be added to the IPCS dialog.

v The name of an installation-supplied exit routine that can analyze and format dump or trace data.

v The name of an installation-supplied parmlib member to be embedded.

v Specification of a message.

v The definition of an installation-supplied input or help panel to be added to the IPCS dialog.

v The definition of a special symbol.

v The name of the sysplex dump directory, if the default of SYS1.DDIR is not used.

v A TSO/E command or CLIST to be run when the parmlib member is being activated.

During system initialization, the BLSCUSER member supplies guidance on formatting support for SNAP
and ABEND dumps formatted by the system at the time of error. During system initialization it also
supplies the name of the sysplex dump directory to be used by SDUMP to log unformatted system dumps.
ENVIRONMENT options on various statements permit filtering of information, for example, whether
environments that exploit freeway architecture are supported.

During initialization of an IPCS session, the BLSCUSER member supplies guidance for a broad range of
analysis and formatting actions that may take place during that session. ENVIRONMENT options here
permit filtering of information only intended for use by SNAP. During initialization of a session, IPCS does
not know it whether it will need to analyze dumps of systems running in ESA mode, z/Architecture mode,
or both. As a result, BLSCUSER processes information needed to handle dumps from both modes.

The BLSCUSER member must be in the same parmlib as the BLSCECT member. See Chapter 7,
“BLSCECT (Formatting exits for dump and trace analysis)” on page 89 for more information.

The statements in BLSCUSER, BLSCECT, and embedded parmlib members generate standard IPCS
return codes. These codes can be tested by CLISTs. Any serious or terminating error in processing any of
the statements will prevent the system from using the parmlib data for a SNAP or ABEND dump and will
cause an IPCS session to be abnormally ended.

For information on IPCS, see:
v z/OS MVS IPCS User’s Guide for information on using IPCS
v z/OS MVS IPCS Commands for the IPCS commands and subcommands
v z/OS MVS IPCS Customization for information on formatting exits

Parameter in IEASYSxx (or issued by the operator):
None.

Syntax rules for BLSCUSER
IPCS processes each statement as a line of TSO/E Command Language. See z/OS TSO/E Command
Reference and z/OS TSO/E User’s Guide.
v All statements are optional.
v BLSCUSER can contain all statements, except SYSDDIR, more than once.

© Copyright IBM Corp. 1991, 2002 91

|
|
|
|
|

|
|
|
|
|

Syntax format of BLSCUSER

CTRACE COMPONENT(component-name)
FORMATTABLE(table-epname)

ENVIRONMENT(ALL|{ESAME|ZARCHITECTURE}|ESA)
DATA {AREA(namelist) }

{STRUCTURE(namelist) }

[FIND(epname)]

[FORMAT(name[,level])]

[GROUP(groupname)]

[MODEL(modelname)]
[SCAN(scanname[,level])]
[ENVIRONMENT(ALL)]
[ENVIRONMENT([IPCS|SNAP]] [{ESAME|ZARCHITECTURE}|ESA])]

DIALOG NAME(dialogname)

[ABSTRACT(’text’)]

[PARM(’text’)]

[ENVIRONMENT([{ESAME|ZARCHITECTURE}|ESA])]
END
EXIT EP(pgmname[,level])

[ANALYZE]

[ASCB]

[CBSTAT(name)]

[FORMAT(name)]

[TCB]

[VERB(name)]

[ABSTRACT(’text’)]

[AMASK(X’00FFFFFF’ | X’7FFFFFFF’)]

[ENVIRONMENT(ALL)]
[ENVIRONMENT([IPCS|SNAP] [{ESAME|ZARCHITECTURE}|ESA])]

[HELP(name)]

[PARM(’text’)]

IMBED MEMBER(membername)

[REQUIRED]

[ENVIRONMENT(IPCS | SNAP | ALL)]

NOTE [’text’]

BLSCUSER

92 z/OS V1R4.0 MVS Initialization and Tuning Reference

[CAPS | ASIS]

[PAGE | NOPAGE]

[SPACE[(count)] | NOSPACE | OVERTYPE]

[TOC([indentation | 1] [toc-text]) | NOTOC]

[FLAG(severity)]

[PRINT | NOPRINT]

[TERMINAL | NOTERMINAL]

[TEST | NOTEST]

PANDEF SUBCOMD(CTRACE)

[COMPONENT(component name)]

{INPUT(panel name) }
{HELP(panel name) }
[ENVIRONMENT(ALL | {ESAME|ZARCHITECTURE} | ESA)]

SYMBOL [PREFIX(prefixname)]

[SUFFIX(suffix)]

[NAME(name)]

[AREA(name)]
[STRUCTURE(name)]
[ENVIRONMENT([{ESAME|ZARCHITECTURE} | ESA])

SYSDDIR dsname
[ENVIRONMENT([{ESAME|ZARCHITECTURE} | ESA])

TSO [[[%]clistnm | [%]

rexxnm | tsocmd] [operands]]

IBM-supplied default for BLSCUSER
None.

Statements/parameters for BLSCUSER, BLSCECT, and embedded
parmlib members

Note: These statements and their parameters can be used in the BLSCUSER member, the BLSCECT
member, and all parmlib members embedded in these members.

CTRACE statement
Enables components to collect CTRACE data without necessarily registering, get the data into an
unformatted dump, and have the IPCS subcommand “CTRACE COMP(component-name)...” accepted
to locate the component’s CTRACE data in a dump.

COMPONENT(component-name)
Specifies the name of the component.

FORMATTABLE(table-epname)
Specifies the entry point of the format table containing the component-supplied find routine.

BLSCUSER

Chapter 8. BLSCUSER (Installation customization for dump and trace analysis) 93

ENVIRONMENT(ALL)
ENVIRONMENT({ESAME|ZARCHITECTURE})
ENVIRONMENT(ESA)

Specifies that IPCS should support the data type in environments that exploit freeway architecture
and those that do not.

DATA statement
Associates specific types of areas or structures with an exit routine, a model, or a group of areas or
structures. Use one DATA statement for each type of data specification. For information about the exit
routines, see z/OS MVS IPCS Customization.

AREA(namelist)
STRUCTURE(namelist)

Identifies one or more names of areas or structures. Each name in the namelist is 1 to 31
alphanumeric characters and must begin with an EBCDIC letter (A-Z) or national character ($, #,
@). Lowercase alphabetic characters are accepted and treated as uppercase. Separate names
with blanks or commas, or in other ways used in TSO/E commands.

FIND(epname)
Specifies the name of the entry point in a find exit routine that is used to locate the data types
within this group. (See the description of the GROUP parameter.) See the find exit routine in z/OS
MVS IPCS Customization.

The epname is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

FORMAT(name[,level])
Specifies the name of the control block formatter exit routine to be used to format the data types
within this group. See the control block formatter exit routine in z/OS MVS IPCS Customization.

The name is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

The level is a function systems mode ID (FMID), which indicates a version and release of the MVS
system and which associates the formatter with that level application programming interface (API)
support. The level option may be specified as one of the following values:

v JBB2125 indicates that the formatter expects the structure that it formats will reside in 31-bit
virtual or real storage, storage that can be described without the use of BLSRESSY structures.

v HBB3310 indicates that the formatter expects the structure that it formats will reside in 31-bit
storage. The description may be provided by one or more 31-bit BLSRESSY structures or using
the JBB2125 API.

v HBB7703 indicates that the formatter expects the structure that it formats will reside in 64-bit
storage. The description may be provided by one or more 31-bit or 64-bit BLSRESSY structures
or using the JBB2125 API.

Default: HBB3310

GROUP(groupname)
Specifies the name of a control block group, such as RBs and UCBs. Pointers in other control
blocks (such as TCBs) may address one of these blocks, and IPCS may need to record the
existence of the block in the dump directory before it is determined whether the block is, in fact, a
PRB instead of another type of RB or a UCBTAPE instead of another type of UCB.

The groupname specifies the type of control blocks to be associated with each type of data being
defined by this DATA statement. Do not reference an area or structure as a groupname if the
AREA or STRUCTURE parameter references another group data type. If an attempt is made to
establish such a relationship, IPCS will detect an error, and the group data type associated with
the explicitly-referenced group will be used instead.

BLSCUSER

94 z/OS V1R4.0 MVS Initialization and Tuning Reference

The groupname is 1 to 31 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

MODEL(modelname)
Specifies a model to format data types within this group. See format models in z/OS MVS IPCS
Customization.

The modelname is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

SCAN(scanname[,level])
Specifies the name of a scan routine that is to verify each instance of a data type in this group.
See the scan exit routine in z/OS MVS IPCS Customization.

The scanname is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

The level is a function systems mode ID (FMID), which indicates a version and release of the
MVS. The level option may be specified as one of the following values:

v Omission of level indicates that the scan routine expects the structure that it scans will reside in
31-bit storage. The description will be provided to the scan routine by a 31-bit BLSRSASY
structure, and the results of the scan should be returned in that format.

v HBB7703 indicates that the scan routine expects the structure that it scans will reside in 64-bit
storage. The description will be provided to the scan routine by a 64-bit BLSRSASY structure,
and the result of the scan should be returned in that format.

Note: The BLSRSASY structure passed to a scan routine contains a field that indicates
whether it is in 31-bit or 64-bit format. If a scan routine needs to be written for use with
the HBB7703 API as well as the earlier API, it can use this information to determine the
format of the BLSRSASY structure.

ENVIRONMENT(ALL)
ENVIRONMENT(IPCS)
ENVIRONMENT(SNAP)
ENVIRONMENT({ESAME|ZARCHITECTURE})
ENVIRONMENT(ESA)

Specifies that IPCS should support the data type in IPCS and SNAP environments and in
environments that exploit freeway architecture and those that do not.

Default Value: ALL

DIALOG statement
Specifies an analysis dialog that a user may select from the IPCS MVS Dump Component Data
Analysis panel of the IPCS dialog. See option 2.6 in the z/OS MVS IPCS User’s Guide.

NAME(dialogname)
Specifies the name for the analysis dialog.

The dialogname is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase. Each dialogname must be unique. It must not duplicate another dialog name on a
DIALOG statement or a verb name on an EXIT statement specified in BLSCECT and its
embedded parmlib members.

ABSTRACT(‘ text’)
Specifies text to appear on the IPCS MVS Dump Component Data Analysis panel. The text
describes the analysis dialog processing.

BLSCUSER

Chapter 8. BLSCUSER (Installation customization for dump and trace analysis) 95

The format of the line displayed on the panel is:
dialogname - text

The text is 1 to 60 alphabetic characters and must be enclosed in single quotes. Uppercase and
lowercase letters are accepted; both cases are shown on the panel.

PARM(‘ text’)
Specifies data to be passed to the ISPF SELECT service when the analysis dialog is active.

The text is 1 to 32,767 alphanumeric characters and must be enclosed in single quotes.
Lowercase alphabetic characters are accepted and treated as uppercase.

ENVIRONMENT({ESAME|ZARCHITECTURE})
ENVIRONMENT(ESA)

Specifies that IPCS naming conventions for symbols should apply in environments that exploit
freeway architecture and those that do not.

END statement
Ends processing of an embedded parmlib member. Any statement following an END statement in an
embedded parmlib member is not processed. Processing of the member containing the IMBED
statement continues.

If a parmlib member contains a CLIST, the system considers the CLIST as part of the member. If a
CLIST generates an END statement, the CLIST generating the END statement, any other CLIST
invoked by the currently embedded member, and the currently embedded member are ended.

An END statement is useful to prevent processing of a block of statements that you want IPCS to
ignore for the time being.

EXIT statement
Specifies an exit routine. The user can invoke the exit routine during IPCS processing by a
subcommand:
v By an ANALYZE subcommand if ANALYZE is specified
v By an ASCBEXIT subcommand if ASCB is specified
v By a CBSTAT STRUCTURE(name) subcommand if CBSTAT(name) is specified
v By a TCBEXIT subcommand if TCB is specified
v By a VERBEXIT verbname subcommand if VERB(verbname) is specified

The ABSTRACT, HELP, and PARM parameters tell IPCS how to make the component analysis from
your exit routine available through the IPCS dialog.

EP(pgmname[,level])
The pgmname option specifies the name of the entry point for the exit routine. The pgmname is 1
to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or national character ($,
#, @).

The level is a function systems mode ID (FMID), which indicates a version and level of the MVS
system. The level option pertains to CBSTAT and post-formatting exits and may be specified as
one of the following values:

v Omission of level indicates that the scan routine expects the structure of interest will reside in
31-bit storage. The description will be provided by a 31-bit structure.

v HBB7703 indicates that the routine expects the structure of interest will reside in 64-bit storage.
The description will be provided by a 64-bit structure.

Note: The structure passed contains a field that indicates whether it is in 31-bit or 64-bit format. If
a routine needs to be written for use with the HBB7703 API as well as the earlier API, it can
use this information to determine the format of the structure.

ANALYZE
Specifies that IPCS invoke the exit routine during contention analysis in response to an ANALYZE

BLSCUSER

96 z/OS V1R4.0 MVS Initialization and Tuning Reference

subcommand. The system invokes the ANALYZE exit routines in the order they are specified in
BLSCECT and its embedded parmlib members. See the ANALYZE exit routine in z/OS MVS IPCS
Customization.

If VERB(verbname) is also specified, the exit routine will also be invoked by the VERBEXIT
verbname subcommand. If ABSTRACT is also specified, the exit routine will also be invoked
through the IPCS MVS Dump Component Data Analysis panel of the IPCS dialog.

Example: EXIT EP(ISGDCONT) ANALYZE

The example exit routine analyzes GRS ENQ contention.

ASCB
Specifies that IPCS invoke the exit routine when an ASCBEXIT subcommand is entered. The
system invokes the ASCB exit routines in the order they are specified in BLSCECT and its
embedded parmlib members. See the ASCB exit routine in z/OS MVS IPCS Customization.

If VERB(verbname) is also specified, the exit routine will also be invoked by the VERBEXIT
verbname subcommand.

CBSTAT(name)
Specifies that IPCS invoke the exit routine when a CBSTAT STRUCTURE(name) subcommand is
entered and, for CBSTAT exit routines associated with units of work, when an ANALYZE
subcommand is entered for the unit of work. See the ANALYZE and CBSTAT exit routines in z/OS
MVS IPCS Customization.

The name is 1 to 31 alphanumeric characters and must begin with an EBCDIC letter (A-Z).
Lowercase alphabetic characters are accepted and treated as uppercase.

Example: EXIT EP(IEAVTRCA) CBSTAT(ASCB)

This example is for a RTM ASCB status exit.

FORMAT(name)
Specifies that IPCS invoke the exit routine when the following are entered:
v A SUMMARY subcommand
v A CBFORMAT subcommand with an EXIT parameter and a STRUCTURE(cbname) parameter.

See the post-formatting exit routine in z/OS MVS IPCS Customization.

For the SUMMARY subcommand, the system invokes the FORMAT exit routines in the order they
are specified in BLSCECT and its embedded parmlib members.

The name is 1 to 31 alphanumeric characters and must begin with an EBCDIC letter (A-Z).
Lowercase alphabetic characters are accepted and treated as uppercase.

TCB
Specifies that IPCS invoke the exit routine when a TCBEXIT subcommand is entered. The system
invokes the TCB exit routines in the order they are specified in BLSCECT and its embedded
parmlib members. See the TCB exit routine in z/OS MVS IPCS Customization.

If VERB(verbname) is also specified, the exit routine will also be invoked by the VERBEXIT
verbname subcommand.

Example: EXIT EP(IEAVG701) CBSTAT(TCB)

This example provides COMM TASK TCB exit for WTORs.

VERB(verbname)
Specifies that IPCS invoke the exit routine when a VERBEXIT verbname subcommand is entered.
See the verb exit routine in z/OS MVS IPCS Customization.

If ANALYZE, ASCB, or TCB is also specified, the exit routine will also be invoked by the
ANALYZE, ASCBEXIT, or TCBEXIT subcommand.

BLSCUSER

Chapter 8. BLSCUSER (Installation customization for dump and trace analysis) 97

The verbname is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase. Each verbname must be unique. It must not duplicate another verb name on an EXIT
statement or a dialog name on a DIALOG statement specified in BLSCECT and its embedded
parmlib members.

To specify more than one verbname for the same EP pgmname, code a separate EXIT statement
for each verbname.

Example: EXIT EP(IGVSFMAN) VERB(VLFDATA)

The example specifies a VERBEXIT VLFDATA subcommand, which will analyze VLF control
blocks.

ABSTRACT(‘ text’)
Specifies text to appear on the IPCS MVS Dump Component Data Analysis panel. The text
describes the exit routine processing. Specify this parameter when VERB is also specified.

The format of the line displayed on the panel is:
verbname - text

The text is 1 to 60 alphabetic characters and must be enclosed in single quotes. Uppercase and
lowercase letters are accepted; both cases are shown on the panel. If an exit routine is invoked by
multiple verb names, the first verb name associated with the exit in the parmlib member(s) is used
on the panel.

AMASK(X'00FFFFFF' | X'7FFFFFFF')
Specifies a logical AND mask. The exit routine uses the mask when it passes storage addresses
to the dump access service. Any TSO/E INTEGER specification equivalent to these values is
accepted. A TSO/E integer may be specified as decimal, hexadecimal, or binary. Hexadecimal is
recommended.

Example: EXIT EP(VTAMMAP) AMASK(X'00FFFFFF')

This example is for VTAM.

Default Value: X'7FFFFFFF'

ENVIRONMENT(ALL)
ENVIRONMENT(IPCS)
ENVIRONMENT(SNAP)
ENVIRONMENT({ESAME|ZARCHITECTURE})
ENVIRONMENT(ESA)

Specifies that IPCS should support the data type in IPCS and SNAP environments and in
environments that exploit freeway architecture and those that do not.

Default Value: ALL

HELP(name)
Specifies the name of the help panel that is to be displayed when a user enters a question mark in
the selection field of a exit selection panel in the IPCS dialog. The help panel should be an online
description of the content of the report generated by the exit routine. Specify this parameter when
ABSTRACT is also specified.

The name is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

PARM(‘ text’)
Specifies a parameter that IPCS is to pass to the exit routine when it is invoked from the IPCS
MVS Dump Component Data Analysis panel. Specify this parameter when ABSTRACT is also
specified.

BLSCUSER

98 z/OS V1R4.0 MVS Initialization and Tuning Reference

The text is 1 to 32,767 alphanumeric characters and must be enclosed in single quotes. Mixed
upper and lowercase alphabetic characters will be accepted and passed as is to the routine.

IMBED statement
Embeds other parmlib members. The embedded parmlib members can embed additional parmlib
members.

MEMBER(membername)
Specifies the name of the parmlib member that IPCS should process before the processing of the
current parmlib member is resumed.

The membername is 1 to 8 alphanumeric characters and must begin with an EBCDIC letter (A-Z)
or national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

REQUIRED
Specifies that IPCS treat a failure to locate the parmlib member as an error. If you omit the
REQUIRED parameter, IPCS accepts failure to locate the member and issues no messages.

ENVIRONMENT(IPCS)
ENVIRONMENT(SNAP)
ENVIRONMENT(ALL)

Specifies that IPCS should support exit routines in the parmlib members in an IPCS or SNAP
environment or in both. For an ABEND or SNAP dump to be processed correctly, specify ALL.

Default Value: IPCS

NOTE statement
Transmits messages to the terminal, to FILE(IPCSPRNT), or to both. The statement is a problem
determination aid for construction and maintenance of parmlib members that are embedded in
BLSCECT and in members embedded in BLSCECT.

NOTE statement syntax is identical to the syntax of the IPCS NOTE subcommand.

PANDEF statement
Specifies an input panel or help panel that is to be displayed in the IPCS dialog.

In the parameters on the PANDEF statement, each name is 1 to 8 alphanumeric characters and must
begin with an EBCDIC letter (A-Z) or national character ($, #, @). Lowercase alphabetic characters
are accepted and treated as uppercase.

SUBCOMD(CTRACE)
Specifies the name of the IPCS subcommand with which the panel is to be associated; only the
CTRACE subcommand supports the PANDEF statement.

COMPONENT(component name)
Specifies the name of the component that defines the options to be captured (input panel) or
explained (help panel).

INPUT(panel name)
Specifies the name of the input panel used to obtain user specifications of component-specific
options.

HELP(panel name)
Specifies the name of the help panel displayed to describe component-specific options to the user.

ENVIRONMENT(ALL)
ENVIRONMENT({ESAME|ZARCHITECTURE})
ENVIRONMENT(ESA)

Specifies that IPCS should support the data type in environments that exploit freeway architecture
and those that do not.

SYMBOL statement
Defines a group of special symbols to IPCS.

BLSCUSER

Chapter 8. BLSCUSER (Installation customization for dump and trace analysis) 99

PREFIX(prefixname)
Specifies the initial characters, prefixname, for a group of special symbols, such as ASCBnnnnn,
TCBnnnnnaaaaa, UCBxxxx, or ASTnnnnn.

The prefixname is 1 to 30 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are treated as uppercase. The
number of characters allowed in the prefixname depends on the associated suffix:

SUFFIX Value Maximum Prefix Length
COUNT0 1 to 26 characters
COUNT1 1 to 26 characters

COUNT1NAME 1 to 25 characters
CPU 1 to 29 characters

DUALCOUNT 1 to 21 characters
NAME No longer than 31 characters minus

the length of the prefix
UNIT 1 to 27 characters

SUFFIX(suffix)
Specifies the syntax requirements for the final characters for a group of special symbols. The
values for the suffix are:

COUNT0
Specifies a decimal suffix of 0 - 99999. An example is the suffix of 0 in the symbol AST0.

COUNT1
Specifies a decimal suffix of 1 - 99999. Some examples are the suffixes of 5 in the symbol
ASCB5 and of 534 in ASXB534.

COUNT1NAME
Specifies a suffix of a decimal number of 1 - 99999 plus a name. The name consists of
alphanumeric characters and must begin with an EBCDIC letter (A-Z) or national character ($,
@, #). An example is the suffix of 75PSFA in the symbol WTRFSCB75PSFA.

CPU
Specifies a suffix of a decimal number of 0 - 99. Some examples are the suffixes of 0 in the
symbol LCCA0, of 15 in PCCA15, and of 7 in PSA7.

DUALCOUNT
Specifies a suffix of 2 numbers:

v First, a decimal number of 1 - 99999

v Second, a number of 1 - 5 EBCDIC letters (A-Z), which is a base-26 value in which leading
A’s may be omitted.

Some examples are the suffixes of 34C in the symbol JSABA34C, of 1A in PGT1A, and of 5F
in TCB75F.

NAME
Specifies a suffix that is a name. The name consists of 1 or more alphanumeric characters
and must begin with an EBCDIC letter (A-Z) or national character ($, @, #). An example is the
suffix of ABC in the symbol JOBABC.

UNIT
Specifies a suffix of a hexadecimal number of 0 - 65535 and is intended to be a device
number. An example is the suffix of 1D0 in the symbol UCB01D0.

NAME(name)
Specifies the complete name of the symbol. The name is 1 to 30 alphanumeric characters and
must begin with an EBCDIC letter (A-Z) or national character ($, @, #). Lowercase alphabetic
characters are accepted and treated as uppercase.

BLSCUSER

100 z/OS V1R4.0 MVS Initialization and Tuning Reference

Examples are: CVT, GDA, or PRIVATE.

AREA(name)
STRUCTURE(name)

Specifies the data type for the symbol.

The name is 1 to 31 alphanumeric characters and must begin with an EBCDIC letter (A-Z) or
national character ($, #, @). Lowercase alphabetic characters are accepted and treated as
uppercase.

This parameter allows an IPCS user to enter a shortened version of a command. For example, an
IPCS user can enter:
list cvt

This subcommand is the same as:
list cvt structure(cvt)

ENVIRONMENT({ESAME|ZARCHITECTURE})
ENVIRONMENT(ESA)

Specifies that IPCS name conventions for symbols should apply in environments that exploit
freeway architecture and those that do not.

SYSDDIR dsname statement
Identifies the name of the data set for the sysplex dump directory.

The dsname must be fully qualified. The name can be specified with or without apostrophes enclosing
it.

Default: SYS1.DDIR

ENVIRONMENT({ESAME|ZARCHITECTURE})
ENVIRONMENT(ESA)

Specifies that the same sysplex dump directory is used by systems that exploit freeway
architecture and those that do not.

TSO command statement
Invokes a TSO/E command, CLIST, or REXX exec during the processing of the parmlib member. TSO
statement syntax is identical to the syntax of the IPCS TSO subcommand.

Use the TSO statement when the TSO/E command, CLIST name, or REXX exec name duplicates the
name of a BLSCUSER statement. A TSO/E command with a name that does not duplicate a
BLSCUSER statement name can be specified without TSO before it.

A CLIST that generates BLSCUSER statements can also be specified in the parmlib member; place a
percent sign (%) before the CLIST name.

TSO/E commands and REXX execs may use the TSO/E stack to leave BLSCUSER statements for
processing after the command or exec ends processing.

BLSCUSER

Chapter 8. BLSCUSER (Installation customization for dump and trace analysis) 101

BLSCUSER

102 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 9. BPXPRMxx (z/OS UNIX System Services
parameters)

BPXPRMxx contains the parameters that control the z/OS UNIX System Services (z/OS UNIX)
environment and the file systems. IBM recommends that you have two BPXPRMxx parmlib members, one
defining the values to be used for system setup and the other defining the file systems. This makes it
easier to migrate from one release to another, especially when using the ServerPac method of installation.

To specify which BPXPRMxx parmlib member to start with, the operator can include OMVS=xx in the reply
to the IPL message or OMVS=xx in the IEASYSxx parmlib member. The two alphanumeric characters,
represented by xx, are appended to BPXPRM to form the name of the BPXPRMxx parmlib member.

If OMVS=xx is not specified in the reply to the IPL message or is not in the IEASYSxx member, or if
OMVS=DEFAULT is specified, defaults are used for each parameter and the kernel services are started in
minimum mode. For more information about running in minimum mode and full function mode, see z/OS
UNIX System Services Planning. If the operator specifies OMVS=xx in the IPL reply to the message, it
overrides the OMVS=xx specified in IEASYSxx.

Note: The START OMVS,OMVS=xx command is not valid when issued from the command console.
OMVS=xx is not valid in parmlib COMMNDxx.

You can use multiple parmlib members to start OMVS. This is shown by the following reply to the IPL
message:
R 0,CLPA,SYSP=R3,LNK=(R3,R2,L),OMVS=(AA,BB,CC)

The parmlib member BPXPRMCC would be processed first, followed by and overridden by BPXPRMBB,
followed by and overridden by BPXPRMAA. This means that any parameter in BPXPRMAA has
precedence over the same parameter in BPXPMRBB and BPXPRMCC.

For example, if you specify MAXFILESIZE in all three parmlib members, the value MAXFILESIZE in
BPXPRMAA will be the value used to start kernel services.

You can also specify multiple BPXPRMxx parmlib members using the OMVS keyword in IEASYSxx. For
example:
OMVS=(AA,BB,CC)

If MOUNT statements are specified in each parmlib member, the files are mounted in the following order:
BPXPRMAA, BPXPRMBB, and BPXPRMCC.

To modify BPXPRMxx parmlib settings without re-IPLing, you can use the SETOMVS operator command,
or you can dynamically change the BPXPRMxx parmlib members that are in effect by using the the SET
OMVS operator command. See “Dynamically Changing the BPXPRMxx Values” in z/OS UNIX System
Services Planning for more information. See z/OS MVS System Commands for more information about the
SETOMVS and SET OMVS commands.

Syntax rules for BPXPRMxx
When customizing BPXPRMxx, the following rules apply:

v Statements that contain limiting keywords (like MAXUIDS, which limits the number of concurrent z/OS
UNIX users), should not be duplicated in the same BPXPRMxx member. You can have duplicates of
limiting keywords across BPXPRMxx members, but only the last occurrence is used. Resource defining
keywords (like MOUNT, which specifies a file system that z/OS UNIX is to logically mount onto the root

© Copyright IBM Corp. 1991, 2002 103

|
|
|
|

file system or another file system) are cumulative. Resource defining keywords can be duplicated in the
same BPXPRMxx member. Each time you specify a resource defining keyword, its value is added to the
previous values.

v If a statement that has a default is omitted, the default is used.

v Use columns 1 through 71 for data; columns 72 through 80 are ignored.

v Enter one or more statements on a line, or use several lines for one statement.

v Use blanks as delimiters. Multiple blanks are interpreted as a single blank. Blanks are allowed between
parameters and values; for example, MAXPROCSYS(500) and MAXPROCSYS (500) are allowed and
have the same meaning.

v Comments may appear in columns 1-71 and must begin with “/*“ and end with “*/“.

v Enter values in uppercase, lowercase, or mixed case. The system converts the input to uppercase,
except for values enclosed in single quotes, which are processed without changing the case.

v Values that require single quotes and that are the only ones allowed to be in single quotes are:
– STEPLIBLIST
– USERIDALIASTABLE
– FILESYSTEM in the ROOT and MOUNT statements
– MOUNTPOINT in the MOUNT statement
– PARM in the FILESYSTYPE, ROOT, MOUNT, and SUBFILESYSTYPE statements
– RUNOPTS
– VERSION
– AUTHPGMLIST

v Enclose values in single quotes, using the following rules:

– Two single quotes next to each other on the same line are considered as a single quote. For
example, John’’s file is considered to be John’s file. One quote in column 71 and another in
column 1 of the next line are not considered as a single quote. This input is treated as two strings or
an error.

– Because some values can be up to 1023 characters, a value can require multiple lines. Place one
quote at the beginning of the value, stop the value in column 72 of each line, continue the value in
column 1 of the next line, and complete the value with one quote. For example:
column column
1 71
| |

MOUNT FILESYSTEM(’HFS.WORKDS’) MOUNTPOINT(’/u/john/namedir1/namedir2
/namedir3/namedir4’) TYPE(HFS) MODE(RDWR)

Syntax of BPXPRMxx
{AUTOCVT(ON|OFF)}

{MAXPROCSYS(nnnnn)}

{MAXPROCUSER(nnnnn)}

{MAXUIDS(nnnnn)}

{MAXFILEPROC(nnnnn)}

{MAXTHREADTASKS(nnnnn)}

{MAXTHREADS(nnnnnn)}

{MAXPTYS(nnnnn)}

{MAXFILESIZE(nnnnn|NOLIMIT)}

{MAXCORESIZE(nnnnn)}

BPXPRMxx

104 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|

|

{MAXASSIZE(nnnnn)}

{MAXCPUTIME(nnnnn)}

{MAXMMAPAREA(nnnnn)}

{MAXSHAREPAGES(nnnnn)}

{RESOLVER_PROC(nnnnn|DEFAULT|NONE)}

{SHRLIBRGNSIZE(nnnnn)}

{SHRLIBMAXPAGES(nnnnn)}

{PRIORITYPG(n1,n2,...n40|NONE)}

{PRIORITYGOAL(service_class_name1,...service_class_name40|NONE)}

{IPCMSGNIDS(nnnnn)}

{IPCMSGQBYTES(nnnnn)}

{IPCMSGQMNUM(nnnnn)}

{IPCSEMNIDS(nnnnn)}

{IPCSEMNOPS(nnnnn)}

{IPCSEMNSEMS(nnnnn)}

{IPCSHMMPAGES(nnnnn)}

{IPCSHMNIDS(nnnnn)}

{IPCSHMNSEGS(nnnnn)}

{IPCSHMSPAGES(nnnnn)}

{FORKCOPY(COW|COPY)}

{SUPERUSER(user_name)}

{TTYGROUP(group_name)}

{CTRACE(parmlib_member_name)}

{STEPLIBLIST(’/etc/steplib’)}

{USERIDALIASTABLE(’/etc/tablename’)}

{FILESYSTYPE TYPE(type_name)
ENTRYPOINT(entry_name)
PARM(’parm’)}
ASNAME(proc_name,’start_parms’)

{SYSPLEX(YES|NO)}

{VERSION(’nnnn’)}

{ROOT FILESYSTEM(’fsname’) or DDNAME(ddname)
TYPE(type_name)
MODE(access)
PARM(’parameter’)
SETUID|NOSETUID
SYSNAME(sysname)
TAG(NOTEXT|TEXT,ccsid)}
AUTOMOVE|NOAUTOMOVE}

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 105

|

{MOUNT FILESYSTEM(’fsname’) or DDNAME(ddname)
TYPE(type_name)
MOUNTPOINT(’pathname’)
MODE(access)
PARM(’parameter’)
SETUID|NOSETUID
SECURITY|NOSECURITY
SYSNAME(sysname)
TAG(NOTEXT|TEXT,ccsid)}
AUTOMOVE[(INCLUDE|EXCLUDE,sysname1,sysname2,...,sysnameN)]
|NOAUTOMOVE|UNMOUNT}

{NETWORK DOMAINNAME(sockets_domain_name)
DOMAINNUMBER(sockets_domain_number)
MAXSOCKETS(nnnnn)
TYPE(type_name)
INADDRANYPORT(starting_port_number)
INADDRANYCOUNT(number_of_ports_to_reserve)}

{SUBFILESYSTYPE NAME(transport_name)
TYPE(type_name)
ENTRYPOINT(entry_name)
PARM(’parameter’)
DEFAULT}

{STARTUP_PROC(procname)}

{STARTUP_EXEC(’dsname(membername)’,class)}

{RUNOPTS(’string’)}

{SYSCALL_COUNTS(YES|NO)}

{MAXQUEUEDSIGS(nnnnnn)}
{LIMMSG(NONE|SYSTEM|ALL)}
{AUTHPGMLIST(’/etc/authfile’)|NONE}

BPXPRMxx

106 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

|

Syntax example of BPXPRMxx

AUTOCVT(OFF)
MAXPROCSYS(400)
MAXPROCUSER(16)
MAXUIDS(200)
MAXFILEPROC(20)
MAXTHREADTASKS(100)
MAXTHREADS(500)
MAXPTYS(100)
MAXFILESIZE(1000)
MAXCORESIZE(4194304)
MAXASSIZE(41943040)
MAXCPUTIME(1000)
MAXMMAPAREA(4096)
MAXSHAREPAGES(32768)
PRIORITYPG(7,7,7,7,7,6,5,999,3,2,1)
PRIORITYGOAL(CICS4,CICS4,CICS4,CICS3,CICS2,CICS1,TSO2,TSO1,BAT3,BAT2)
IPCMSGNIDS(500)
IPCMSGQBYTES(262144)
IPCMSGQMNUM(100000)
IPCSEMNIDS(500)
IPCSEMNOPS(25)
IPCSEMNSEMS(25)
IPCSHMMPAGES(256)
IPCSHMNIDS(500)
IPCSHMNSEGS(10)
IPCSHMSPAGES(262144)
FORKCOPY(COW)
SUPERUSER(BPXROOT)
TTYGROUP(TTY)
CTRACE(CTCBPX23)

STEBLIBLIST(’/etc/steplib’)
USERIDALIASTABLE(’/etc/tablename’)
SYSPLEX(YES)
VERSION(’REL9’)
FILESYSTYPE TYPE(HFS)

ENTRYPOINT(GFUAINIT)
PARM(’SYNCDEFAULT(0) FIXED(2) VIRTUAL(128)’)

ROOT FILESYSTEM(’OMVS.ROOT’)
TYPE(HFS)
MODE(RDWR)
SYSNAME(SY1)
TAG(NOTEXT,0)
AUTOMOVE

MOUNT FILESYSTEM(’OMVS.USER.JONES’)
TYPE(HFS)
MOUNTPOINT(’/u/jones’)
MODE(RDWR)
SYSNAME(SY1)
TAG(TEXT,1047)
AUTOMOVE(INCLUDE,SYS1,SYS2)

FILESYSTYPE TYPE(INET)
ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(2000)
TYPE(INET)

STARTUP_PROC(OMVS)
STARTUP_EXEC(’OMVS.ROOT(REXX01)’,A)
RUNOPTS(’RTLS(ON) LIBRARY(SYSCEE) VERSION(OS24)’)
SYSCALL_COUNTS(YES)
MAXQUEUEDSIGS(1000)
RESOLVER_PROC(DEFAULT)
AUTHPGMLIST(’/etc/authfile’)

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 107

|

|

|
|

|

IBM-supplied default for BPXPRMxx
There is no default BPXPRMxx parmlib member. A sample parmlib member BPXPRMXX is provided in
SYS1.SAMPLIB.

Statements and parameters for BPXPRMxx
For guidance information about selecting values for the statements, see the chapter on customizing z/OS
UNIX in z/OS UNIX System Services Planning.

AUTOCVT(ON|OFF)
Activates and deactivates automatic conversion of I/O data using coded character sets for the program
and its associated files.

The coded character set identifiers (CCSIDs) are specified by the program or by setting the
appropriate environment variables at run time. The system AUTOCVT indicator can be overridden by
individual programs at a thread level; AUTOCVT is a controlling switch only for existing programs that
do not explicitly establish their own conversion environment.

Default: OFF

You can use the SETOMVS or SET OMVS commands to change the value of AUTOCVT between ON
and OFF. Changing this conversion mode does not affect conversion of opened files for which I/O has
already started.

When AUTOCVT(ON) is set, every read and write operation for a file must be checked to see if
conversion is necessary. Thus, there is a performance penalty involved, even if no conversion occurs.
It is, therefore, preferable to keep AUTOCVT(OFF) and have each program enabled, if possible, for
conversion. To do this, set the compile or run time environment variables that control conversion or by
issuing fcntl().

Note: If you are using SYSPLEX(YES) and mixed releases of z/OS UNIX, you can IPL specifying
OMVS=(delta,common) for each unique release, where ″delta″ identifies the member containing
the new keywords for that release, and ″common″ identifies the common keywords for all
releases.

Automatic conversion can also be controlled individually by a program with one of the following flags in
the thread Thli control block (BPXYTHLI):
ThliCvtOn - Activates automatic conversion for this thread.
ThliCvtOff - Deactivates automatic conversion for this thread.

Both bits must not be on at the same time.

Automatic conversion is accomplished between programs and files that are tagged with different
CCSIDs when a conversion table exists for that CCSID pair in the system. CCSID values are defined
in Character Data Representation Architecture.

MAXPROCSYS(nnnnn)
Specifies the maximum number of processes that the system allows.

Value Range: nnnnn is a decimal value from 5 to 32767.

Default: 200

You can use the SETOMVS or SET OMVS command to dynamically increase or decrease the value of
MAXPROCSYS. To make a permanent change, edit the BPXPRMxx member that will be used for
IPLs.

BPXPRMxx

108 z/OS V1R4.0 MVS Initialization and Tuning Reference

If you are using SETOMVS or SET OMVS to change the value, the new value must be within a certain
range, or you will get an error message. The range that you can use has a minimum value of 5; the
maximum value is based on the following calculation:
MIN(32767,MAX(4096,3*initial value))

The initial value is the MAXPROCSYS value that was specified during BPXPRMxx initialization. You
cannot use a value less than 5. If you want to use a value greater than the current maximum (as
calculated by the formula) but lower than the initial maximum (32767), you will have to change the
value in BPXPRMxx and re-IPL. For an example of how to calculate the maximum value in the range,
see “Dynamically Changing Certain BPXPRMxx Parameter Values” in z/OS UNIX System Services
Planning.

For planning information, see MAXPROCSYS in z/OS UNIX System Services Planning.

MAXPROCUSER(nnnnn)
Specifies the maximum number of processes that a single z/OS UNIX user ID can have concurrently
active, regardless of how the processes were created. MAXPROCUSER is the same as the
CHILD_MAX variable in the POSIX standard.

A value of 25 is required for FIPS 151-2 compliance and a value of 16 is required for POSIX.1
(ISO/IEC 9945-1:1990[E] IEEE Std 1003.1-1990) standard compliance.

The number of processes is tracked by user ID (UID). When a user attempts to create a new process,
the limit value for the user (defined by either the user profile or the default OPTN value) is compared
to the value maintained for the user’s UID. If the user maximum is larger than the current process
count for the UID, the user can create another process. If not, the user is not allowed to create a new
process. For example, if user “A”, with a user-defined limit of 10, tries to create a process and the UID
limit is already 12, user “A” is not allowed to create the new process. Since only 12 processes are
currently created, user “B”, with a user-defined limit of 20, is allowed to create a new process.

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the
MAXPROCUSER values. To make a permanent change, edit the BPXPRMxx member that will be
used for IPLs.

For planning information, see MAXPROCUSER in z/OS UNIX System Services Planning.

Value Range: nnnnn is a decimal value from 3 to 32767.

Default: 25

MAXUIDS(nnnnn)
Specifies the maximum number of z/OS UNIX user IDs (UIDs) that can operate concurrently.

Value Range: nnnnn is a decimal value from 1 to 32767.

Default: 200

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the value of
MAXUIDS. To make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

For planning information, see MAXUIDS in z/OS UNIX System Services Planning.

MAXFILEPROC(nnnnn)
Specifies the maximum number of descriptors for files, sockets, directories, and any other file system
objects that a single process can have concurrently active or allocated. MAXFILEPROC is the same
as the OPEN_MAX variable in the POSIX standard.

Value Range: nnnnn is a decimal value from 3 to 65535.

Default: 2000

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the value of
MAXFILEPROC. To make a permanent change, edit the BPXPRMxx member that will be used for
IPLs.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 109

For planning information, see MAXFILEPROC in z/OS UNIX System Services Planning.

MAXTHREADTASKS(nnnnn)
Specifies the maximum number of MVS tasks that a single process can have concurrently active for
pthread_created threads.

Value Range: nnnnn is a decimal value from 0 to 32768.

Default: 1000

You can change the value of MAXTHREADTASKS dynamically using the SETOMVS or SET OMVS
command. To make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

For planning information, see MAXTHREADTASKS in z/OS UNIX System Services Planning.

MAXTHREADS(nnnnnn)
Specifies the maximum number of pthread_created threads, including running, queued, and exited but
undetached, that a single process can have concurrently active. Specifying a value of 0 prevents
applications from using pthread_create.

Value Range: nnnnnn is a decimal value from 0 to 100000.

Default: 200

You can change the value of MAXTHREADS dynamically using the SETOMVS or SET OMVS
command. To make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

For planning information, see MAXTHREADS in z/OS UNIX System Services Planning.

MAXPTYS(nnnnn)
Specifies the maximum number of pseudoterminals (pseudo-TTYs or PTYs) for the system.

Value Range: nnnnn is a decimal value from 1 to 10000.

Default: 800

You can use the SETOMVS or SET OMVS command to dynamically increase the value of MAXPTYS.
To make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

If you are using SETOMVS or SET OMVS to change the value, the new value must be within a certain
range. If it is outside the range, you will get an error message. To use a value that is outside this
range, you must change the MAXPTYS specification in BPXPRMxx and re-IPL. The range’s minimum
value is 1 and the maximum is based on the following calculation:
MIN(10000,MAX(256,2*initial value)

The initial value is the MAXPTYS value that was specified during BPXPRMxx initialization. For an
example of how to calculate the maximum value in the range, see “Dynamically Changing Certain
BPXPRMxx Parameter Values“ in z/OS UNIX System Services Planning.

For planning information, see MAXPTYS in z/OS UNIX System Services Planning.

MAXFILESIZE(nnnnn|NOLIMIT)
Specifies the RLIMIT_FSIZE soft and hard resource values that a process receives when it is
identified as a process. RLIMIT_FSIZE indicates the maximum file size (in 4KB increments) that a
process can create. It also specifies the limit when they are initiated by a daemon process using an
exec() after a setuid() . For more information about RLIMIT_FSIZE, see the description of setrlimit() in
z/OS UNIX System Services Programming: Assembler Callable Services Reference.

Value Range: nnnnn is a decimal value from a minimum of 0 to a maximum of greater than
2147483647 (2 gigabytes) in 4 kilobyte increments. If MAXFILESIZE is not specified or
MAXFILESIZE(NOLIMIT) is specified, there will be no limit to the size of files created, except for the
architectural limit of the system.

If you specify 0, the process does not create any files. Omitting this statement indicates an unlimited
file size.

BPXPRMxx

110 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default: 1000

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the value of
MAXFILESIZE. To make a permanent change, edit the BPXPRMxx member that will be used in IPLs.

MAXCORESIZE(nnnnn)
Specifies the RLIMIT_CORE soft and hard resource values that a process receives when it is
identified as a process. RLIMIT_CORE indicates the maximum core dump file size (in bytes) that a
process can create. It also specifies the limit when they are initiated by a daemon process using an
exec() after a setuid() . For more information about RLIMIT_CORE, see the description of setrlimit()
in z/OS UNIX System Services Programming: Assembler Callable Services Reference.

Value Range: nnnnn is a decimal value from 0 to 2147483647 (2 gigabytes).

Default: 4194304 (4 megabytes) Specifying a value of 2147483647 (2 gigabytes) indicates an
unlimited core file size.

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the value of
MAXCORESIZE. To make a permanent change, edit the BPXPRMxx member that will be used for
IPLs.

MAXASSIZE(nnnnn)
Specifies the RLIMIT_AS resource values that a process receives when it is identified as a process.
RLIMIT_AS indicates the address space region size. For more information about RLIMIT_AS, refer to
the description of setrlimit in z/OS UNIX System Services Programming: Assembler Callable Services
Reference.

The soft limit is obtained from MVS; if it is greater than the MAXASSIZE value, the soft limit is set to
the hard limit. This value is also used when processes are initiated by a daemon process using an
exec() after setuid() . In this case, both the RLIMIT_ AS hard and soft limit values are set to the
MAXASSIZE specified value.

When processes are initiated by a daemon process using an exec() after setuid() , this value is used.
Therefore, MAXASSIZE will be the region size for all processes created via rlogin or telnet. In this
case, both the RLIMIT_AS hard and soft limit values are set to the MAXASSIZE value.

A superuser can override this value by specifying a new region size in the spawn inheritance structure
on __spawn() . Or you can change the value of MAXASSIZE dynamically by using the SETOMVS or
SET OMVS command.This change only affects the new processes created after the change was
made.

Note: The IEFUSI user exit can modify the region size of an address space. Users are strongly
discouraged from altering the region size of address spaces in the OMVS subsystem category.

Value Range: nnnnn is a decimal value from 10485760 (10 megabytes) to 2147483647 (2 gigabytes).

Default: 209715200

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the value of
MAXASSIZE. To make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

For planning information, see MAXASSIZE in z/OS UNIX System Services Planning.

MAXCPUTIME(nnnnn)
Specifies the RLIMIT_CPU resource values that a process receives when it is identified as a process.
RLIMIT_CPU indicates the CPU time, in seconds, that a process can use. For more information about
RLIMIT_CPU, refer to the description of setrlimit() in z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 111

If the soft limit value from MVS is greater than the MAXCPUTIME value, the soft limit is set to the hard
limit. This value is also used when processes are initiated by a daemon process using an exec() after
setuid() . In this case, both the RLIMIT_CPU hard and soft limit values are set to the MAXCPUTIME
value.

A superuser can override this value by specifying a new time limit in the spawn inheritance structure
on __spawn() .

For processes running in or forked from TSO or BATCH, the MAXCPUTIME value has no effect. The
TIME limit is inherited from the parent. If a TIME parameter is specified on the JCL for the started
task, then that value is used. If not, then the TIME value is taken from the JES default TIME value.

For processes created by the rlogind command or other daemons, MAXCPUTIME is the time limit for
the address space.

Specifying a MAXCPUTIME or CPUTIMEMAX of 86400 seconds disables the JWT timeout the same
way that JCL TIME=1440 does.

Value Range: nnnnn is a decimal value from 7 to 2147483647 seconds.

Default: 1000

Use the SETOMVS or SET OMVS command to dynamically increase the value of MAXCPUTIME. To
make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

For planning information, see MAXCPUTIME in z/OS UNIX System Services Planning.

MAXMMAPAREA(nnnnn)
Specifies the maximum amount of data space storage space (in pages) that can be allocated for
memory mappings of HFS files. Storage is not allocated until the memory mapping is active.

Using memory map services causes a large amount of system memory to be consumed. For each
page (4KB) that is memory-mapped, 96 bytes of ESQA are consumed when a file is not shared with
any other users. When a file is shared by multiple users, each user after the first causes 32 bytes of
ESQA to be consumed for each shared page. Assuming that the default of 40960 pages is taken, and
assuming that no sharing is done by mmap() users, a maximum of 384KB of ESQA could be
consumed. The ESQA storage is consumed when the mmap() function is invoked rather than when
the page is accessed by the memory mapping application program.

If you have applications using the __MAP_MEGA option, you can map very large files without the
system overhead in ESQA. For more information, see “Extended System Queue Area (ESQA)” in z/OS
UNIX System Services Planning.

Value Range: nnnnn is a decimal value from 1 to 16777216.

Default: 40960

You can change the value of MAXMMAPAREA dynamically using the SETOMVS or SET OMVS
command. To make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

For planning information, see MAXMMAPAREA in z/OS UNIX System Services Planning.

MAXSHAREPAGES(nnnnn)
Specifies the maximum amount of shared system storage pages that can be used by z/OS UNIX
functions. The purpose of MAXSHAREPAGES is to limit the amount of ESQA storage necessary to
maintain the shared pages. For a detailed description of how MAXSHAREPAGES affects ESQA
usage, please refer to z/OS UNIX System Services Planning.

The usage of shared pages is helpful but not critical to the loading of user shared library modules,
ptrace and fork; it serves to increase performance but does not affect functionality. As the amount of
shared pages being used reaches certain limits, less functions are allowed to continue using them.
User shared library loads, ptrace and fork stop using shared pages when the limit reaches 60% (the

BPXPRMxx

112 z/OS V1R4.0 MVS Initialization and Tuning Reference

only time shared storage is used by the fork service is when FORKCOPY(COW) is specified), mmap
stops at 80%, and shmat, the most critical function, uses shared pages until their total capacity has
been reached.

Because each page of shared storage requires the associated consumption of extended system queue
area (ESQA) storage, limiting the shared storage usage provides a way to limit the ESQA usage by
z/OS UNIX users. If you use the __IPC_MEGA or __MAP_MEGA options, then the shared pages
limits are not affected because MEGA does not affect the system ESQA overhead.

Value Range: nnnnn is a decimal value from 0 to 32768000 specifying a number of 4K pages.

Default: 131072

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the
MAXSHAREPAGES value. To make a permanent change, edit the BPXPRMxx member that will be
used for IPLs.

SHRLIBRGNSIZE(nnnnn)
Specifies the maximum size of the shared library region for address spaces that load system shared
library modules. For these address spaces, the size specified is allocated from high private storage
and is used for the loading of system shared library modules. This storage is not allocated in an
address space until it loads a system shared library module. This parameter applies to modules loaded
from system shared libraries, which allocate storage on megabyte boundaries. Therefore, this storage
does not count against the MAXSHAREPAGES limit, and does not consume ESQA.

Value Range: nnnnn is a decimal value between 16777215 (16 megabytes) and 1610612735 (1.5
gigabytes).

Default: 67108863

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the
SHRLIBRGNSIZE value. To make a permanent change, edit the BPXPRMxx member that will be used
for IPLs.

SHRLIBMAXPAGES(nnnnn)
This parameter is intended to control the maximum number of pages that can be allocated in the
system to contain user shared library modules. This value, in conjunction with MAXSHAREPAGES,
can be used to control the amount of ESQA consumed by user shared library modules. Please refer to
z/OS UNIX System Services Planning for additional details.

Value Range: nnnnn is a decimal value between 1 and 16777215 specifying a number of 4K pages.

Default: 4096

Use the SETOMVS or SET OMVS command to dynamically increase or decrease the
SHRLIBMAXPAGES value. To make a permanent change, edit the BPXPRMXX member that will be
used for IPLs.

PRIORITYPG(n1,n2,...n40)

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can
no longer use the PRIORITYPG parameter. The information has been left here for reference
purposes, and for use on backlevel systems.

Specifies a list of 1 to 40 performance group numbers separated by commas, which are used in
association with the setpriority , nice and chpriority callable services when the system is running in
compatibility mode. These functions allow a program to alter the priority of one or more processes.

Generally, it is recommended that you not set PRIORITYPG unless the nice(), setpriority() or
chpriority() values must be enabled.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 113

If the list has less than 40 entries, the system propagates the last performance group specified into the
remaining unspecified entries in the table. For example:
PRIORITYPG(7,7,7,7,7,6,5,999,3,2,1)

The performance groups specified on the PRIORITYPG statement must also be specified in the
IEAIPSxx parmlib member.

PRIORITYPG(NONE) means that there are no values. If you do not specify PRIORITYPG, that means
that there are no values.

Only superusers can increase their values. Regular users can only decrease their priority values; they
cannot increase their priority values.If you do not want to allow your users to increase the priority but
still want to enable the nice() and setpriority() functions, define a range of performance groups or
service classes with priority increments on a base that is normal for the users. Using these functions
lets the user order the priority of processes, but will not let a user improve performance over that of
other users.

Value Range: n is a decimal value from 1 to 999.

Default: None

You can use the SETOMVS or SET OMVS command to specify a new range of priority settings. To
make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

PRIORITYGOAL(service_class_name1,...service_class_name40)
Specifies a list of 1 to 40 service class names of 8 characters or less separated by commas, which
are used in association with the setpriority , nice and chpriority callable services when the system is
running in goal mode. These functions allow a program to alter the priority of one or more processes.

Generally, it is recommended that you not set PRIORITYGOAL unless the nice(), setpriority() or
chpriority() values must be enabled.

If the list has less than 40 entries, the system propagates the last service class specified into the
remaining unspecified entries in the table. For example:

PRIORITYGOAL(CICS4,CICS4,CICS4,CICS3,CICS2,CICS1,TSO2,TSO1,BAT3,BAT2)

If you do not specify this statement, arrays are not created for it. All service classes specified on the
PRIORITYGOAL statement must also be specified in your workload manager service policy.

PRIORITYGOAL(NONE) means that there are no values. If you do not specify PRIORITYGOAL, that
means that there are no values.

If you do not want to allow users to increase the priority but still want to enable the nice() and
setpriority() functions, define a range of performance groups or service classes with priority
increments on a base that is normal for the users. Using these functions lets the user order the priority
of processes, but will not let a user improve performance over that of other users.

Value Range: service_class_name is a 1 to 8 character value.

Default: None

You can dynamically change the values of PRIORITYGOAL by using the SETOMVS or SET OMVS
command. To make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

IPCMSGNIDS(nnnnn)
Specifies the maximum number of unique system-wide message queues.

Value Range: nnnnn is a decimal value from 1 to 20000.

BPXPRMxx

114 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default: 500

You can change the value of IPCMSGNIDS dynamically using the SETOMVS or SET OMVS
command. The new minimum is the current value. The new maximum is calculated as follows:
MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in z/OS UNIX System Services Planning.

IPCMSGQBYTES(nnnnn)
Specifies the maximum number of bytes in a single message queue.

Value Range: nnnnn is a decimal value from 0 to 2147483647.

Note: The high end of this range is not obtainable due to storage constraints. The actual maximum
range varies due to storage allocation and system usage.

Default: 262144

You can change the value of IPCMSGQBYTES dynamically using the SETOMVS or SET OMVS
command.

IPCMSGQMNUM(nnnnn)
Specifies the maximum number of system-wide messages for each queue.

Value Range: nnnnn is a decimal value from 0 to 2147483647.

Note: The high end of this range is not obtainable due to storage constraints. The actual maximum
range varies due to storage allocation and system usage.

Default: 10000

You can change the value of IPCMSGQMNUM dynamically using the SETOMVS or SET OMVS
command.

IPCSEMNIDS(nnnnn)
Specifies the maximum number of unique system-wide semaphore sets.

Value Range: nnnnn is a decimal value from 1 to 20000.

Default: 500

You can change the value of IPCSEMNIDS dynamically using the SETOMVS or SET OMVS
command, as described in z/OS UNIX System Services Planning.

IPCSEMNOPS(nnnnn)
Specifies the maximum number of operations for each semop call.

Value Range: nnnnn is a decimal value from 0 to 32767.

Default: 25

You can change the value of IPCSEMNOPS dynamically using the SETOMVS or SET OMVS
command.

IPCSEMNSEMS(nnnnn)
Specifies the maximum number of semaphores for each semaphore set.

Value Range: nnnnn is a decimal value from 0 to 32767.

Default: 1000

You can change the value of IPCSEMNSEMS dynamically using the SETOMVS or SET OMVS
command.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 115

IPCSHMMPAGES(nnnnn)
Specifies the maximum number of pages for shared memory segments.

Value Range: nnnnn is a decimal value from 1 to 524287.

Note: The high end of this range is not obtainable due to storage constraints. The actual maximum
range varies due to storage allocation and system usage.

Default: 25600

You can change the value of IPCSHMMPAGES dynamically using the SETOMVS or SET OMVS
command.

IPCSHMNIDS(nnnnn)
Specifies the maximum number of unique system-wide shared memory segments.

Value Range: nnnnn is a decimal value from 1 to 20000.

Default: 500

You can change the value of IPCSHMNIDS dynamically using the SETOMVS or SET OMVS
command. The new minimum is the same as the current value. The new maximum is calculated as
follows:
MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in z/OS UNIX System Services Planning.

IPCSHMNSEGS(nnnnn)
Specifies the maximum number of attached shared memory segments for each address space.

Value Range: nnnnn is a decimal value from 0 to 1000.

Default: 10

You can change the value of IPCSHMNSEGS dynamically using the SETOMVS or SET OMVS
command.

IPCSHMSPAGES(nnnnn)
Specifies the maximum number of system-wide shared pages created by calls to the fork and shmat
functions.

Value Range: nnnnn is a decimal value from 0 to 2621440.

Default: 262144

You can change the value of IPCSHMSPAGES dynamically using the SETOMVS or SET OMVS
command. The new minimum is the same as the current value. The new maximum is calculated as
follows:
MIN(initial maximum,MAX(4096,3*initial value))

You can increase but not decrease the value, as described in z/OS UNIX System Services Planning.

Because each page of shared storage requires the associated consumption of extended system queue
area (ESQA) storage, limiting the shared storage usage provides a way to limit the ESQA usage by
z/OS UNIX users. If you use the __IPC_MEGA or __MAP_MEGA options, then the shared pages
limits are not affected because MEGA does not affect the system ESQA overhead.

FORKCOPY(COW|COPY)
Specifies how user storage is to be copied from the parent process to the child process during a fork()
system call.

FORKCOPY(COW) specifies that all fork() calls are processed with the copy-on-write mode if the
suppression-on-protection (SOP) hardware feature is available. Before the storage is modified, both

BPXPRMxx

116 z/OS V1R4.0 MVS Initialization and Tuning Reference

the parent and child process refer to the same view of the data. The parent storage is copied to the
child only if either the parent or the child modifies the storage. FORKCOPY(COW) causes the system
to use the ESQA to manage page sharing.

FORKCOPY(COPY) specifies that fork() immediately copies the parent storage to the child, whether
the SOP is available or not. Use this option to avoid any additional ESQA use in support of fork.

Follow these guidelines:
v If the run-time library is in the link pack area, specify FORKCOPY(COPY).
v If the run-time library is not in the link pack area, specify FORKCOPY(COW).

Default: COW

You can change the value of FORKCOPY dynamically using the SETOMVS or SET OMVS command.
To make a permanent change, edit the BPXPRMxx member used for IPLs.

SUPERUSER(user_name)
Superuser name, which must conform to the restrictions for the z/OS user ID. The user name must
also be defined to RACF (or another security product) and must have a z/OS UNIX user ID (UID) of 0.
For example, in RACF, specify OMVS(UID(0)) on the ADDUSER command.

When a daemon issues a setuid() to set a UID to 0 and the user ID is not known, setuid() uses the
user ID from the SUPERUSER statement.

Never permit the userid BPXROOT to the BPX.DAEMON profile (described in “Setting Up the BPX.*
FACILITY Class Profiles“ in z/OS UNIX System Services Planning). This warning applies even if you
use a name other than BPXROOT.

Value Range: user_name is a 1 to 8 character value.

Default: BPXROOT

Use the SETOMVS or SET OMVS command to dynamically change the value of SUPERUSER. To
make a permanent change, edit the BPXPRMxx member that is used for IPLs.

TTYGROUP(group_name)
Specifies the z/OS group name given to slave pseudoterminals (PTYs) and OCS remote terminals
(RTYs). This group name should be defined to the security product and must have a unique group ID
(GID). No users should be connected to this group.

The group_name is used by certain setgid() programs, such as talk and write, when writing to another
user’s PTY or RTY.

Value Range: group_name is a 1 to 8 character value.

Default: TTY

You can change the value of TTYGROUP dynamically using the SETOMVS or SET OMVS command.
To make a permanent change, edit the BPXPRMxx member that will be used for future IPLs.

CTRACE(parmlib_member_name)
Specifies the parmlib member that contains the initial tracing options to be used for the z/OS UNIX
component. Use this statement to provide tracing while the kernel is starting and to avoid having to
issue a TRACE operator command to set tracing options.

Default: CTIBPX00

STEPLIBLIST('/etc/steplib')
Specifies the pathname of a hierarchical file system (HFS) file. This file is intended to contain a list of
MVS data sets that are sanctioned by the installation for use as step libraries for programs that have
the set-user-ID and set-group-ID bit set.

Use the SETOMVS or SET OMVS command to dynamically change the value of STEPLIBLIST. To
make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 117

For additional information, see STEPLIBLIST in z/OS UNIX System Services Planning.

USERIDALIASTABLE('/etc/tablename')
Specifies the pathname of a hierarchical file system (HFS) file. This file is intended to contain a list of
z/OS user IDs and group names with their corresponding alias names. The alias names can contain
any characters in the portable filename character set.

You can change USERIDALIASTABLE dynamically using the SETOMVS or SET OMVS command. To
make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

Once a user is logged into the system, changing the user ID or group name alias table does not
change the alias name immediately. If a change needs to be activated sooner, you can use the
SETOMVS or SET OMVS command to change the table more quickly.

For planning information, see USERIDALIASTABLE in z/OS UNIX System Services Planning.

FILESYSTYPE TYPE(type_name) ENTRYPOINT(entry_name) PARM('parm')
ASNAME(proc_name[,’start_parms’])

Specifies the type of file system that is to be started. BPXPRMxx can contain more than one
FILESYSTYPE statement.

When SYSPLEX(YES) is specified, each FILESYSTYPE in use within the participating shared HFS
group must be defined for all systems participating in shared HFS. The easiest way to accomplish this
is by having a single BPXPRMxx member that contains file system information for each system
participating in shared HFS. If you decide to define a BPXPRMxx for each system, the FILESYSTYPE
statements must be identical on each system. For more information on shared HFS, see z/OS UNIX
System Services Planning.

Note that any facilities required for a particular FILESYSTYPE must be initiated on all systems
participating in shared HFS. For example, NFS requires TCP/IP, so if you specify an NFS
FILESYSTYPE, you must also initalize TCP/IP on NFS initialization.

The SETOMVS RESET command can be used to dynamically specify new FILESYSTYPE statements.
To make a permanent change, edit the BPXPRMxx member used for IPLs. For more information, see
“Dynamically Adding FILESYSTYPE Statements in BPXPRMxx” in z/OS UNIX System Services
Planning.

The parameters are:

TYPE(type_name)
Specifies the name of the file system type that is to control the file system.

In the FILESYSTYPE statement, specify a name for the TYPE file system. For example, you could
use the following, or assign your own names:
v HFS for a hierarchical file system (HFS)
v TFS for a temporary file system (TFS)
v UDS for z/OS UNIX domain (AF_UNIX) sockets
v INET for network (AF_INET and AF_INET6) sockets
v CINET for common INET (AF_INET and AF_INET6) sockets
v AUTOMNT for an automounted file system
v DFSC for accessing global namespace.
v NFS for accessing remote files.

For planning information, see FILESYSTYPE in z/OS UNIX System Services Planning.

TYPE is a required parameter. The name is 1 to 8 characters; the system converts the name to
uppercase.

ENTRYPOINT(entry_name)
Specifies the name of the load module containing the entry point into the file system type.

BPXPRMxx

118 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

ENTRYPOINT is a required parameter. The name is 1 to 8 characters; the system converts the
name to uppercase. Refer to the documentation for the specific physical file system for valid entry
point names.

PARM('parm')
Provides a parameter to be passed directly to the file system type. The parameter format and
content are specified by the file system type.

PARM is an optional parameter. The parameter is up to 500 characters long; the characters can
be in uppercase, lowercase, or both. The parameter must be enclosed in single quotes.

If the physical file system specified does not expect a PARM operand, it ignores all PARM
operands.

SYNCDEFAULT(t), VIRTUAL(max), FIXED(min), FSFULL(threshold,increment) and
NOWRITEPROTECT are valid only when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these four parameters (SYNCDEFAULT, VIRTUAL,
FIXED, FSFULL, or NOWRITEPROTECT), an error message is issued and all four
parameters are set to the default values.

SYNCDEFAULT(t)

t specifies the number of seconds used as a default for the sync daemon interval. When
the sync daemon is active, the meta data for a file system is hardened. Setting t to 0
indicates that the file system should harden meta data synchronously with syscall requests.

Sync interval values are rounded up to the next 30-second value. For example, specifying
31 seconds results in a sync interval of 60 seconds.

The maximum value that can be specified for t is 65535. Values between 65535 and 99999
are rejected.

A value of 99999 specifies that no sync daemon intervals are specified, and thus, the meta
data is not hardened.

Default: 60 seconds

FIXED(min)

min specifies the amount of virtual storage (in megabytes) that is fixed at HFS initialization
time and remains fixed even if HFS activity drops to zero. min must be less than or equal to
VIRTUAL(max) .

min cannot exceed 50% of real storage available to the system. If the allowed amount of
storage is exceeded, an informational message is issued and min is set to 50% of real
storage. The minimum limit can be changed dynamically by invoking the confighfs shell
command. See z/OS UNIX System Services Command Reference for more information
about the confighfs shell command.

Default: 0

FSFULL(threshold,increment)

threshold specifies the percentage of the HFS capacity at which an operator message is
generated. The default is 100%.

increment specifies the percentage of change above the HFS capacity at which an operator
messages is generated. Messages are generated by either an increase or decrease greater
than increment. The default is 5%.

You can specify threshold and increment values for all HFS file systems. The values can
also be set on the MOUNT command for a specific file system. Parameters on the MOUNT
command override parmlib values. If no values are specified in either place, no threshold
checking is done. If a threshold value is specified but no increment is given, the increment
defaults to 5%. The increment value applies both to upgrading the message when the file
system continues to fill and to removing the message when more space becomes available

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 119

|
|

due to either deleting files, or to extending the file system. The values are in terms of
percent full. The values applied to a file system can be changed only when the file system
is mounted.

NOWRITEPROTECT

This keyword overrides the WRITEPROTECT function introduced with OS/390 R7 (DFSMS
1.5). When NOWRITEPROTECT is specified, the file system is not protected from being
read/write mounted by multiple systems simultaneously. Read/write mounting by multiple
systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It should only be used when there
is no possibility of the file system being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file system read operation that is
required at Sync time to support the WRITEPROTECT function.

Default: WRITEPROTECT

ASNAME(proc_name[,’start_parms’])
proc_name specifies the name of a procedure in SYS1.PROCLIB that is to be used to start the
address space that is initialized by the physical file system (PFS). Specify ASNAME for any PFS
that does not run in the kernel address space. The name you specify is also used for the name of
the address space.

start_parms is an optional quoted string that is to be appended to the proc_name when the
address space is started. The string may be up to 100 characters long. The start_parms are not
validated; they are just passed to the system when the address space is started with an internal
command. Refer to the START command in z/OS MVS System Commands or the ASCRE macro
in z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN.

By default the address space started with ASNAME is started under JES, but this may be changed
by including the additional start_parms ‘SUB=MSTR’.

ASNAME is an optional parameter. proc_name is 1 to 8 characters; the system converts the name
to uppercase. If you do not specify ASNAME, or specify proc_name as the name of the kernel
address space, the PFS is initialized in the kernel address space.

Refer to the documentation for the specific physical file system for valid ASNAME operands.

SYSPLEX(YES|NO)
For z/OS UNIX, the SYSPLEX statement specifies whether a system should join the SYSBPX XCF
group to share HFS resources across the sysplex. If SYSPLEX(YES) is specified, the system
participates in shared HFS. If SYSPLEX(NO) is specified, the system does not participate in shared
HFS. If the SYSPLEX statement is not provided, the default is SYSPLEX(NO). Also, to participate in
shared HFS, the systems must be at R9 level or later.

For more information on shared HFS, see z/OS UNIX System Services Planning. IBM recommends
that you review this chapter before using any shared HFS specific parameters: SYSPLEX(YES|NO),
VERSION, AUTOMOVE|NOAUTOMOVE and SYSNAME.

Note: You cannot adjust the SYSPLEX field dynamically. There is no SETOMVS, SET OMVS, or
SETOMVS RESET=(xx) capability. To change the value of SYSPLEX, you must re-IPL the
system.

Default: NO

VERSION('nnnn')
The VERSION statement applies only to systems that are exploiting shared HFS. VERSION allows
multiple releases and service levels of the binaries to coexist and participate in shared HFS. A
directory with the value nnnn specified on VERSION is dynamically created at system initialization
under the sysplex root and is used as a mount point for the version HFS. This directory, however, is
only dynamically created if the sysplex root HFS is mounted read/write.

BPXPRMxx

120 z/OS V1R4.0 MVS Initialization and Tuning Reference

Note: nnnn is a case-sensitive character string no greater than 8 characters in length. It indicates a
specific instance of the version HFS. The most appropriate values for nnnn are the name of the
target zone, &SYSR1, or another qualifier meaningful to the system programmer. For example,
if the system is at V2R9, you can specify REL9 for VERSION.

When SYSPLEX(YES) is specified, you must also specify the VERSION parameter.

The VERSION value is substituted in the content of symbolic links that contain $VERSION. For
scenarios describing the use of the version HFS, see z/OS UNIX System Services Planning.

When testing or changing to a new Maintenance Level (PTF), the VERSION value can be changed
dynamically by using the SETOMVS command:
SETOMVS VERSION='string'

You can also change the settings of this parameter via SET OMVS=(xx) and SETOMVS RESET=(xx)
parmlib specifications.

Note: We do not recommend changing VERSION dynamically if you have any users logged on or
running applications; replacing the system files for these users may be disruptive.

ROOT FILESYSTEM('fsname') DDNAME(ddname) TYPE(type_name) MODE(access)
PARM('parameter') SETUID|NOSETUID AUTOMOVE|NOAUTOMOVE SYSNAME(sysname)
TAG(NOTEXT|TEXT,ccsid)

Specifies a file system that z/OS UNIX is to logically mount as the root file system.

Note: The ROOT statement is optional. If not specified, a TFS file system is mounted as the root.

To change the value of the ROOT statement without having to re-IPL, you can use the TSO/E MOUNT
and UNMOUNT commands.

The root file system can be unmounted using the TSO/E UNMOUNT command or ISHELL. Ensure
that you specify the IMMEDIATE option.

The parameters are:

FILESYSTEM('fsname')
The name of the root file system. The name must be unique in the system.

Either FILESYSTEM or DDNAME is required; do not specify both. The name is 1 to 44 characters;
the characters can be in uppercase, lowercase, or both. The name must be enclosed in single
quotes. An HFS data set name must conform to the rules of MVS data set names.

DDNAME(ddname)
The ddname on the JCL DD statement that defines the root file system. To use the DDNAME
parameter, a DD statement for the HFS data set containing the root file system should be placed
in the z/OS UNIX cataloged procedure.

Either FILESYSTEM or DDNAME is required; do not specify both. The ddname is 1 to 8
characters; the system converts the ddname to uppercase.

TYPE(type_name)
Specifies the name of a file system type identified in a FILESYSTYPE statement. The
TYPE(type_name) parameter must be the same as the TYPE(type_name) parameter on a
FILESYSTYPE statement.

TYPE is a required parameter. The name is 1 to 8 characters; the system converts the name to
uppercase.

MODE(access)
Specifies access to the root file system by all users:
v READ: Users can only read the root file system.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 121

v RDWR: Users can read and write in the root file system.

Default: RDWR

PARM('parameter')
Provides a parameter to be passed directly to the file system type. The parameter format and
content are specified by the file system type.

PARM is an optional parameter. The parameter is up to 500 characters long; the characters can
be in uppercase, lowercase, or both. The parameter must be enclosed in single quotes.

If the physical file system specified does not expect a PARM operand, it ignores all PARM
operands. Refer to the documentation for the specific physical file system for valid entry point
names.

SYNC(t), FIXED(min) and NOWRITEPROTECT are valid only when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these parameters (SYNC, FIXED, or
NOWRITEPROTECT), an error message is issued and all four parameters are set to the
default values.

SYNC(t)

t specifies the number of seconds used as a default for the sync daemon interval. When
the sync daemon is active, the meta data for a file system is hardened. Setting t to 0
indicates that the file system should harden meta data synchronously with syscall requests.

Sync interval values are rounded up to the next 30-second value. For example, specifying
31 seconds results in a sync interval of 60 seconds.

The maximum value that can be specified for t is 65535. Values between 65535 and 99999
are rejected.

A value of 99999 specifies that no sync daemon intervals are specified, and thus, the meta
data is not hardened.

Default: 60 seconds

FIXED(min)

min specifies the amount of virtual storage (in megabytes) that is fixed at HFS initialization
time and remains fixed even if HFS activity drops to zero. min must be less than or equal to
VIRTUAL(max) .

min cannot exceed 50% of real storage available to the system. If the allowed amount of
storage is exceeded, an informational message is issued and min is set to 50% of real
storage. The minimum limit can be changed dynamically by invoking the confighfs shell
command. See z/OS UNIX System Services Command Reference for more information
about the confighfs shell command.

Default: 0

NOWRITEPROTECT

– This keyword overrides the WRITEPROTECT function. When NOWRITEPROTECT is
specified, the file system is not protected from being read/write mounted by multiple
systems simultaneously. Read/write mounting by multiple systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It should only be used when
there is no possibility of the file system being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file system read operation
that is required at Sync time to support the WRITEPROTECT function.

– Default: WRITEPROTECT

SETUID|NOSETUID
SETUID specifies that the setuid() and setgid() mode bit on an executable file will be supported.

BPXPRMxx

122 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

NOSETUID specifies that the setuid() and setgid() mode bit on an executable file will not be
supported. The UID or GID will not be changed when the program is executed and the APF and
Program Control extended attributes are not honored. The entire HFS is uncontrolled.

Default: SETUID

AUTOMOVE|NOAUTOMOVE
The AUTOMOVE|NOAUTOMOVE parameters apply only in a sysplex where systems are
participating in shared HFS. The AUTOMOVE and NOAUTOMOVE parameters indicate what
happens if the system that owns a file system goes down. AUTOMOVE indicates that ownership of
the file system automatically changes to another system participating in shared HFS.
NOAUTOMOVE indicates that ownership of the file system is not moved if the owning system
goes down; as a result, the file system becomes inaccessible.

Note: When specifying NOAUTOMOVE, though the file system becomes inaccessible when the
owning system goes down, it still exists in the file system hierarchy. The file system will
remain unowned until the original owing system re-ipls.

IBM recommends you use AUTOMOVE for the version HFS and the sysplex root HFS. For HFSs
that are associated with a single system, specify NOAUTOMOVE; this includes /etc, /tmp, /var,
/dev, and the system-specific HFS. For descriptions of the sysplex root, system-specific, and
version HFS data sets, see “Shared HFS in a Sysplex“ in z/OS UNIX System Services Planning.

To ensure that the root is always available, use the default.

Default: AUTOMOVE

SYSNAME(sysname)
For a description, see SYSNAME on the MOUNT statement. To ensure that the root is always
available, use the default.

Default: The name of the system that the command is processed on.

TAG (NOTEXT|TEXT,ccsid)
Specifies whether implicit file tags are assigned to untagged files in the mounted file system. File
tagging controls whether a file’s data can be converted during file reading and writing. “Implicit” in
this case means that the tag is not permanently stored with the file. Instead, the tag is associated
with the file during reading and writing, or when stat() type functions are issued. Either TEXT, or
NOTEXT, and ccsid must be specified when TAG is specified.

NOTEXT specifies that none of the files in the file system are automatically converted during file
reading and writing.

TEXT specifies that each untagged file is implicitly marked as containing pure text data that can
be converted.

ccsid names the coded character set identifier to be implicitly set for the untagged file. ccsid is
specified as a decimal value from 0 to 65536. However, when TEXT is specified, the values of 0
and 65536 are illegal because those values imply no conversion. Other than this, the value is not
checked as being valid and the corresponding code page is not checked as being installed.

For example:

v TAG(TEXT,819) identifies text files containing ASCII (ISO-8859–1) data.

v TAG(TEXT,1047) identifies text files containing EBCDIC ((ISO-1047) data.

v TAG(NOTEXT,65536) tags files as containing binary or unknown data.

v TAG(NOTEXT,0) is the equivalent of not specifying the TAG parameter.

v TAG(NOTEXT,273) tags file with the German code set (ISO-273), but is ineligible for automatic
conversion.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 123

Default: NOTEXT

MOUNT FILESYSTEM('fsname') DDNAME(ddname) TYPE(type_name) MOUNTPOINT('pathname')
MODE(access) PARM('parameter') TAG(NOTEXT|TEXT, ccsid) SETUID|NOSETUID
SECURITY|NOSECURITY AUTOMOVE[(INCLUDE|EXCLUDE,sysname1,sysname2,...,sysname n)]
|NOAUTOMOVE|UNMOUNT
SYSNAME(sysname)

Specifies a file system that z/OS UNIX is to logically mount onto the root file system or another file
system.

Mount statements are processed in the sequence in which they appear. If they are cascading, the
system will mount the first file system first. Make sure that a mount point exists before the file system
is mounted. If you mount a file system over an existing directory containing files, you will cover up the
existing files.

If a MOUNT statement uses a DDNAME parameter to identify the HFS data set, allocate that HFS
data set in the OMVS cataloged procedure. See the section on customizing the OMVS cataloged
procedure to run the kernel initialization program in the “Customizing z/OS UNIX” chapter in z/OS
UNIX System Services Planning.

The MOUNT statement is optional; the BPXPRMxx member can contain one or more MOUNT
statements.

The MOUNT parameters are:

FILESYSTEM('fsname')
The name of the file system. The name must be unique in the system.

Either FILESYSTEM or DDNAME is required; do not specify both. The name is 1 to 44 characters;
the characters can be in uppercase, lowercase, or both. The name must be enclosed in single
quotes. An HFS data set name must conform to the rules of MVS data set names.

DDNAME(ddname)
The ddname on the JCL DD statement that defines the file system. To use the DDNAME
parameter, a DD statement for the HFS data set containing the mountable file system should be
placed in the OMVS cataloged procedure.

Either FILESYSTEM or DDNAME is required; do not specify both. The name is 1 to 8 characters;
the system converts the ddname to uppercase.

TYPE(type_name)
Specifies the name of a file system type identified in a FILESYSTYPE statement. The
TYPE(type_name) parameter must be the same as the TYPE(type_name) parameter on a
FILESYSTYPE statement.

TYPE is a required parameter. The name is 1 to 8 characters; the system converts the name to
uppercase.

MOUNTPOINT('pathname')
Specifies the pathname, or a symlink that resolves to the pathname of the directory onto which the
file system is to be mounted.

Mount point restrictions are:

v The mount point must be a directory.

v Any files in the directory are not accessible while the file system is mounted.

v Only one mount can be active at any time for a mount point.

v A file system can be mounted at only one directory at any time.

MOUNTPOINT is required. The pathname is up to 1023 characters long; the characters can be in
uppercase, lowercase, or both. The pathname must be enclosed in single quotes.

BPXPRMxx

124 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|
|

MODE(access)
Specifies access to the mounted file system by all users:
v READ: Users can only read the file system being mounted.
v RDWR: Users can read and write in the file system being mounted.

Default: RDWR

TAG (NOTEXT|TEXT,ccsid)
Specifies whether implicit file tags are assigned to untagged files in the mounted file system. File
tagging controls whether a file’s data can be converted during file reading and writing. ″Implicit″ in
this case means that the tag is not permanently stored with the file. Instead, the tag is associated
with the file during reading and writing, or when stat() type functions are issued. Either TEXT, or
NOTEXT, and ccsid must be specified when TAG is specified.

NOTEXT specifies that none of the files in the file system are automatically converted during file
reading and writing.

TEXT specifies that each untagged file is implicitly marked as containing pure text data that can
be converted.

ccsid names the coded character set identifier to be implicitly set for the untagged file. ccsid is
specified as a decimal value from 0 to 65536. However, when TEXT is specified, the values of 0
and 65536 are illegal because those values imply no conversion. Other than this, the value is not
checked as being valid and the corresponding code page is not checked as being installed.

For example:

v TAG(TEXT,819) identifies text files containing ASCII (ISO-8859–1) data.

v TAG(TEXT,1047) identifies text files containing EBCDIC ((ISO-1047) data.

v TAG(NOTEXT,65536) tags files as containing binary or unknown data.

v TAG(NOTEXT,0) is the equivalent of not specifying the TAG parameter.

v TAG(NOTEXT,273) tags file with the German code set (ISO-273), but is ineligible for automatic
conversion.

Default: NOTEXT

PARM('parameter')
Provides a parameter to be passed directly to the file system type. The parameter format and
content are specified by the file system type.

PARM is an optional parameter. The parameter is up to 500 characters long; the characters can
be in uppercase, lowercase, or both. The parameter must be enclosed in single quotes.

If the physical file system specified does not expect a PARM operand, it ignores all PARM
operands. Refer to the documentation for the specific physical file system for valid entry point
names.

SYNC(t), FIXED(min), NOWRITEPROTECT, NOSPARSE , and SYNCRESERVE are valid only
when ENTRYPOINT is GFUAINIT.

Note: If a syntax error is found in any of these parameters (SYNC(t), FIXED(min),
NOWRITEPROTECT, NOSPARSE, and SYNCRESERVE), an error message is issued and
all five parameters are set to the default values.

SYNC(t)

t specifies the number of seconds used as a default for the sync daemon interval. When
the sync daemon is active, the meta data for a file system is hardened. Setting t to 0
indicates that the file system should harden meta data synchronously with syscall requests.

Sync interval values are rounded up to the next 30-second value. For example, specifying
31 seconds results in a sync interval of 60 seconds.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 125

|
|

The maximum value that can be specified for t is 65535. Values between 65535 and 99999
are rejected.

A value of 99999 specifies that no sync daemon intervals are specified, and thus, the meta
data is not hardened.

Default: 60 seconds

FIXED(min)

min specifies the amount of virtual storage (in megabytes) that is fixed at HFS initialization
time and remains fixed even if HFS activity drops to zero. min must be less than or equal to
VIRTUAL(max) .

min cannot exceed 50% of real storage available to the system. If the allowed amount of
storage is exceeded, an informational message is issued and min is set to 50% of real
storage. The minimum limit can be changed dynamically by invoking the confighfs shell
command. See z/OS UNIX System Services Command Reference for more information
about the confighfs shell command.

Default: 0

NOWRITEPROTECT

– This keyword overrides the WRITEPROTECT function. When NOWRITEPROTECT is
specified, the file system is not protected from being read/write mounted by multiple
systems simultaneously. Read/write mounting by multiple systems corrupts the file system.

Extreme care should be taken when specifying this keyword. It should only be used when
there is no possibility of the file system being mounted by multiple systems.

Use of the NOWRITEPROTECT keyword avoids an additional file system read operation
that is required at Sync time to support the WRITEPROTECT function.

– Default: WRITEPROTECT

NOSPARSE(DUMP|LOGREC)

– This keyword will cause HFS to create a dump or a LOGREC record when either of the
following situations occur:

- HFS attempts to read metadata from disk for a file and detects that the subject file is
sparse, or

- an application attempts to write to a page beyond the end of the file, causing the file to
become sparse.

– DUMP will cause HFS to create a dump. Only one dump will be created for each of the
possible reason codes while a file system is mounted. DUMP is the default if you specify
NOSPARSE without the DUMP or LOGREC keywords.

– LOGREC will cause HFS to write a LOGREC record instead of creating a dump.

– Default: DUMP

SYNCRESERVE(nn)

– nn represents the percentage of the file system space which is to be reserved for the sync
shadow write mechanism. nn is a decimal number between 1 and 50. There is no reason to
ever reserve more than 50% of the file system space, because the reserved space must
always be less than the actual index size and the index size plus the reserved space cannot
be greater than the file system space.

SETUID|NOSETUID
SETUID specifies that the setuid() and setgid() mode bit on an executable file will be supported.

NOSETUID specifies that the setuid() and setgid() mode bit on an executable file will not be
supported. The UID or GID will not be changed when the program is executed and the APF and
Program Control extended attributes are not honored. The entire HFS is uncontrolled.

Default: SETUID

BPXPRMxx

126 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

|
|

|
|

|
|

|
|
|

|

|

|

|
|
|
|
|

SECURITY|NOSECURITY
SECURITY specifies that security checks should be performed.

NOSECURITY specifies that security checks should not be performed.

Default: SECURITY

AUTOMOVE[(INCLUDE|EXCLUDE,sysname1,sysname2,...,sysnameN)]|
NOAUTOMOVE|UNMOUNT

The AUTOMOVE, NOAUTOMOVE and UNMOUNT parameters apply only in a sysplex where
systems are participating in shared HFS. The parameters indicate what happens if the system that
owns a file system goes down.

AUTOMOVE indicates that ownership of the file system automatically changes to another system
participating in shared HFS. You can specify AUTOMOVE on its own to allow the system to
randomly select a new owner for the file system. You can direct the system how to choose a new
owner for the file system by using the indicators INCLUDE (I) or EXCLUDE (E). Specify INCLUDE
with a system list to provide a prioritized list of systems to which the file system may be moved
should the owning system go down. For example, AUTOMOVE=(INCLUDE,SYS1, SYS4, SYS9)
tells the system that the file system may be moved to SYS1, SYS4, or SYS9. Specify EXCLUDE
with a system list to provide a list of systems to which the file system may not be moved. For
example, AUTOMOVE=(EXCLUDE,SYS3, SYS5, SYS7) tells the system that the file system may
be moved to any system other than SYS3, SYS5, or SYS7. If the file system cannot be moved as
you have directed in the system list, the file system will be unmounted when the owning system
goes down.

NOAUTOMOVE indicates that ownership of the file system is not moved if the owning system
goes down; as a result, the file system becomes inaccessible. UNMOUNT indicates that the file
system should be unmounted if the system that owns the file system goes down. The file system
and any file systems mounted within its subtree will be unmounted.

Note: When specifying NOAUTOMOVE, though the file system becomes inaccessible when the
owning system goes down, it still exists in the file system hierarchy. The file system will
remain unowned until the original owning system re-ipls.

IBM recommends you use AUTOMOVE for the version HFS and the sysplex root HFS. For HFSs
that are associated with a single system, specify NOAUTOMOVE; this includes /etc, /tmp, /var,
/dev, and the system-specific HFS. For descriptions of the sysplex root, system-specific, and
version HFS data sets, see “Shared HFS in a Sysplex“ in z/OS UNIX System Services Planning.
IBM recommends that you review this chapter before using any shared HFS specific parameters:
SYSPLEX(YES|NO), VERSION, AUTOMOVE|NOAUTOMOVE|UNMOUNT, and SYSNAME.

For file systems that are mostly used by DFS™ clients, consider specifying NOAUTOMOVE on the
MOUNT statement. By doing so, the file systems will not change ownership if the system is
suddenly recycled, and they will be available for automatic re-export by DFS. This is
recommended because a file system can only be exported by the DFS server at the system that
owns the file system. Once a file system has been exported by DFS, it cannot be moved until it
has been unexported from DFS. When recovering from system outages, you need to weigh
sysplex availability against availability to the DFS clients. When an owning system recycles and a
DFS-exported file system has been taken over by one of the other systems, DFS cannot
automatically re-export that file system. The file system will have to be moved from its current
owner back to the original DFS system— the one that has just been recycled— and then exported
again.

Default: AUTOMOVE

SYSNAME(sysname)
For systems participating in shared HFS, SYSNAME specifies the particular system on which a

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 127

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

mount should be performed. This system will then become the owner of the file system mounted.
This system must be IPLed with SYSPLEX(YES).

Default: The name of the system, if IPLed with SYSPLEX(YES), that the mount is processed on.

Note: In OS/390 R9 and later, to ensure that the root is always available, use the defaults for
SYSNAME and AUTOMOVE.

For additonal information, see MOUNT in z/OS UNIX System Services Planning.

NETWORK DOMAINNAME(sockets_domain_name) DOMAINNUMBER(sockets_domain_number)
MAXSOCKETS(number) TYPE(type_name) INADDRANYPORT(starting_port_number)
INADDRANYCOUNT(number_of_ports_to_reserve)

Specifies that a socket physical file system domain should be readied for use. The TYPE in this
statement matches the TYPE on the previous FILESYSTYPE statement.

Use the SETOMVS RESET command to dynamically change the MAXSOCKET value or add a new
NETWORK. To make a permanent change, edit the BPXPRMxx member used for IPLs. For more
information, see “Dynamically Adding FILESYSTYPE Statements in BPXPRMxx“ in z/OS UNIX System
Services Planning.

Provide a NETWORK statement for each socket file system domain to be initialized.

v For AF_UNIX file systems, always include a FILESYSTYPE statement specifying
ENTRYPOINT(BPXTUINT) and a NETWORK statement with a matching TYPE, usually
TYPE(UDS), on both.

v For TCP/IP sockets, always include a FILESYSTYPE statement specifying
ENTRYPOINT(EZBPFINI) and a NETWORK statement with a matching TYPE, usually TYPE(INET),
on both.

v To activate an Internet Protocol Version 6 (IPv6) socket on a system, you must configure both the
AF_INET domain and the AF_INET6 domain. You cannot code a NETWORK statement for domain
name AF_INET6 without coding a NETWORK statement for domain name AF_INET.

v For CINET sockets, include a FILESYSTYPE statement with ENTRYPOINT (BPXTCINT) and a
NETWORK statement with a matching TYPE, usually TYPE(CINET), that specifies
INADDRANYPORT and INADDRANYCOUNT. See “Specifying INADDRANYPORT and
INADDRANYCOUNT“ in z/OS UNIX System Services Planning for more information.

DOMAINNAME(sockets_domain_name)
The 1 to 16 character name by which this socket file system domain is to be known.

DOMAINNUMBER(sockets_domain_number)
A number that matches the value defined for this domain name. The currently supported values for
this field are:
1 AF_UNIX
2 AF_INET
19 AF_INET6

The following table shows some supported domain names, domain numbers, and their associated
entry point names. See the documentation for the physical file system you are using to get the
correct entry point name.

Table 11. Supported Domains

Domain name Domain number Entry point

AF_UNIX 1 BPXTUINT

AF_INET 2 EZBPFINI, BPXTCINT

AF_INET6 19 EZBPFINI, BPXTCINT

BPXPRMxx

128 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

|
|
|
|

|
|
|

||

||

|||

|||

|||

|||
|

MAXSOCKETS(nnnnn)
Specifies the maximum number of sockets supported by this file system for this address family.
You can specify a value from 0 to 16777215. This is an optional parameter. The maximum value
that this field can have is defined by each domain. If a value larger than the maximum is specified,
an informational message is issued and the value used is the maximum. If this parameter is
omitted, a default value of 100 is used.

Note: Ensure that this number is large enough for socket connections for all applications using
your z/OS UNIX environment. This upper limit is set when the NETWORK statement is
processed during IPL. It can only be changed if the NETWORK statement is changed using
the SETOMVS RESET command.

When activating IPv6 on a system, you can specify separate MAXSOCKETS values for domains
AF_INET and AF_INET6. If you do not specify a MAXSOCKETS value for the AF_INET6 domain,
the default will be the MAXSOCKETS value specified or defaulted to for the AF_INET domain.

If you are using AnyNet® sockets over SNA or AF_UNIX, a high MAXSOCKETS value may use
too many resources. You should use a low value instead.

TYPE(type_name)
Specifies the name of a file system type identified in a FILESYSTYPE statement. The
TYPE(type_name) must be the same as the TYPE(type_name) parameter on a FILESYSTYPE
statement.

TYPE is a required parameter. The name is 1 to 8 characters; the system converts the name to
uppercase.

INADDRANYPORT(starting_port_number)
Specifies the starting port number for the range of port numbers that the system reserves for use
with PORT 0, INADDR_ANY binds. This value is only needed for CINET.

Value Range: starting_port_number is a decimal value from 1024 to 65534. Ports 1 — 1023 are
well-known ports that cannot be reserved for use with PORT 0, INADDR_ANY binds.

Default: If neither INADDRANYPORT or INADDRANYCOUNT is specified, the default for
INADDRANYPORT is 63000. Otherwise, no ports are reserved (0).

Note: If you do not want to support INADDRANY with CINET, you should specify
INADDRANYPORT(xx), where xx is a valid value, without specifying INADDRANYCOUNT.

Note: When activating IPv6 on a system, the INADDRANYPORT is shared across domains. The
INADDRANYPORT value is taken from the NETWORK statement for the AF_INET domain.
Any INADDRANYPORT value specified for the AF_INET6 domain is ignored.

INADDRANYCOUNT(number_of_ports_to_reserve)
Specifies the number of ports that the system reserves, starting with the port number specified in
the INADDRANYPORT parameter. This value is only needed for CINET.

Value Range: number_of_ports_to_reserve is a decimal value from 1 to 4000.

Default: If neither INADDRANYPORT or INADDRANYCOUNT is specified, the default for
INADDRANYCOUNT is 1000. Otherwise, no ports are reserved (0).

RESOLVER_PROC(procname |DEFAULT|NONE)
Specifies how the resolver address space is processed during z/OS UNIX initialization. The resolver is
used by TCP/IP applications for name-to-address or address-to-name resolution. In order to create a
resolver address space, a system must be configured with an AF_INET or AF_INET6 domain.

procname is the name of the address space for the resolver and the procedure member name in
SYS1.PROCLIB. procname is one to eight characters long.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 129

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

DEFAULT causes an address space named RESOLVER to start, using the system default procedure
of IEESYSAS. As a result, the JES2 command $DS(sss) (where sss is the started task number) and
the SDSF DA panel will show a jobname of IEESYSAS, while the z/OS command DA, RESOLVER will
show an address space of RESOLVER. This is because if no RESOLVER(procname) is specified,
z/OS UNIX issues an ASCRE with ’IEESYSAS.RESOLVER,PROG=EZBREINI’. This also happens if
the RESOLVER_PROC statement is not specified in the BPXPRMxx profile.

NONE specifies that no address space is to be started. If you are using z/OS Communications Server
IP the resolver must be started before TCP/IP can be started. TCP/IP will not initialize until the
resolver address space is started.

SUBFILESYSTYPE NAME(transport_name) TYPE(type_name) ENTRYPOINT(entry_name)
PARM('parameter') DEFAULT

Specifies an AF_INET or AF_INET6 physical file system that is to run underneath the CINET socket
file system. The TYPE() value is usually CINET and matches the TYPE operand on a previous
FILESYSTYPE and NETWORK statement. In the case of TCP/IP, the NAME() value is the procname.
The system attaches the EZBPFINI load module during initialization, and this file system should be
used as the default INET physical file system.

The SUBFILESYSTYPE statement is associated with its corresponding FILESYSTYPE and
NETWORK statements by matching the value specified in the TYPE operand.

The value specified on all of the TYPE operands must match, but can be any 1- to 8-character value.
The value specified on the NAME parameter on the SUBFILESYSTYPE statement is the name to be
used by the physical file system when it is initialized. The first character of the NAME parameter must
be non-numeric.

For SecureWay® Communications Server, the SUBFILESYSTYPE statement must match the
TCPIPJOBNAME of that stack. See “Customizing the File System Statements on the BPXPRMxx
Member“ in z/OS UNIX System Services Planning for more details.

New SUBFILESYSTYPE statements can be added dynamically. However, you cannot dynamically
change (or delete) a value. For more information, see “Dynamically Adding FILESYSTYPE Statements
in BPXPRMxx“ in z/OS UNIX System Services Planning.

The parameters are:

NAME(transport_name)
Specifies the name that identifies this file system to the CINET physical file system.

NAME is a required parameter. The name is 1 to 8 characters with the first character non-numeric;
the system converts the name to uppercase. The value specified by the NAME parameter on the
SUBFILESYSTYPE statement is the name that the physical file system uses to identify itself when
it is initialized. For example, for TCP/IP, this is the starting procedure name.

TYPE(type_name)
Specifies the name of the CINET file system type identified in a FILESYSTYPE statement. The
TYPE(type_name) parameter must be the same name that was used for the TYPE(type_name)
parameter on the FILESYSTYPE statement for the CINET physical file system.

TYPE is a required parameter. The name is 1 to 8 characters; the system converts the name to
uppercase.

ENTRYPOINT(entry_name)
Specifies the name of the load module containing the entry point into the file system type.

ENTRYPOINT is a required parameter. The name is 1 to 8 characters; the system converts the
name to uppercase.

PARM('parameter')
Provides a parameter to be passed to the transport driver. The parameter format and content are
specified by the file system receiving the data.

BPXPRMxx

130 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|

|
|
|
|
|

PARM is an optional parameter. The parameter is up to 500 characters long; the characters can
be in uppercase, lowercase, or both. If the characters are not all in uppercase, the parameter must
be enclosed in single quotes.

If the physical file system specified does not expect a PARM operand, it ignores all PARM
operands. Refer to the documentation for the specific physical file system for valid entry point
names.

DEFAULT
Identifies this file system as the default CINET file system.

DEFAULT is an optional parameter. If it is not specified, the file system specified in the first
SUBFILESYSTYPE statement found in the parmlib member is designated as the default. See
“Setting Up for CINET AF_INET Sockets” in z/OS UNIX System Services Planning for more
information about the use of the DEFAULT parameter.

For additional information, see SUBFILESYSTYPE in z/OS UNIX System Services Planning.

STARTUP_PROC
This statement specifies a 1-to-8-character name of a started JCL procedure that initializes the kernel.
The name specified in this statement must exist on the system before IPL or errors will occur.

Using a started procedure other than OMVS is strongly discouraged . If you want to change the
value of STARTUP_PROC, you will have to edit the BPXPRMxx member and then re-IPL. You cannot
use the SET OMVS or SETOMVS command to change the value.

If you decide to use a started procedure other than OMVS:

v The replacement started procedure must also be a single jobstep procedure that invokes the
BPXINIT program (EXEC PGM=BPXINIT). If it invokes any other program, the OMVS initialization
will fail.

v Change the procedure name in the RACF started procedures table or the definitions in the
STARTED Class. See “Preparing the RACF Security Program“ in z/OS UNIX System Services
Planning.

Note: Renaming OMVS to some other value may affect the setup of other products such as TCP/IP.

Default: STARTUP_PROC(OMVS).

STARTUP_EXEC
STARTUP_EXEC names a REXX exec that does application environment initialization for z/OS UNIX.
This statement is optional; if it is specified, the BPXOINIT process will not run /etc/init . The startup
exec is typically used by an installation that does not have an HFS, but is using a TFS for a file
system. It can be used to populate the TFS with any directories and files that are needed. It is
specified as:
STARTUP_EXEC('Dsname(Memname)',SysoutClass)

where:
v Dsname is a 1-to-44-character valid data set name.
v Memname is a 1-to-8-character valid REXX exec member.
v SysoutClass is 1 character and is alphanumeric and specifies the sysout class that the REXX exec

will run under. Specifying SysoutClass is optional.

If you want to change the value of STARTUP_EXEC, you will have to edit the BPXPRMxx member
and then reIPL. You cannot use the SET OMVS or SETOMVS command to change the value.

Default: There is no default value for STARTUP_EXEC.

RUNOPTS('string')
Specifies the _CEE_RUNOPTS environment variable used when z/OS UNIX initialization invokes

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 131

|
|
|

/etc/init or /usr/sbin/init . This string provides runtime options to Language Environment® programs in
environments where these options are not available from other sources. z/OS UNIX passes the
_CEE_RUNOPTS value and all programs invoked from /etc/rc to the shell.

If you want to change the value of RUNOPTS, you will have to edit the BPXPRMxx member and then
re-IPL. You cannot use the SET OMVS or SETOMVS command to change the value. After the value is
specified in BPXPRMxx, you can use one of the following methods to change this string:

v The system is re-IPLed with a new BPXPRMxx RUNOPTS string.

v The user or installation sets _CEE_RUNOPTS in /etc/rc or /etc/init.config .

v A program or shell script sets _CEE_RUNOPTS.

If you do not specify a value for RUNOPTS, the RUNOPTS string or _CEE_RUNOPTS environment
variable is not provided.

The TSO/E OMVS command uses the specified options as the Language Environment run-time
options, by default.

The setting of RUNOPTS has no effect on BPXBATCH jobs.

If RTLS will be used to access the Language Environment run-time library, RUNOPTS should specify
the RTLS(ON), LIBRARY, and, optionally, VERSION run-time options. Use the RUNOPTS parameter
only when using RTLS. Before using RTLS, you must set up FACILITY profiles as documented in the
CSVRTLxx description.

Specifying the RUNOPTS parameter causes the kernel to set the _CEE_RUNOPTS environment
variable when starting /etc/init , or when the TSO/E OMVS command is entered. This environment
variable is normally propagated to subsequent processes (such as /etc/init to /bin/sh to /etc/rc to
/bin/inetd to /bin/rlogind to /bin/sh for shell users).

To do this, you must make sure that any other steps in the flow (such as export statements in /etc/rc)
do not overwrite the value of _CEE_RUNOPTS. If additional run-time options are needed, they should
be concatenated to the old value of _CEE_RUNOPTS.

Value Range: From 1 to 250 characters.

Default: No RUNOPTS string or _CEE_RUNOPTS environment variable is provided.

Restrictions:

v The string must be enclosed in parentheses and quotes ('').

v An empty string (' ') is not valid.

v Although all characters are allowed, nulls, slashes (/), unbalanced SO/SI, and unbalanced
parentheses and quotes cause unpredictable problems in areas such as the TSO/E OMVS
command.

For more information on specifying RUNOPTS strings, see “Customizing the BPXPRMxx Parmlib
Member“ in z/OS UNIX System Services Planning.

SYSCALL_COUNTS(YES/NO)
Specifies that syscall counts are to be accumulated in internal kernel data areas so that the RMF data
gatherer can record the information.

If you specify YES, the path length for the most frequently used z/OS UNIX system calls is increased
by more than 150 instructions. This setting will also cause the reporting of CPU time for z/OS UNIX to
be more accurate. This will be reflected in the output from the BPX1TIM, BPX1GPS, BPX1GTH, and
BPX1RMG services and from BPXESMF.

BPXPRMxx

132 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default: NO

Use the SETOMVS or SET OMVS command to dynamically change the value of SYSCALL_COUNT.
To make a permanent change, edit the BPXPRMxx member used for IPLs.

MAXQUEUEDSIGS(nnnnnn)
Specifies the maximum number of signals that z/OS UNIX allows to be concurrently queued within a
single process.

Value Range: nnnnnn is a decimal value from 1 to 100000.

Default: 1000

You can change the value of MAXQUEUEDSIGS dynamically using the SETOMVS or SET OMVS
command. To make a permanent change, edit the BPXPRMxx member that will be used for future
IPLs.

LIMMSG(NONE|SYSTEM|ALL)
Specifies how console messages that indicate when parmlib limits are reaching critical levels are to be
displayed:

NONE No console messages are to be displayed when any of the parmlib limits have been reached.

SYSTEM
Console messages are to be displayed for all processes that reach system limits. In addition,
messages are to be displayed for each process limit of a process if:
v The process limit or limits are defined in the OMVS segment of the owning User ID
v The process limit or limits have been changed with a SETOMVS PID=pid,process_limit

ALL Console messages are to be displayed for the system limits and for the process limits,
regardless of which process reaches a process limit.

Default: NONE

AUTHPGMLIST('/etc/authfile')|NONE
Specifies the pathname of a hierarchical file system (HFS) file that contains the lists of APF-authorized
pathnames and program names. If you do not specify a value for AUTHPGMLIST, or if you specify
NONE, invocations of APF-authorized and program controlled programs will not be checked against a
list of authorized programs or authorized pathnames. If you specify a pathname for AUTHPGMLIST
parameter, the system checks this list during hfsload, exec and spawn processing. If the target
program of an exec or spawn has an authorization code of 1 (AC=1), then that program name must
appear in the authorized program list.

Use the SETOMVS or SET OMVS command to dynamically change the value of AUTHPGMLIST. To
make a permanent change, edit the BPXPRMxx member that will be used for IPLs.

For additional information, see z/OS UNIX System Services Planning.

BPXPRMxx

Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters) 133

|
|
|
|
|
|
|
|

|
|

|

BPXPRMxx

134 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 10. CLOCKxx (time of day parameters)

CLOCKxx performs the following functions:

v Prompts the operator to initialize the time of day (TOD) clock during system initialization.

v Specifies the difference between the local time and Greenwich Mean Time (GMT).

v Controls the utilization of the IBM Sysplex Timer® (9037), which is an external time reference (ETR).
Having all systems in your complex attached and synchronized to a Sysplex Timer ensures accurate
sequencing and serialization of events.

The CLOCKxx member for a system that is a member of a multisystem sysplex must contain a
specification of ETRMODE YES. The system then uses the Sysplex Timer to synchronize itself with the
other members of the sysplex. The system uses a synchronized time stamp to provide appropriate
sequencing and serialization of events within the sysplex.

Note: If all MVS images in the sysplex will run in LPARS or under VM on the same side of a single
physical processor, you can specify SIMETRID instead of ETRMODE YES.

For more information about CLOCKxx and the Sysplex Timer, see z/OS MVS Setting Up a Sysplex.

Parameter in IEASYSxx (or supplied by the operator):

The two character identifier (aa, bb, and so forth) is appended to CLOCK to identify the CLOCKxx member
of SYS1.PARMLIB. If you specify the L option in the syntax of the CLOCKxx member, or in reply to the
‘SPECIFY SYSTEM PARAMETERS’ message, the system writes all statements read from the CLOCKxx
member to the operator’s console.

Syntax rules for CLOCKxx
The following rules apply to the creation of CLOCKxx:

1. Use columns 1 through 71. Do not use columns 72-80 for data; these columns are ignored.

2. Comments may appear in columns 1-80 and must begin with “/*” and end with “*/”

3. At least one blank has to follow the statement types.

Syntax format of CLOCKxx

CLOCK= {aa }
{(aa,bb,...L)}

OPERATOR {PROMPT }
{NOPROMPT}

TIMEZONE d.hh.mm.ss

ETRMODE {YES}
{NO }

ETRDELTA nn

ETRZONE {YES}
{NO }

SIMETRID nn

© Copyright IBM Corp. 1991, 2002 135

IBM-supplied default for CLOCKxx
The IBM-supplied default parmlib member of SYS1.PARMLIB is CLOCK00, which contains the following:
OPERATOR NOPROMPT
TIMEZONE W.00.00.00
ETRMODE YES
ETRZONE YES
ETRDELTA 10

Statements/parameters for CLOCKxx
OPERATOR {PROMPT|NOPROMPT}

Specifies whether the operator is to be prompted to set the TOD clock during system initialization.

PROMPT
Specifies that the system is to prompt the operator during TOD initialization.

NOPROMPT
Specifies that the system is not to prompt the operator during TOD initialization unless the clock is
not set.

Notes:

1. If ETRMODE YES is specified, the system ignores the OPERATOR parameter.

2. OPERATOR PROMPT and SIMETRID are mutually exclusive keywords. Specify either
OPERATOR PROMPT or SIMETRID, but not both. If both are specified, the system rejects the
CLOCKxx member during system initialization, and issues a message to prompt the operator for
one of the following:
v A valid CLOCKxx member or
v EOB (by pressing the enter button on the console).

Otherwise, the operator must reIPL the system.

3. Systems running as Sysplex Test Datesource LPARs must use SIMETRID and therefore must
specify OPERATOR NOPROMPT.

Default: NOPROMPT

TIMEZONE d.hh.mm.ss
Specifies the difference between the local time and the Greenwich Mean Time (GMT). If ETRMODE
YES and ETRZONE YES are specified (and an operational Sysplex Timer is available), the system
ignores the TIMEZONE parameter.

d Specifies the direction from GMT.

Value Range: E for east of GMT or W for west of GMT.

Default: W

hh.mm.ss
Specifies the number of hours (hh) minutes (mm) and seconds (ss) that the local time differs from
the GMT.

Value Range: The value for hh must be between 00 and 15. The value for mm and ss must be
between 00 and 59. mm.ss values are optional.

Default: 00.00.00

ETRMODE {YES|NO}
Specifies whether MVS is using a Sysplex Timer. You must code ETRMODE YES if this system is a
member of a multisystem sysplex. To set ETRMODE to YES, the sysplex must be attached to an
operational Sysplex Timer.

CLOCKxx

136 z/OS V1R4.0 MVS Initialization and Tuning Reference

Note: If all MVS images in the sysplex will run in LPARS or under VM on the same side of a single
physical processor, you can specify SIMETRID instead of ETRMODE YES.

YES
Specifies that MVS is to use the Sysplex Timer, if available. If you specify ETRMODE YES and an
operational Sysplex Timer is not available, the operator will be prompted to set the TOD clock
during system initialization.

NO
Specifies that MVS is not to use the Sysplex Timer.

Notes:

1. If PR/SM* is active, the TOD clocks initially are synchronized to the Sysplex Timer.

2. Specifying NO overrides both the external time reference (ETR) and the simulated sysplex
timer (SIMETR).

Default: YES

ETRDELTA nn
Indicates the greatest difference, after IPL, between the system’s TOD and the Sysplex Timer TOD by
which the system will adjust its TOD, when necessary, to match the Sysplex Timer TOD.

If the difference between the system’s TOD and the Sysplex Timer’s TOD exceeds the ETRDELTA, the
result is:

1. If the system is part of a multisystem sysplex, the system is terminated with wait state 0A2.

2. If the system is not part of a multisystem sysplex, processing continues, but the Sysplex Timer is
not used for the remainder of that IPL.

Value Range: 0 to 99 seconds

Default: 10 seconds

ETRZONE {YES|NO}
Specifies whether the system is to get the time zone constant from the Sysplex Timer. The time zone
constant specifies the difference between the local time and the Greenwich Mean Time (GMT).

YES
Specifies that the system is to use the Sysplex Timer to set the time zone constant. If you specify
ETRZONE YES and an operational Sysplex Timer is not available, the system uses the time zone
constant specified on the TIMEZONE parameter.

NO
Specifies that the system is to use the time zone constant specified on the TIMEZONE parameter.

Default: YES when ETRMODE is set to YES. NO when ETRMODE is set to NO.

SIMETRID nn
Specifies the simulated Sysplex Timer identifier. SIMETRID allows MVS images running on the same
central electronics complex (CEC), in native mode in LPARs, as VM guests, or combinations of these,
to participate in a multi-system sysplex when no real sysplex timer is available. In these environments,
the MVS TOD clocks are synchronized by PR/SM or the VM host. If a real sysplex timer is available,
IBM recommends that you use it instead of SIMETRID.

Do not use SIMETRID on MVS images running on different CECs or different, non-LPAR partitions of
the same partitionable CEC. Instead, use a real sysplex timer and specify ETRMODE YES. When
using a real sysplex timer, your installation operational requirements will determine whether you
specify YES or NO for ETRZONE. Do not specify SIMETRID if you plan to IPL MVS native (i.e., not in
an LPAR and not under VM), even if you do not plan to have more than one MVS image in the
sysplex. SIMETRID is only available when MVS runs in an LPAR, or under VM.

CLOCKxx

Chapter 10. CLOCKxx (time of day parameters) 137

Each image participating in the same sysplex and using simulated ETR for time synchronization must
specify the same Sysplex Timer identifier (nn).

Once the logical TOD clock has been set in a partition by an IPL, the LPAR must be reactivated to
reset the time again.

Note: OPERATOR PROMPT and SIMETRID are mutually exclusive keywords. Specify either
OPERATOR PROMPT or SIMETRID, but not both. If both are specified, the system rejects the
CLOCKxx member during system initialization, and issues a message to prompt the operator
for one of the following:

v A valid CLOCKxx member or
v EOB (by pressing the enter button on the console).

Otherwise, the operator must reIPL the system.

Value Range: A two-digit hexadecimal number (X'00-1F').

Default: None. This value is optional. If specified, ETRZONE and ETRMODE are ignored and the
timezone constant specified by TIMEZONE is used.

CLOCKxx

138 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 11. CNGRPxx (Specify alternate console groups)

Use the CNGRPxx Parmlib member to define console groups as candidates for switch selection in the
event of a console failure. You can specify MCS, SMCS and extended MCS consoles as members of
these groups.

MCS and SMCS consoles are defined to your system through the CONSOLxx Parmlib member, which is
described in Chapter 17, “CONSOLxx (Console configuration definition)” on page 165. For information
about defining extended MCS consoles to your system, see z/OS MVS Planning: Operations.

You can use console groups in the following situations:

v In the event of a console failure, the system searches for a switch candidate. You specify the name of
the console group on the CONSOLE statement on the CONSOLxx Parmlib member.

v In the event of a hard-copy failure, the system searches for a switch candidate. You specify this group
on the HARDCOPY statement in the CONSOLxx Parmlib member.

v In the event of a no-consoles condition, the system searches for a console eligible to be the master
console. You specify this group on the INIT statement in the CONSOLxx Parmlib member.

v To specify the order in which consoles are to receive synchronous messages. You specify this group on
the DEFAULT statement in the CONSOLxx Parmlib member.

Console groups in a SYSPLEX
When a system joins a sysplex, the system inherits any console group definitions that are currently defined
in the sysplex; its own console group definitions in the INIT statement on CONSOLxx are ignored. If there
are no console groups defined when a system joins the sysplex, the joining system’s definitions will be in
effect for the entire sysplex. After the system is up, any system in the sysplex can issue the SET CNGRP
command to add or change the console group definitions. The change lasts for the duration of the IPL.

Selecting a CNGRPxx member
You can select a CNGRPxx member in the following ways:

v Specify the CNGRP keyword on the INIT statement of the CONSOLxx Parmlib member. For more
information, see Chapter 17, “CONSOLxx (Console configuration definition)” on page 165.

v Issue the SET CNGRP command either through the COMMNDxx Parmlib member or after initialization.
You can have up to 38 CNGRPxx members active at a time. For more information about the SET
CNGRP command, see z/OS MVS System Commands.

If you define the same console group in separate CNGRPxx members, and those members are activated,
the system will use the first specification of the console group.

Syntax rules for CNGRPxx
The following syntax rules apply to CNGRPxx:

v Use columns 1 through 71. Do not use columns 72 - 80 for data; these columns are ignored.

v A comma must be used to separate multiple keyword values within a list.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

v No more than 226 lines per CNGRPxx member, including comments, will be processed by the SET
CNGRP command.

© Copyright IBM Corp. 1991, 2002 139

Syntax examples
The following is an example of a CNGRPxx member that specifies lists of alternate consoles for the
primary tape library console and the hard-copy console.
GROUP NAME(TAPEGRP)

MEMBERS(TAPE02,TAPE03)

GROUP NAME(HCGRP)
MEMBERS(*SYSLOG*)

To activate the group called TAPEGRP, you would use the ALTGRP keyword on the CONSOLE statement
in the CONSOLxx parmlib member. To activate the group called HCGRP, you would use the HCPYGRP
keyword on the HARDCOPY statement in the CONSOLxx parmlib member.

Syntax format of CNGRPxx

IBM-supplied default for CNGRPxx
None.

Statement/parameters for CNGRPxx
GROUP

Identifies the beginning of a console group definition. Each group definition consists of one NAME
keyword and one MEMBERS keyword. You can specify more than one GROUP statement in one
CNGRPxx parmlib member.

NAME(group name)
Specifies the name of the console group. Use this name in the CONSOLxx parmlib member for
one of the following reasons:

v On the CONSOLE statement to identify a switch candidate in case of a console failure.

v On the HARDCOPY statement to identify a backup hard-copy console device.

v On the INIT statement to identify master console candidates in a no master consoles condition.
These master console candidates cannot be extended MCS consoles.

v On the DEFAULT statement to specify the order in which consoles are to receive synchronous
messages.

Value Range: 1 to 8 alphanumeric or special (#, @, or $) characters.

Default: None

MEMBERS(console name [,console name,...])
Specifies the ordered list of console names belonging to the specified group. Depending on
whether a console is an MCS, SMCS or an extended MCS console, define its name through
either:

v The CONSOLE statement of the CONSOLxx parmlib member for MCS and SMCS consoles

v Security Server or TSO/E for extended MCS consoles.

Notes:

1. An extended MCS console must already be active to become an active alternate to another
failed or varied offline console.

GROUP NAME(group name)
MEMBERS(console name[,console name,...])

CNGRPxx

140 z/OS V1R4.0 MVS Initialization and Tuning Reference

2. An extended MCS console can be defined as the alternate to an MCS or SMCS console. But,
an extended MCS console, including the system console, should NOT be defined as an
alternate console to the master console. (Some master console functions cannot be transferred
to an extended MCS console.)

Value Range: console name is from 2 to 8 characters. The first character of console name must
begin with the letters A through Z or with a #, $, or @; the remaining characters can be A through
Z, 0 through 9, or #, $, or @.

The following reserved console names have special meanings when used as part of a console
group:

Console name Meaning

SYSCON When used in a group specified on the SYNCHDEST keyword on the DEFAULT
statement in CONSOLxx, this routes a synchronous message to the system
console.

MSTCON When used in a group specified on the SYNCHDEST keyword on the DEFAULT
statement in CONSOLxx, this routes a synchronous message to the master
console.

SYSLOG When used in a group specified on the HCPYGRP keyword on the HARDCOPY
statement in CONSOLxx, this selects SYSLOG as a hard-copy switch candidate.

CNGRPxx

Chapter 11. CNGRPxx (Specify alternate console groups) 141

CNGRPxx

142 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 12. CNLcccxx (Time and date format for translated
messages)

Use the CNLcccxx member of parmlib to specify how translated messages are to be displayed at your
installation. CNLcccxx, which is called the message configuration member, allows you to specify the time
and date format for translated messages, using the MONTH, DAY, DATE, and TIME statements, as
follows:

v Use the required MONTH statement to specify the month names that are to appear in your translated
messages. MONTH1 specifies the month name for January, MONTH2 for February, and so on.

v Use the required DAY statement to specify the names of the days of the week that are to appear in
your translated messages. DAY1 specifies the name for Sunday, DAY2 for Monday, and so on.

v Use the required DEFAULTS statement to define the default date and time formats for a language.

v Use the optional DATE statement to specify the format for the date. Examples of different date formats
are:
1/14/2000
14-1-2000
14 January 2000

v Use the optional TIME statement to specify the format for the time. Examples of different time formats
include:
11:46:12 PM
46 MINUTES PAST 11
23:46:12

You need one message configuration member for each language your installation supports. Each message
configuration member is named CNLcccxx, where ccc is the appropriate language code (see Table 19 on
page 473 for a table of valid language codes) and xx identifies the member.

The message configuration member for a specific language is specified on the CONFIG keyword of the
LANGUAGE statement in the MMSLSTxx parmlib member. For more information, see Chapter 60,
“MMSLSTxx (MVS message service list)” on page 471.

IBM provides you with message configuration members for English and Japanese in SYS1.PARMLIB
(named CNLENU00 and CNLJPN00, respectively).

Restrictions for CNLcccxx
Observe the following restrictions when using CNLcccxx:

v Only one CNLcccxx member can be active at one time.

v The system uses the IBM-supplied CNLENU00 member for message processing. You can add
definitions to the CNLENU00 member, but do not delete the IBM-supplied definitions. Doing so can
cause misformatted text to appear in system messages.

Parameter in IEASYSxx (or supplied by the operator):
None.

Selecting a CNLcccxx member
The SET MMS command allows you to modify the MMS parameters that are currently in effect for your
system, including the currently active CNLcccxx member. By selecting a MMSLSTxx member that specifies
a different CNLcccxx member, you cause the system to refresh the current CNLcccxx settings. The new
MMS and CNLcccxx settings take effect immediately (that is, without requiring a reIPL of the system).

© Copyright IBM Corp. 1991, 2002 143

For more information about the SET MMS command, see z/OS MVS System Commands.

Syntax rules for CNLcccxx
The following syntax rules apply to the creation of CNLcccxx:

v Use columns 1 through 71 for data. Columns 72 - 80 are ignored.

v Specify at least one delimiter (space or comma) between a statement and a keyword. Delimiters are not
required between keywords.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″. Comments can
span more than one line.

v The beginning and ending double byte character set (DBCS) delimiters are called shift-out and shift-in
characters. In examples, the convention <d1d2> is used to represent DBCS strings enclosed in their
shift-out and shift-in characters, where d1 and d2 each represent a DBCS character, < represents
X'0E'(shift-in), and > represents X'0F'(shift-out).

v The following statements are required :
MONTH
DAY
DEFAULTS

v The following statements are optional :
DATE
TIME

When optional DATE and TIME statements are not specified, the system uses the default date and time
from the DEFAULTS statement.

Syntax format of CNLcccxx

MONTH MONTH1(monthname)
MONTH2(monthname)
MONTH3(monthname)
MONTH4(monthname)
MONTH5(monthname)
MONTH6(monthname)
MONTH7(monthname)
MONTH8(monthname)
MONTH9(monthname)
MONTH10(monthname)
MONTH11(monthname)
MONTH12(monthname)

DAY DAY1(dayname)
DAY2(dayname)
DAY3(dayname)
DAY4(dayname)
DAY5(dayname)
DAY6(dayname)
DAY7(dayname)

DATE ID(DATEnnnnnn)
FORMAT(datestring)

TIME ID(TIMEnnnnnn)
FORMAT(timestring)

DEFAULTS DEFAULTDATE(datestring)
DEFAULTTIME(timestring)

CNLcccxx

144 z/OS V1R4.0 MVS Initialization and Tuning Reference

Syntax example of CNLcccxx
An example message configuration member for Italian follows:
MONTH MONTH1(GENNAIO) MONTH2(FEBRAIO) MONTH3(MARZO) MONTH4(APRILE)

MONTH5(MAGGIO) MONTH6(GIUGNO) MONTH7(LUGLIO) MONTH8(AGOSTO)
MONTH9(SETTEMBRE) MONTH10(OTTOBRE) MONTH11(NOVEMBRE)
MONTH12(DICEMBRE)

DAY DAY1(DOMENICA) DAY2(LUNEDI) DAY3(MARTEDI) DAY4(MERCOLEDI)
DAY5(GIOVEDI) DAY6(VENERDI) DAY7(SABATO)

DATE ID(DATE1) FORMAT(&mm/&dd/&yy)
DATE ID(DATESHORT) FORMAT(&dd-&mm-&yy)
DATE ID(DATELONG) FORMAT(‘&dd &mt &yr’)
TIME ID(TIME1) FORMAT(&hh:&mm:&ss)
TIME ID(TIME2) FORMAT(&hh-&mm)
TIME ID(TIMESHORT) FORMAT(&hh-&mm-&ss&12)
TIME ID(TIMELONG) FORMAT(’&mm MINUTES PAST &hh’)
DEFAULTS DEFAULTDATE(&mm/&dd/&yy) DEFAULTTIME(&hh:&mm:&ss)

Statements/parameters for CNLcccxx
MONTH

Specifies the string to be substituted in translated messages for the corresponding month of the year.
For example,
MONTH MONTH1(JANVIER)

for the French language specifies that the string “JANVIER” will be printed in messages translated to
French where the U.S. English message contains the month name “January”.

MONTH1(monthname) - MONTH12(monthname)
Specifies the string to be substituted in translated messages for the months of January through
December.

DAY
Specifies the string to be substituted in translated messages for the corresponding day of the week.
For example,
DAY DAY1(SONNTAG)

for the German language specifies that the string “SONNTAG” will be printed in messages translated
to German where the U.S. English message contains the day name “Sunday”.

DAY1(dayname) - DAY7(dayname)
Specifies the string to be substituted in translated messages for the days of Sunday through
Saturday.

DATE
Specifies the format for displaying dates in message texts.

ID(DATExxxxxx)
Specifies the format identifier where xxxxxx is 1 to 6 alphanumeric characters. The format
identifiers are case sensitive and each identifier must be unique.

FORMAT(datestring)
Specifies the format of the date in the translated message text. The following keywords can
appear in the string:

&dd Include the numerical day of the month in the text (01-31)

&dz Include the numerical day of the month in the text but suppress leading zeroes (1-31)

&dj Include the numerical day of the year in the text (001-366)

&mm Include the numerical month of the year in the text (01-12)

CNLcccxx

Chapter 12. CNLcccxx (Time and date format for translated messages) 145

&mz Include the numerical month of the year in the text but suppress leading zeroes (1-12)

&mt Include the name of the month in the text as specified on the MONTH statement

&yy Include the last two digits of the year in the text

&yr Include all four digits of the year in the text

You can use any characters to delimit the keywords.

For example, given the date April 12, 2001, the date formats and their results follow:
DATE ID(DATE1) FORMAT(&mm/&dd/&yr) (4/12/2001)
DATE ID(DATESHORT) FORMAT(&dd-&mm-&yr) (12-4-2001)
DATE ID(DATELONG) FORMAT(’&dd &mt &yr’) (12 April 2001)

TIME
Specifies the format for displaying time in message texts.

ID(TIMExxxxxx)
Specifies the format identifier where xxxxxx is 1 to 6 alphanumeric characters. The format
identifiers are case sensitive and each identifier must be unique.

FORMAT(timestring)
Specifies the format of the time in the translated message text. The following keywords can
appear in the string:

&hh Include the numerical hour (in the range 00-11) in the text

&hz Include the numerical hour (in the range 00-11) in the text but suppress leading zeroes

&h4 Include the numerical hour (in the range 00-23) in the text

&h0 Include the numerical hour (in the range 00-23) in the text but suppress leading zeroes

&mm Include the position of the minutes in the text

&ss Include the position of the seconds in the text

&dn Include the number of decimal places, where n is a number from 1 to 6

&ap Specifies an am/pm indicator

You can use any characters to delimit the keywords.

For example, given the time 11:46:12.1234 P.M., the date formats and their results follow:
TIME ID(TIME1) FORMAT(&h4:&mm:&ss) 23:46:12
TIME ID(TIME2) FORMAT(&h0-&mm) 23-46
TIME ID(TIME3) FORMAT(&hh-&mm-&ss.&d3) 11-46-12.123
TIME ID(TIMESHORT) FORMAT(‘&hh:&mm:&ss &ap’) 11:46:12 PM
TIME ID(TIMELONG) FORMAT(‘&mm MINUTES PAST &hh’) 46 MINUTES PAST 11

DEFAULTS
Defines the default date and time formats for the language.

DEFAULTDATE(datestring)
Specifies the date format to use when no DATE statements are specified. To code datestring,
follow the format shown for the FORMAT keyword of the DATE statement.

DEFAULTTIME(timestring)
Specifies the time format to use when no TIME statements are specified. To code timestring,
follow the format shown for the FORMAT keyword of the TIME statement.

CNLcccxx

146 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 13. COFDLFxx (hiperbatch parameters)

The COFDLFxx parmlib member provides the name of the DLF installation exit and sets limits on the
amount of expanded storage that the system can use for Hiperbatch. To activate DLF, the CLASS
statement describing the group of shared objects must be present in the active COFDLFxx parmlib
member (the member named on the START command for DLF). Only one COFDLFxx member can be
active at a time.

Reference

For a description of Hiperbatch, see MVS Hiperbatch Guide.

On the CLASS statement you must supply the maximum amount of expanded storage that your installation
can use for DLF objects (MAXEXPB).

Although only one COFDLFxx member can be active at a time, you can create several members with
different limit values for the storage definition parameters, MAXEXPB and PCTRETB, then use the
MODIFY system command to change the active parmlib member.

You can monitor the effectiveness of the values you specify for MAXEXPB and PCTRETB through the
MODIFY DLF command with the STATUS operand. If the resulting display shows that the percentage of
expanded storage in use is consistently low, you might want to switch to a COFDLFxx parmlib member
that has lower limits set for MAXEXPB and PCTRETB.

IBM supplies a default DLF parmlib member (COFDLF00) that contains a default CLASS statement. You
will probably want to tailor this CLASS statement to meet your installation’s needs.

You cannot replace a DLF installation exit while DLF is active. The exit requested when DLF is started
remains in effect for the duration of the DLF address space. To replace the exit, you must stop DLF,
replace the exit (or change the parmlib CONEXIT parameter to specify a different exit), and then start DLF
again.

Parameter in IEASYSxx (or issued by the operator)
None.

Syntax rules for COFDLFxx
The following syntax rules apply to COFDLFxx:

v The content of the member is one CLASS statement.

v The CLASS statement begins with the statement identifier “CLASS” and ends with the end of file (EOF).
No explicit continuation syntax is required.

v Commas and blanks in any combination constitute a delimiter.

v Delimiters or comments can precede the statement identifier.

v Delimiters are not required between parameters with values; the right parenthesis after the specified
parameter value is sufficient.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″. Comments are
allowed between parameters.

v If the class statement contains duplicates of the following parameters, the system uses the first valid
occurrence and issues a message that a duplicate parameter was specified:
– MAXEXPB

© Copyright IBM Corp. 1991, 2002 147

– PCTRETB
– CONEXIT

Syntax format of COFDLFxx
CLASS MAXEXPB(megabytes)

[PCTRETB(percent)]
[CONEXIT(exit-name)]

Starting DLF
Issue the following command to start DLF:
START DLF,SUB=MSTR,NN=xx

The two alphanumeric characters (xx) are added to COFDLF to form the name of the COFDLFxx member.
If you do not code NN=xx, the system defaults to COFDLF00.

Note that DLF will not start unless SUB=MSTR is specified on the START command. SUB=MSTR means
that DLF can continue to run across a JES restart.

Statements/parameters for COFDLFxx
CLASS

The CLASS statement indicates the start of the parameters that define the DLF objects.

MAXEXPB(nnnn)
MAXEXPB is a required parameter that allows you to specify, in megabytes, the maximum amount
of expanded storage that the system is to use for Hiperbatch.

The value for n must be a decimal number from 0 through 9999. You can specify up to 4 digits,
including leading zeroes. The maximum value you can specify is the maximum amount of
expanded storage that is available on your system.

Value Range: 0 - 9999 megabytes

PCTRETB(nnn)
PCTRETB is an optional parameter that allows you to specify the percentage of the expanded
storage amount (defined by MAXEXPB) that DLF is to use for retained DLF objects. Retained DLF
objects are used when the output of one job step is passed to another job or job step.

The value for n must be a decimal number from 0 through 100. You can specify up to 3 digits,
including leading zeroes. If the value for n is either not in the range or is not specified, the system
uses 0.

Value Range: 0 - 100

Default: 0

CONEXIT(routine-name)
CONEXIT specifies the name of the installation exit routine for DLF. This routine must be reentrant
and reside in an authorized library in the LNKLST concatenation. For more information about the
DLF installation exit routine, see z/OS MVS Installation Exits.

COFDLFxx

148 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 14. COFVLFxx (virtual lookaside facility parameters)

The virtual lookaside facility (VLF) enables an authorized program to store named objects in virtual storage
managed by VLF and to retrieve these objects by name on behalf of users in multiple address spaces.
VLF is designed primarily to improve performance by retrieving frequently used objects from virtual storage
rather than performing repetitive I/O operations from DASD.

Certain IBM products or components such as LLA, TSO/E, CAS, and RACF use VLF as an alternate way
to access data. Since VLF uses virtual storage for its data space there are performance considerations
each installation must weigh when planning for the resources required by VLF.

Reference
For a description of VLF, see z/OS MVS Programming: Authorized Assembler Services Guide.

A VLF class is a group of related objects made available to users of an application or component. To get
the most benefit from using VLF, consider its use for objects that are:
v Used frequently
v Changed infrequently
v Used by multiple end users concurrently.

To activate a class of VLF objects, VLF requires that a CLASS statement describing that group of objects
be present in the active COFVLFxx parmlib member (the member named on the START command used
for VLF).

For example, library lookaside (LLA) uses the class of VLF objects named CSVLLA. If the CLASS
statement for CSVLLA is not included in the active COFVLFxx parmlib member, LLA cannot use VLF, and
many of the performance and operational benefits of LLA will not be available.

IBM supplies a default VLF parmlib member (COFVLF00) that contains CLASS statements for the VLF
classes used by IBM-supplied products. You might need to tailor some of these CLASS statements to
meet your installation’s needs. In addition, your installation can write applications that use VLF, and you
must include the CLASS statements for those applications.

There are three items VLF requires for each VLF class used. They are:

1. The name of the class, specified on the required NAME parameter.

IBM supplies the names of the classes it uses. These names start with the letters A-I.

2. The maximum amount of virtual storage that your installation wants VLF to use for the objects in the
class.

Unless you supply this value on the optional MAXVIRT parameter of the CLASS statement, VLF will
use a default value. Generally, the information about the IBM product that uses the VLF class provides
some guidance about how to determine an appropriate value for MAXVIRT.

For any given class, the goal is usually to provide an amount of virtual storage large enough to hold a
working set of objects—those objects that are used frequently enough to justify keeping them in virtual
storage to avoid DASD retrieval.

When you specify the MAXVIRT value, ensure that it is large enough to hold most or all of the
frequently-used objects in a VLF class. An excessively small value tends to cause thrashing of the data
in that VLF class, while an excessively large MAXVIRT value tends to increase the consumption of
auxiliary storage because infrequently-used data is paged out, rather than discarded. Specifying
MAXVIRT allows you to limit the maximum amount of auxiliary storage that could be used to back the
VLF virtual storage that is holding the objects in the class.

© Copyright IBM Corp. 1991, 2002 149

The MAXVIRT value does not represent the exact amount of virtual storage that can be used to store
objects. A small percentage of the storage (about 10 percent) is used for control information, and, in
most cases, VLF begins to “trim” (discard) least recently used objects when the amount of virtual
storage used for the class approaches 90 percent of the MAXVIRT value. Therefore, allow some
excess.

3. A list of the major names that represent the eligible sources of data for objects in the VLF class.

How you specify the major names depends on whether the VLF class is a PDS class or a non-PDS
class.

For a PDS class, each major name identifies a unique partitioned data set and consists of a PDS
name concatenated to the volume serial number. For a PDS class, use the EDSN and VOL
parameters on the CLASS statement to define the major names.

For a non-PDS class, the major name does not correspond to a partitioned data set. To specify the
eligible major names for the class, use the EMAJ parameter on the CLASS statement. For an
IBM-supplied class, use the product information to determine if anything other than the name(s)
specified in the IBM-supplied default COFVLFxx member are eligible.

In addition to the class and major name, VLF also needs a minor name to identify a unique data object,
but the minor names do not come from the COFVLFxx parmlib member.

In using the VLF naming structure, consider the TSO/E use of VLF to manage objects in the IKJEXEC
class.

v Each TSO user can have a SYSPROC DDNAME with a different concatenation. When TSO/E identifies
the user to VLF, it specifies DDNAME(SYSPROC). VLF then determines the major names (volume
serial number and PDS name combinations) that make up the individual major name search order for
that user. VLF returns a unique user token (UTOKEN) for that user.

v When that user requests a specific object (such as a CLIST named COPY) from the IKJEXEC class,
the user token implicitly specifies the major name search order. When VLF returns the COPY object to
the user, the object represents the first object with that minor name to be found in the major name
search order for that user.

Collecting VLF statistics
SMF record type 41 record, subtype 3, allows you to capture SMF data related to the usage of VLF. If you
request subtype 3, the system writes this record every 15 minutes.

For more information about the type of data SMF provides, see z/OS MVS System Management Facilities
(SMF).

Parameter in IEASYSxx (or issued by the operator)
None.

Syntax rules for COFVLFxx
The following syntax rules apply to COFVLFxx:

v The content of the member is one or more CLASS statements.

v A CLASS statement begins with the statement identifier “CLASS” and ends with the end of file (EOF) or
when another class statement identifier is found. No explicit continuation syntax is required.

v Commas and blanks in any combination constitute a delimiter.

v Delimiters or comments can precede the statement identifier.

v Delimiters are not required between parameters with values; the right parenthesis after the specified
parameter value is sufficient.

v Comments begin with /* and end with */. Comments are allowed between parameters.

COFVLFxx

150 z/OS V1R4.0 MVS Initialization and Tuning Reference

v If a class statement contains duplicates of the following parameters, the system uses the first valid
occurrence and issues a message that a duplicate parameter was specified:
– NAME
– MAXVIRT(nnn)
– multiple VOL parameters for one EDSN parameter.

Syntax format of COFVLFxx

Starting VLF
Issue the following command to start VLF:
START VLF,SUB=MSTR,NN=xx

The two alphanumeric characters (xx) are added to COFVLF to form the name of the COFVLFxx member.
If you do not code NN=xx, the system defaults to COFVLF00.

Note that VLF will not start unless SUB=MSTR is specified on the START command. SUB=MSTR means
that VLF can continue to run across a JES restart. It is recommended that you arrange for the VLF start
command to be issued automatically during the IPL process. If VLF is stopped and restarted during the life
of an MVS IPL, any request by an application to retrieve or create a VLF object with a user token obtained
prior to the restart causes VLF to write a record to SYS1.LOGREC. In this record, VLF records system
completion code 0C4 with a program interrupt code of 10 or 11. VLF, however, continues processing and
returns an appropriate return code to the application. The application should detect the return code and
obtain a new token. There is no need to take any action related to the record written to SYS1.LOGREC.
For further information about using VLF macros, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Statements/parameters for COFVLFxx
CLASS

Each group of objects that VLF processes must have a CLASS statement defining it. The CLASS
statement indicates that the following parameters define that particular group of objects to VLF.

NAME(classname)
NAME(classname) specifies the name of the VLF class. The classname may be one to seven
alphanumeric characters including @, #, and $. IBM-supplied VLF class names begin with the
letters A through I, for example, NAME(CSVLLA). See the COFVLFxx member of SYS1.SAMPLIB
for the IBM-supplied VLF class names. Installation-supplied class names should begin with the
letters J-Z or @, #, or $.

NAME(classname) is required on the CLASS statement.

EDSN(dsn) [VOL(vol)]
For a PDS class, EDSN(dsn) identifies a partitioned data set name whose members are eligible to
be the source for VLF objects in the class. The dsn can be 1 to 44 alphanumeric characters,
including @, #, $, and periods (.).

You do not need to specify the volume if the cataloged data set is the desired one. If the data set
is not cataloged, or if you have multiple data sets with the same name on different volumes, you
must specify VOL(vol). Without the volume serial number, an uncataloged data set is not included

CLASS NAME(classname)
{EDSN(dsn1) [VOL(vol)] EDSN(dsn2)...}
{EMAJ(majname1) EMAJ(majname2)...}

[MAXVIRT(nnn)]

COFVLFxx

Chapter 14. COFVLFxx (virtual lookaside facility parameters) 151

in the eligible data set name list. The system issues an informational message to the operator
identifying any data sets where the system cannot find the catalog entry to extract the volume.

The vol can be any combination of alphanumeric characters, including @, #, and $, or a dash (-).

Multiple occurrences of the same data set name with different volumes is acceptable. However, if
duplicate entries of the same data set name and the same volume occur, the system issues an
informational message and ignores the redundant information.

Do not use the EDSN parameter and the EMAJ parameter on the same CLASS statement.

EMAJ(majname)
EMAJ identifies an eligible major name (majname) for a non-PDS class, a class that does not
have major names and minor names related to partitioned data sets and their members.

The majname can be 1 to 64 alphanumeric characters except comma (,), blank, or right
parenthesis ()), for example EMAJ(LLA).

Do not use the EMAJ parameter and the EDSN parameter on the same CLASS statement.

MAXVIRT(nnnnnn)
MAXVIRT(nnnnnn) is an optional parameter that allows you to specify, in 4K blocks, the maximum
amount of virtual storage that VLF can use to store objects for the class.

The value for n must be a decimal number from 256 through 524288. You can specify up to six
digits, including leading zeroes. The maximum value is the maximum data space size. If the
system cannot obtain the amount of storage specified on MAXVIRT, it obtains as much as
possible.

VLF will trim least frequently used objects when the amount of storage used for a class
approaches 90 percent of its MAXVIRT value. For example, if a class’s MAXVIRT value is 1024,
VLF begins trimming when the class’s objects exceed 921 4K blocks of storage. Therefore, to
lessen the chance of trimming, specify a large enough value for MAXVIRT.

If the value for n is not in the valid range, the system uses 16 megabytes (4096 4K blocks.)

Default Value: MAXVIRT(4096)

COFVLFxx

152 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 15. COMMNDxx (Commands automatically issued at
initialization)

COMMNDxx is an optional, installation-created list of automatic commands the system internally issues as
part of system initialization. COMMNDxx is useful for automatic entry of commands that are frequently
issued at system initialization.

You cannot use this member to issue JES commands, because JES is not started when the system issues
the COMMNDxx commands.

Note: Some commands should not be issued frequently in large numbers. For example, issuing a large
number of VARY device commands could cause your system to go into a 07E wait state. While a
07E wait state may not be seen, IPL performance may be affected when a large number of VARY
dev commands need to be processed from a COMMNDxx member. See z/OS MVS System
Commands for possible restrictions on other commands.

System trace is activated during the IPL. You can deactivate system trace or change trace options by
using the TRACE operator command or by selecting a COMMNDxx parmlib member that contains the
options you want. (For information on the TRACE command, see z/OS MVS System Commands.)

Note: Do not use COMMNDxx to enter SLIP commands. Instead, use the IEASLPxx parmlib member,
with the SET SLIP=xx command specified in COMMNDxx to identify the IEASLPxx member to be
used.

Some console-oriented commands affect the operation of a console. You can issue a console-oriented
command directly from a console or, if the command contains a routing location operand (L=cc or L=cca)
to indicate the console, you can place the command in a COMMNDxx member. If you place a
console-oriented command (other than CONTROL M) in COMMNDxx and you do not specify a routing
location operand, the system will not execute the command and might not generate an error message.
The CONTROL M command does not support routing location operands, but it is valid in COMMNDxx.

When you specify the routing location operands, do so only as described in z/OS MVS System
Commands.

The COMMND00 member, if it exists, is read if CMD=xx is not included in the system parameter list
(IEASYSxx) or is not specified by the operator. If the system cannot locate either the specified
COMMNDxx member or COMMND00 during initialization, processing continues without automatic
commands.

Parameter in IEASYSxx (or issued by the operator):

CMD= {aa }
{(aa,bb...)}

The two-character identifier (aa,bb,etc.) is appended to COMMND to identify the COMMNDxx member(s)
of parmlib. Multiple members can be specified.

Notes:

1. Commands issued from COMMNDxx do not show on the console. Therefore, the results of these
commands appear on the console without the operator’s seeing the command.

© Copyright IBM Corp. 1991, 2002 153

2. Commands are issued in the order that they appear in COMMNDxx, but they are executed as follows:

v Immediate commands, such as DISPLAY T, are executed sequentially as they are issued from
COMMNDxx.

v Execution of task-creating commands, such as DISPLAY A, is deferred until system initialization is
complete. Then, factors such as multitasking, multiprocessing, and competition for resources
influence the order in which these commands are executed. Thus, COMMNDxx should not be used
to issue task-creating commands that must be executed in a specific order, because the execution
order of these commands can vary.

3. A command placed in COMMNDxx must look exactly as it would if entered from the console. For
example, to place the command SE ‘TSO IS UP’,CN=01 in COMMNDxx, specify the following:
COM=’SE ’TSO IS UP’,CN=01’

Support for system symbols
System commands in COMMNDxx can specify system symbols. System symbols can represent any type
of variable text in system commands, with the exception of command prefixes and names.

The following is an example of a COMMNDxx member that includes system symbols. See Figure 5 on
page 40 for a sample IEASYMxx member that defines the system symbols in this COMMNDxx member.

Be aware that the system does not process system symbols in COMMNDxx during parmlib processing.
Instead, the system processes the system symbols in the same way that it processes system symbols in
commands that are entered on a console. When a command flows through two or more systems in a
sysplex, the target system processes the system symbols in the command text, with a few exceptions. See
the section on sharing system commands in z/OS MVS Planning: Operations for details about how the
system processes system symbols in commands that flow through two or more systems.

Syntax rules for COMMNDxx
The following rules apply to the creation of COMMNDxx:

v Enter only one command per line. To do so, specify the COM=keyword, followed by the command
enclosed in single quotes. For example, to start TCAM through use of the IBM-supplied PROC, enter
COM=‘S TCAM’.

v Do not specify continuation on any line.

v Do not specify comments.

IBM-supplied default for COMMNDxx
None.

COM=’S VTAM,,,(LIST=&NODE;)’
COM=’S NETVIEW,SUB=MSTR,CAT=&CATALOG;,SYS=&SYSNAME;’
COM=’S APPC,SUB=MSTR,APPC=02’
COM=’S ICR&SYSNAME;.SYSLOG’
COM=’SET DAE=01’
COM=’SET DAE=&DAE;’
COM=’SETXCF START,POLICY,TYPE=CFRM,POLNAME=&POLNAME;’

Figure 8. Example COMMNDxx Parmlib Member

COMMNDxx

154 z/OS V1R4.0 MVS Initialization and Tuning Reference

Statements/parameters for COMMNDxx
COM=‘command’

The specified command will be issued by the system during initialization.

Default Value: No commands will be issued.

COMMNDxx

Chapter 15. COMMNDxx (Commands automatically issued at initialization) 155

COMMNDxx

156 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 16. CONFIGxx (standard configuration list)

CONFIGxx is a list of control statements that an installation can use to define a standard configuration of
system elements. The system elements include the processors, the expanded storage, Vector Facilities,
storage, channel paths, devices, and volumes. You can use the configuration defined in CONFIGxx in two
ways:

1. To compare the differences between the current configuration and the standard configuration as
defined in a CONFIGxx member. When the operator issues the DISPLAY command with the
M=CONFIG(xx) option, the system displays any differences.

2. To reconfigure some of the system elements. The operator can issue the CONFIG command with the
MEMBER option.

Comparing the current and standard configurations
In response to the DISPLAY M=CONFIG(xx) command, the system compares the contents of the
CONFIGxx member to the existing configuration. It then displays the differences to the operator. The
operator can then resolve these differences by using the CONFIG command.

Matching configurations
If the existing configuration matches the one specified in CONFIGxx, the following message (IEE097I) is
sent to the target console:

NO DEVIATION FROM REQUESTED CONFIGURATION

Nonmatching configurations
If the existing configuration does not match the one specified in CONFIGxx, the following message
(IEE097I) is sent to the target console:

syselm DESIRED ACTUAL
aaa bbb ccc

where:

syselm is the system element (CHP, CPU, DEVICE, ESTOR, STORAGE, SWITCH, VF, VOLUME, or
PAV),

aaa is either the address of the system element or, for VF, is the address of the CPU to which the
Vector Facility is attached,

bbb is the status specified in CONFIGxx,

ccc is the existing status.

For example, if CPU 0 is actually offline but is specified as online in CONFIGxx, the message is:
CPU DESIRED ACTUAL
0 ONLINE OFFLINE

Error in CONFIGxx statement
If a statement in CONFIGxx is incorrect, the following message (IEE097I) is sent to the target console:

INVALID aaa SPECIFIED BEGINNING xxx

where:

aaa is either
REQUEST TYPE if the statement is not recognized or
OPERAND if there is an error in specifying an operand.

xxx is the first sixteen characters of the invalid CONFIGxx statement.

© Copyright IBM Corp. 1991, 2002 157

Reconfiguring system elements
The CONFIG command with the MEMBER option enables the operator to reconfigure the system
according to the options in the specified CONFIGxx member. This reconfiguration is effective until the
operator issues a different CONFIGxx MEMBER command or until the operator IPLs the system. With this
command, the operator can reconfigure or verify the configuration of available channel paths, processors,
central storage, central storage elements, expanded storage elements, Vector Facilities, and switches.
These are defined by the CHP, CPU, STOR(E=id), ESTOR(E=id), VF and SWITCH statements in
CONFIGxx. Other statements found in CONFIGxx, such as DEV, VOL, ESTOR(ddddM-ddddM), and PAV,
cannot be used for reconfiguration; they can be used only for verification.

The SWITCH record allows verification or reconfiguration of ports on a specified switch device in regard to
the dynamic channel path management function. The DCM parameter verifies the enabled status or
enables the specified port or port range. The NODCM parameter verifies the disabled status or disables
the specified port or port range.

See z/OS MVS System Commands for more information on the DISPLAY and CONFIG commands.

Note: If you specify ONLINE and OFFLINE in the same CONFIGxx member, the ONLINE options are
processed before the OFFLINE options. The system processes statements that include the ONLINE
option in the following order:
1. STOR
2. ESTOR
3. CPU
4. CHP

The system processes statements that include the OFFLINE option in the following order:
1. CHP
2. CPU
3. ESTOR
4. STOR

Parameter in IEASYSxx:
None.

Syntax rules for CONFIGxx
Use the general syntax rules listed in the introduction to this chapter with the following exceptions:
v Continuation statements are not permitted.
v Comment statements are permitted and are indicated by an asterisk in column one.

IBM-supplied default for CONFIGxx
None.

Statements/parameters for CONFIGxx
CHP

Specifies the configuration of the channel paths.

The syntax is as follows:
CHP {xx }[,ONLINE][,STATIC]

{(xx-xx) }[][,MANAGED]
{(ALL,id)}[{,OFFLINE}[,UNCOND]]
{(list) }[[,FORCE]]

CONFIGxx

158 z/OS V1R4.0 MVS Initialization and Tuning Reference

where:

xx is one or two hexadecimal digits that identify the channel path identifiers and indicate the
different combinations of channel paths.

ALL,id specifies all channel paths on the side identified by the side identifier (id), which can be
either 0 or 1. Use CHP ALL,id only when your system is able to be partitioned.

list can be any combination of the elements (except ALL,id) separated by a comma. The list must
be enclosed in parentheses.

STATIC indicates that the channel path was statically defined to control units in the channel
subsystem. (Used for verification only.)

MANAGED indicates that the channel path was defined to be managed among control units in the
channel subsystem. (Used for verification only.)

OFFLINE,FORCE

CAUTION: FORCE is a very powerful option. See the CONFIG command in z/OS MVS System
Commands.

Example:
CHP (0,3-5,10,12-15)

This example specifies that channel paths 0, 3, 4, 5, 10, 12, 13, 14, and 15 are to be either verified or
reconfigured as online, depending on the command issued.

For information about generating CONFIGxx statements through the OS/390 Hardware Configuration
Definition (HCD), see z/OS HCD User’s Guide.

CPU or CPUAD
Specifies the configuration for the processors. The statement can be specified as CPU or CPUAD. The
syntax is as follows:

{CPU }{(x) } [,ONLINE] [,VFON]
{CPUAD}{(x,x[,x]...)} [,OFFLINE] [,VFOFF]

where x is a hexadecimal digit that specifies the address of the processor.

Note: If you specify VFON or VFOFF, you can specify only one processor address.

Example:
CPU (2),ONLINE,VFON

Depending on the command issued, this example specifies that the processor addressed by 2 is to be
either verified as online or reconfigured online and that the Vector Facility attached to the processor is
to be either verified as online or reconfigured online.

DEV or DEVICE
Specifies the configuration for devices.

The syntax is as follows:
{DEV } {dev } [,xx] [,ONLINE]
{DEVICE} {dev-dev} [,(list)] [,OFFLINE]

{(list) } [,*]

where:

dev specifies the device number and reflects the different combinations of devices. Each dev is 1
to 4 hexadecimal digits, optionally preceded by a slash (/).

list can be any combination of the elements separated by a comma. The list must be enclosed in
parentheses.

CONFIGxx

Chapter 16. CONFIGxx (standard configuration list) 159

xx specifies the channel paths to be used to access the devices.

* is used to verify that at least one channel path is online and can access the devices, regardless
of which channel path it is.

The system displays a deviation message (IEE097I) for any of the following conditions:

v If channel paths are specified and all of the specified channel paths to the device(s) are not online
or offline.

v If * is specified and there is no channel path online to access the device(s).

v If channel paths are not specified and * is not specified and all of the channel paths to the
devices(s) are not online or offline.

Examples:

v To cause the system to verify that the devices with device numbers 334 and 33A can be accessed
through channel path 12, code:
DEV (334,33A),12,ONLINE

v To cause the system to verify that the devices with device numbers 340 through 34F can be
accessed by all of their associated channel paths, code:
DEV 340-34F,ONLINE

v To cause the system to verify that devices 100 and 2000 through 21F0 can each be accessed by
channel paths 01, 11, and 21, code:
DEV (100,2000-21F0),(01,11,21)

Note: This example assumes the default of ONLINE.

v To cause the system to verify that devices A451, A453, and A455 can be accessed by at least one
channel path, code:
DEV (A451,A453,A455),*,ONLINE

Note: In this example, the * indicates that it is unimportant which channel paths are used to access
the devices.

For information about generating CONFIGxx statements through the OS/390 Hardware Configuration
Definition (HCD), see z/OS HCD User’s Guide

ESTOR
Specifies the configuration for elements of expanded storage. The syntax is as follows:
ESTOR {(E=id) } [,ONLINE]

{(ddddM-ddddM)} [,OFFLINE]

where:

id is the identifier of an expanded storage element. The identifier can be one to four hexadecimal
digits from X'0000' to X'FFFF'.

dddd is one to four decimal digits that must be a multiple of 4, followed by an M (megabytes), and
cannot exceed a value of 4095. These values are the starting and ending addresses of the section
of expanded storage to be verified. You can specify only one range. The starting and ending
address must not be the same.

Note: A CONFIGxx parmlib member that contains the ESTOR(ddddM-ddddM) can be used only as
the target of a DISPLAY M=CONFIG command. It can not be used to reconfigure expanded
storage.

Note: ESTOR is not supported in the z/Architecture™ environment.

CONFIGxx

160 z/OS V1R4.0 MVS Initialization and Tuning Reference

Example:
ESTOR(E=03),ONLINE

This example indicates that a section of expanded storage, whose identifier is X'03' is to be either
verified or reconfigured as online.

Example:
ESTOR (0M-64M),ONLINE

This example indicates that a section of expanded storage (location 0 through location 67,108,864) is
to be verified as online.

STOR or STORAGE
Specifies the configuration for sections of central storage. Multiple ranges can be specified. The
statement can be specified as STOR or STORAGE. The syntax is as follows:
{STOR } {dddddddK-dddddddK} [,ONLINE]
{STORAGE} {xxxxxxxxxxxxxxxx-xxxxxxxxxxxxxxxx} [,OFFLINE]

{dddddX-dddddX }
{(E=id) }
{(list) }

where:

ddddddd is one to seven decimal digits, followed by a K, which are the starting and ending
addresses of the section, and cannot exceed a value of 4194303. Each address represents a
multiple of 1024 bytes. If necessary, the system will round the low address down to the next lower
4K boundary. (This rounding is done to begin and end a section of storage on a 4K boundary.)
Note that the system does not reconfigure a section of central storage (in response to a CONFIG
command) when the section is specified in this manner.

xxxxxxxxxxxxxxxx is one to sixteen hexadecimal digits that address the first and last bytes of the
section. If necessary, the system will round the low address down to the next lower 4K boundary.
(This rounding is done to begin and end a section of storage on a 4K boundary.) Note that the
system does not reconfigure a section of central storage (in response to a CONFIG command)
when the section is specified in this manner.

Note: You can insert underscores in hexadecimal specifications to make them easier to read.
Underscores are ignored during processing, and do not count towards the number of digits
used for the address.

ddddd is one to five decimal digits, followed by a multiplier, which are starting and ending
addresses of the section, and cannot exceed a value of 16383. The valid multipliers are:

M megabytes (2**20 bytes)

G gigabytes (2**30 bytes)

T terabytes (2**40 bytes)

P petabytes (2**50 bytes)

The starting and ending addresses must not be the same.

Note: You can also specify the addresses in explicit hexadecimal notation (X’xxxxx’) followed by a
multiplier.

E=id specifies a storage element identified by the storage element identifier (id), which is one
hexadecimal digit.

list can be any combination of the elements (except E=id) separated by a comma. The list must be
enclosed in parentheses.

CONFIGxx

Chapter 16. CONFIGxx (standard configuration list) 161

Example:
STOR 8192K-32768K,ONLINE

This example indicates that a section of central storage (location 8,388,608 through location
33,554,431) is to be verified as online.

SWITCH
Specifies the configuration of the switch ports for Dynamic Channel Path Management. If no SWITCH
statement is specified for a switch port, then no verification occurs. The specification is routed to all
systems in the logical partition cluster to ensure that all systems run with the same configuration of
managed channel paths.

The syntax is as follows:
SWITCH {(ssss[,pp[-pp]])},DCM|,NODCM

{ALL }

where:

ssss is the device number of the switch device to be verified.

pp[-pp] is the port number or port number list.

ALL specifies all switch devices.

DCM specifies that Dynamic Channel Path Management is allowed for the subject port(s).

NODCM specifies that Dynamic Channel Path Management is not allowed for the subject port(s).

For information about generating CONFIGxx statements through the OS/390 Hardware Configuration
Definition (HCD), see z/OS HCD User’s Guide.

VF
Specifies the configuration for a Vector Facility and the online processor to which it is attached. The
syntax is as follows:

VF(x) {,ONLINE }
{,OFFLINE}

where x is a one-digit processor address (in hexadecimal) that represents the processor to which the
Vector Facility is attached.

Example: VF(2),OFFLINE

Depending on the command issued, this example specifies that the Vector Facility attached to the
processor addressed by 2 is to be either verified as offline or reconfigured offline.

VOL or VOLUME
Specifies the configuration for DASD volumes. The statement can be specified as VOL or VOLUME.
The device number on which a volume should be mounted can optionally be specified. The syntax is
as follows:
{VOL } {v }
{VOLUME} {v=dev}
{list }

where:

v is the volume name.

dev is the device number and is 1 to 4 hexadecimal digits, optionally preceded by a slash (/). Any
digit can be replaced with an ‘X’ to indicate that the value of that digit is not important. The X and
the hexadecimal numbers A, B, C, D, E, and F must be in upper case.

list can be any combination of the elements separated by a comma.

CONFIGxx

162 z/OS V1R4.0 MVS Initialization and Tuning Reference

Example:
VOL PAGE1,P00045=3X5

This example specifies that PAGE1 and P00045 are to be verified as mounted; P00045 should be
mounted on a device with a device number in the range 305 through 3F5.

PAV
Specifying the Parallel Access Volumes (PAV) statement causes the display of a list of all unbound
PAV-alias devices. No parameters are specified with the PAV statement. The syntax is as follows:
PAV

CONFIGxx

Chapter 16. CONFIGxx (standard configuration list) 163

CONFIGxx

164 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 17. CONSOLxx (Console configuration definition)

CONSOLxx is an installation-created member of Parmlib in which you can define a console configuration
to meet the particular needs of your installation.

In CONSOLxx, you define multiple console support (MCS) and SNA multiple console support (SMCS)
consoles. You define the specific characteristics of up to 99 MCS/SMCS consoles and the system console.
While the master console is the principal means of communicating with the system, the other consoles
often serve specialized functions and can have master authority to enter all MVS commands. You can
define the characteristics of any specific console to meet the needs of your installation. You might need to
have PF keys on one console issue one group of system commands while on another console you need
the PF keys set to issue a different set of commands. You might need to have particular messages routed
to one console, and you may want those messages deleted in a certain way. You might need a cluster of
consoles to serve different functions for a subsystem. One console in the cluster may display, in a
particular format, only the messages associated with a particular group of routing codes. Through
CONSOLxx, you can specify the configuration and have the system automatically initialize the consoles.

Through CONSOLxx, you can specify initialization values for all console configurations. For example, you
can define the characteristics of the hardcopy message set and set routing codes for messages that do
not have routing information. You can specify the Parmlib member that contains tracing options for the
operations services (OPS) component.

You also can specify the operator logon requirements for the consoles at your installation (except the
system console). Setting operator logon requirements depends on the security policy in effect at your
installation. For information about how operator logon requirements relate to securing access to system
commands, and examples of defining consoles through CONSOLxx, see z/OS MVS Planning: Operations.

Note: MCS consoles are locally attached to the system through control devices that do not support
Systems Network Architecture (SNA) protocols. SMCS consoles use SecureWay Communications
Server to communicate with the system and may be remotely attached to the system. SMCS
consoles are only available for use when the SecureWay Communications Server is active.

Using CONSOLxx in a sysplex
When two or more systems in a sysplex require a CONSOLxx member, you can do one of the following:

v Code a separate CONSOLxx member for each system in the sysplex (the least efficient method).

v Code a single CONSOLxx member for all systems in your sysplex. Specify parameters with sysplex
scope to be used by all systems in the sysplex. Consider using system symbols to represent unique
values in the member.

CONSOLxx parameters with sysplex scope are valid only for the first system that enters a sysplex.
Because these parameters are ignored by systems that later join a sysplex, you do not need to set them
up to specify unique values for different systems in a multisystem environment.

For a complete list of parameters in CONSOLxx that have sysplex scope, refer to z/OS MVS Planning:
Operations.

If different systems require unique values on parameters that do not have sysplex scope, you can use
system symbols to represent those unique values in a shared CONSOLxx member. When each system
processes CONSOLxx, it replaces the system symbols with the values it has defined to them. See
Chapter 2, “Sharing parmlib definitions” on page 25.

© Copyright IBM Corp. 1991, 2002 165

The system uses default values for the CONSOLxx statements INIT, HARDCOPY, and DEFAULT if you do
not code them. If the default values for these statements are acceptable to your installation, do not code
them for the systems in your multisystem environment.

Related members of parmlib
CONSOLxx provides a way to centralize the definitions of the console configuration for your installation.
Within CONSOLxx, you specify:

v MPFLSTxx Parmlib members for message processing control.

v The MMSLSTxx Parmlib member to display translated U.S. English messages into another language
that your installation has provided.

v The PFKTABxx Parmlib member to define any PFK tables you require.

v The CNGRPxx Parmlib member to define console groups as candidates for switch selection when
switching to another console.

Specifying MPFLSTxx members, the MMSLSTxx member, and the PFKTABxx member within the
CONSOLxx member makes it easier to maintain these related members of parmlib rather than setting
them after IPL with the SET operator command. See Chapter 61, “MPFLSTxx (message processing facility
list)” on page 475, Chapter 60, “MMSLSTxx (MVS message service list)” on page 471, and Chapter 64,
“PFKTABxx (program function key table definition)” on page 501. See Chapter 11, “CNGRPxx (Specify
alternate console groups)” on page 139 for information about specifying CNGRPxx.

CONSOLxx is closely related to the Add Device panel of hardware configuration definition (HCD). The
device number you specify in CONSOLxx must match the device number on the panel. See z/OS HCD
User’s Guide.

Related commands
Through the CONTROL, SET, and VARY commands, you can change some of the characteristics specified
in CONSOLxx:

v If the console is not named, the changes are temporary. The changes made through the CONTROL,
SET, and VARY commands last only for the current IPL. At the next IPL, the definitions in the selected
CONSOLxx member are in effect.

v If the console is named in the CONSOLxx member NAME parameter, the changes made through the
CONTROL, SET, and VARY commands can last the life of the sysplex.

For example, when system S1 is IPLed into a sysplex, the console CONS1 is defined in the CONSOLxx
member with AUTH(INFO). The operator enters a VARY CN(CONS1),AUTH=SYS to give the console a
higher authority. System S1 is then removed from the sysplex. When S1 is IPLed and the CONSOLxx
member is processed, the definition of CONS1 results in message IEA196I, which indicates that the AUTH
parameter is ignored. CONS1 will continue to have SYS authority.

For more information, see z/OS MVS System Commands.

CONSOLxx contains four optional statement types:

v CONSOLE, which is optional if processor supports the system console. If not, a CONSOLE statement is
required for the first system in a sysplex.

v INIT

v HARDCOPY

v DEFAULT.

CONSOLxx

166 z/OS V1R4.0 MVS Initialization and Tuning Reference

CONSOLE statement
You define each console by device number on the CONSOLE statement. IBM recommends that you name
all consoles, and requires that SMCS consoles be named.

Within a sysplex, different MCS consoles on different systems might have the same device number. Each
console can be defined by a unique name that identifies it to the sysplex. The console name you define on
the CONSOLE statement is used to identify a given console in system commands (MGCRE),
write-to-operator (WTO), write-to-operator-response (WTOR), and installation exits.

If you do not explicitly name MCS and subsystem consoles, the system generates a name by using the
EBCDIC representation of the console identifier. SMCS consoles require a console name. This generated
identifier is valid for the duration of the IPL, and may change on subsequent IPLs. The console name
generated by the system is used in system messages to identify the console, but you cannot use that
name in commands.

A console defined to more than one system can be active on only one system in the sysplex at a time. If
different attributes for the same console are defined in separate CONSOLxx members on different
systems, the console attributes defined in the first active system in the sysplex take effect.

Besides defining the console by device number and system symbol console name, the CONSOLE
statement also allows you to define the following for the console:
v Unit type
v Command group
v Operating mode
v Alternate console status/alternate console group status
v Routing codes
v Message deletion mode
v Size and number of out-of-line display areas
v The PFK table name
v Message routing instructions
v Message scope
v Monitor specifications
v The LU for SMCS consoles
v The LOGON attribute.

You must have a CONSOLE statement for each device that you want to use as a console. Use the Add
Device panel in hardware configuration definition (HCD) to specify the device number and the unit type for
MCS consoles only. SMCS consoles require the terminals to be defined via SecureWay Communications
Server. For more information see z/OS Communications Server: SNA Resource Definition Reference. The
entries on the panel must match the CONSOLE statement. A CONSOLxx member can include multiple
CONSOLE statements; one for each console in the configuration. For more information on HCD’s Add
Device Panel, see z/OS HCD User’s Guide.

SMCS consoles are devices defined for use by SecureWay Communication Server. For more information
on defining devices for use by SecureWay Communication Server see z/OS Communications Server: SNA
Resource Definition Reference.

A console service allows you to remove an MCS, SMCS or subsystem console from a system or sysplex.
The service is available as a sample job in Samplib member IEARELCN. For information on the console
service, see z/OS MVS Planning: Operations.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 167

INIT statement
You can do the following using the INIT statement:

v Specify the limits for WTL, WTO, and WTOR buffers.

v Specify one or more MPFLSTxx members to use with this CONSOLxx member.

v Specify the PFKTABxx member to use with this CONSOLxx member.

v Specify the MMSLSTxx member to use with this CONSOLxx member.

v Specify the CNGRPxx member to set up console groups.

v Specify the Parmlib member that contains component trace options for the operations services (OPS)
component.

v Activate the action message retention facility.

v Activate the WTO installation exit IEAVMXIT.

v Specify the MONITOR command to display mount messages.

v Specify an MVS command delimiter so an operator can issue multiple commands.

v Specify the maximum number of seconds the ROUTE *ALL or ROUTE systemgroupname command
waits before aggregating responses.

v Specify the SecureWay Communication Server APPLID that SMCS is to use on this system.

v Specify the SecureWay Communication Server Generic Resource name that SMCS is to use in this
sysplex.

The INIT statement is optional. If you do code an INIT statement, you can code only one in a CONSOLxx
member.

DEFAULT statement
You can do the following on the DEFAULT statement:

v Define the default routing codes for unsolicited WTO and WTOR messages that have no routing codes,
no descriptor codes, and no console ids assigned.

v Define whether operators must log on to the system before issuing commands from MCS or SMCS
consoles.

v Specify whether you want hold mode for consoles.

v Specifies the maximum value of a reply id in the sysplex.

v Define a console group to receive synchronous WTO or WTOR messages that the system issues.

The DEFAULT statement is optional. If you specify DEFAULT, you can have only one DEFAULT statement
in a CONSOLxx member. If you do not code the DEFAULT statement, the system assigns routing codes 1
through 16 to messages that have no other routing attributes, and MCS consoles do not require LOGON.
SMCS consoles will require logon.

HARDCOPY statement
You can do the following using the HARDCOPY statement:

v Specify whether the hardcopy medium active at initialization is an MCS printer, SYSLOG, or OPERLOG

v Specify the routing codes for messages to be included in the hardcopy message set

v Specify the kinds of messages (commands, responses or status display) to be included in the hardcopy
message set

v Specify the console group from whose members the system can select an alternate console device as
the hardcopy medium

v Specify whether the system console should receive undelivered action messages and WTOR
messages.

CONSOLxx

168 z/OS V1R4.0 MVS Initialization and Tuning Reference

v Specify whether hardcopy records should have a 4-digit year.

See z/OS MVS Planning: Operations for more information about the hardcopy message set.

The HARDCOPY statement is optional. If you do not specify HARDCOPY, the system uses SYSLOG as
the hardcopy medium. You can have only one HARDCOPY statement in a CONSOLxx member.

IEASYSxx:

The two alphanumeric characters (aa) are appended to CONSOL to form the name of the CONSOLxx
member of Parmlib. If you specify the L option in IEASYSxx, or in reply to the ‘SPECIFY SYSTEM
PARAMETERS’ message, the system lists (displays) on the operator’s console, all of the statements that
are in the CONSOLxx member. If CON=NONE is specified, the system is initialized with the IBM defaults
for the values in CONSOLxx.

Specify the NOJES3 option if JES3 is installed on your system, but is not to be used. For systems that
have both JES2 and JES3 installed, but run only JES2, the NOJES3 option allows you to omit the comma
separating the REPLY id from the command text when using short form replies to responding to system
requests.

When operating JES2, IBM recommends that the NOJES3 option be used to allow the comma to be
omitted between the REPLY id and the command text when using short form reply.

Syntax rules for CONSOLxx
Use the general syntax rules listed in the introduction to this chapter with the following exceptions and
additions:

v You may define up to 100 consoles (including the system console) within a CONSOLxx member. The
maximum number of consoles within a system or sysplex is 99, plus one system console for each
system.

v On each CONSOLE statement, DEVNUM is required and must be the first parameter.

v If NAME is specified for a CONSOLE statement, do not use a name that could be confused with a
device number. For example, the console name BAD is not recommended, since it could be confused
with device number X'BAD'.

v Data must be contained in columns 1-71; the system ignores columns 72-80.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v You do not need to code delimiters between parameters.

v One or more blanks may precede or follow the statement types (CONSOLE or INIT, for example).

v Parameter values must be set off by parentheses. If you code multiple values on certain keywords,
separate the values with a comma. Some keywords will allow you to separate multiple values with a
blank. See the keyword documentation for specific syntax.

v Do not use blanks in the middle of a keyword, in the middle of a value, or between the parameter and
the left parentheses before the value.

v A statement type must be the first data item on a record.

v You may code comments before any statement type.

v A statement type continues to the next statement type in the member or until the end of the member.

CON= {aa}
{(aa[,L][,NOJES3])}
{NONE}
{(NONE[,L][,NOJES3])}
{NOJES3}

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 169

|
|
|

v System symbolics may be used anywhere within the CONSOLxx member.

IBM-supplied default for CONSOLxx
None. If no CONSOLxx member is supplied, the system messages go to the system console and the
system uses the defaults for the other values in CONSOLxx. For information about when to initialize the
system with CON=NONE, see z/OS MVS Planning: Operations.

Statements/parameters for CONSOLxx
The statements and parameters of CONSOLxx are described below.

Syntax Format of a CONSOLE Statement
CONSOLE DEVNUM {(devnum) }

{(SUBSYSTEM)}
{(SYSCONS) }
{(SMCS) }

UNIT {(unittype)}
{(PRT) }

NAME (conname)

AUTH {(MASTER) }
{(INFO) }
{([SYS][,IO][,CONS])}
{(ALL) }

USE {(FC)}
{(MS)}
{(SD)}

ALTERNATE {(devnum) }
{(conname)}

ALTGRP(groupname)

ROUTCODE {(ALL) }
{(NONE) }
{(nnn[,nnn-nnn][,nnn]...)}

LEVEL {(ALL) }
{([ALL][,NB]) }
{([R][,I][,CE][,E][,IN][,NB])}

CON {(Y)}
{(N)}

SEG(nn)

DEL {(Y) }
{(R) }
{(RD)}
{(N) }
{(W) }

RNUM {(nn)}
{(5) }

RTME {(nnn)}
{(2) }

MFORM {(M) }

CONSOLxx

170 z/OS V1R4.0 MVS Initialization and Tuning Reference

{([J][,S][,T][,X])}

AREA {(nn[,nn]...)}
{(NONE) }

PFKTAB(tablname)

MSGRT([’inst’][,’inst’]...)

MONITOR({JOBNAMES[-T]}{,SESS[-T]}{,STATUS})

UTME {(nnn)}
{(30) }

MSCOPE {([sysname|*][,sysname|*]...)}
{(*ALL) }

CMDSYS {(sysname)}
{(*) }

UD {(Y)}
{(N)}

RBUF {(nn)}
{(15)}

SYSTEM (sysname)

LU (nnnnnnnn)

LOGON {(REQUIRED)}
{(OPTIONAL)}
{(AUTO) }
{(DEFAULT) }

CONSOLE
CONSOLE indicates the beginning of a statement that defines the characteristics of a console.
DEVNUM {(devnum) }

{(SUBSYSTEM) }
{(SYSCONS) }
{(SMCS) }

DEVNUM specifies the type of console. DEVNUM is required and must be the first keyword on
the CONSOLE statement.

devnum must be the same as the number that was specified for the device on the Add Device
panel in HCD.

Notes:

1. The system pins UCBs for console devices defined in CONSOLxx at IPL time, and the UCBs
are only unpinned when a console definition is removed using the console removal definition
service (IEAVG730), which may be invoked using the IEARELCN sample program that resides
in SYS1.SAMPLIB. This means that to delete a console device with HCD, an IPL is required,
unless the console definition is deleted using IEAVG730 ir IEARELCN.

Value Range: 1 to 4 hexadecimal digits, optionally preceded by a slash (/).

SUBSYSTEM indicates that this console is reserved for subsystem use, such as by NetView.

With JES3 5.2.1, JES3 does not use subsystem-allocatable consoles.

Notes:

1. The only keywords that are valid with DEVNUM(SUBSYSTEM) are AUTH and NAME.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 171

2. A subsystem console cannot be the master console. A subsystem console can have MASTER
authority, but it cannot be assigned at IPL. After IPL, its authority can be changed to MASTER
by issuing the VARY CN command.

SYSCONS indicates that this console is the System Console attached to this processor.

v When the System Console is attached to a system that DOES support its use as an MVS
system console, the use of the SYSCONS keyword is optional. The first time you put the
System Console into Problem Determination (PD) mode (by issuing VARY CN(*),ACTIVATE
from it), its attributes will be taken from the CONSOLE statement with DEVNUM(SYSCONS). If
there is no such statement, a default set of attributes will be used. The System Console’s
attributes can be changed with the VARY CN command.

v When the System Console is attached to a system that does NOT support its use as an MVS
system console, the system will IGNORE the SYSCONS keyword.

The SYSCONS is an extended MCS console. Seez/OS MVS Planning: Operationsfor more
information.

Note: If AMRF(N) is specified, then the OPERPARM segment for the SYSCONS extended MCS
console will default to DOM(ALL) instead of DOM(NORMAL). It will remain DOM(ALL) even
is AMRF is later set to AMRF(Y). If AMRF(Y) is specified or defaulted, then the
OPERPARM segment for the SYSCONS extended MCS console will default to
DOM(NORMAL). If AMRF is later set to AMRF(N), then the SYSCONS will be set to
DOM(ALL). If AMRF is subsequently reset to AMRF(Y), then the SYSCONS will be reset to
DOM(NORMAL).

For more information on the DOM attribute for extended MCS consoles, see z/OS MVS
Planning: Operations.

If your MVS system is running as a guest on the VM/ESA* system, and the VM system is at
release level 1.1.1 or later, VM will simulate the system console hardware regardless of the
processor type.

System Console Defaults: The system console receives the normal default values for the
keywords that are valid with DEVNUM (SYSCONS), except for the following keywords:

v NAME — The system generates a name for the system console. (For additional information,
see the description of the NAME keyword following.)

v AUTH — The system console has MASTER command authority by default.

Notes:

1. The only keywords that are valid with DEVNUM(SYSCONS) are NAME, AUTH, ROUTCODE,
LEVEL, UD, MONITOR, MSCOPE, and CMDSYS; all others are ignored.

2. For more information about whether your system supports the system console, see the
Operations manual for your processor.

SMCS

For a SMCS console, DEVNUM(SMCS) must be specified. DEVNUM(SMCS) requires the NAME
keyword and is mutually exclusive with the UNIT, ALTERNATE and SYSTEM keywords.

UNIT {(3270-X)}
{(3277-2)}
{(3278-2)}
{(3278-2A)}
{(3278-3)}
{(3278-4)}
{(3279-2A)}
{(3279-2B)}

CONSOLxx

172 z/OS V1R4.0 MVS Initialization and Tuning Reference

{(3279-2C)}
{(3279-3A)}
{(3279-3B)}
{(PRT) }

UNIT specifies the unit type of the console.

The unit type must be a valid console device listed here. See Table 12 on page 192 for the
devices that can be used as MCS consoles.

PRT specifies the console is a printer. The Add Device panel in HCD must specify a valid device
type that can be defined as a printer.

Notes:

1. Specify 3270-X for devices that meet the following criteria:

v The device supports the 3270 data stream and Read Partition Query (such as a 3471 or
3472 IBM InfoWindow® terminal).

v The device is attached to a control unit that supports Read Partition Query.

2. This keyword is mutually exclusive with DEVNUM(SMCS). SMCS will always determine the
type of device that is being used.

3. The UNIT(PRT) keyword is ignored if specified for the system console (that is, if specified with
DEVNUM(SYSCONS)).

Default: If you do not code the UNIT keyword, the system uses the information entered through
HCD for the device number to determine the unit type. If the HCD information indicates that it is a
display device, the system will default the UNIT value to 3270-X.

NAME(conname)

NAME specifies the console name that uniquely identifies the console. In a sysplex, specify a
console name if you plan to assign alternate consoles that are attached to other systems.

The console name is required when DEVNUM(SMCS) is specified. It is optional (but
recommended) for other types of consoles.

Value Range: conname is from 2 to 8 characters. The first character of conname must begin with
the letters A through Z or with a #, $, or @; the remaining characters can be A through Z, 0
through 9, or #, $, or @.

If you want to make the same console available to different systems in a sysplex, you must specify
the same value for the NAME parameter on the CONSOLE statement in each system’s
CONSOLxx Parmlib member. The console will be active on the first system that comes online.

Do not specify a console name that could be confused with a device number. For example, do not
use a console name like BAD.

Do not use HC, INSTREAM, INTERNAL, SYSIOSRS, or UNKNOWN for conname; these are
reserved for the system.

Naming the System Console: It is strongly recommended that you specify a name for the system
console in CONSOLxx. Select a unique name for the system console that cannot be confused with
a valid device number.

Default: If your operator specifies CON=NONE, or if you do not name the system console in
CONSOLxx, MVS tries to use the name of the system to which the console is attached as the
name of the system console.The system uses the system name defined on the IEASYS parameter
SYSNAME when that name is unique and cannot be interpreted as a valid device number. If you
do not name the system console in CONSOLxx, use a system name that cannot be confused with
a device number that the system can use.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 173

If you specify a system name that the system can interpret as a valid device number, the system
does not use SYSNAME as the name of the system console. If the system cannot use SYSNAME
for the system console name, or if the system console name is not unique, the name of the
system console is SYSCNxxx, where xxx is a three-character suffix generated by the system.

If you try to activate a console whose name is the same as an existing system console, the
system will reject the activation.

AUTH {(MASTER) }
{(INFO) }
{([SYS][,IO][,CONS])}
{(ALL) }

AUTH specifies the group of operator commands that can be entered from the console. Also, for
SMCS consoles, AUTH indicates whether a console can become the master console in a
no-master condition or no-consoles condition.

IBM strongly recommends using a security product, such as RACF, to control commands instead
of using AUTH, especially with SMCS. For more information on SMCS and console security see
the z/OS MVS Planning: Operations, SA22-7601 publication.

MASTER indicates that this is a console with master-level authority. The system uses the first
online MCS console in CONSOLxx with MASTER authority as the master console. When the first
console in CONSOLxx with MASTER authority is not online, then the ROUTCODE, UD, and
LEVEL attributes of this first console are merged with the attributes specified for the console that
is selected as the master console. If no MCS consoles are defined, the first SMCS console with
MASTER authority (if there are any) that activates will be used as the master console.

In a sysplex, the first console with master-level authority to come online is the master console.
There is only one master console in a sysplex at any one time. To find out which console is the
master console, issue a D C,MCONLY command. The master console has COND=M in the output
from this command. Another console can become the master console by console switch or through
the VARY MSTCONS command.

From a console with master command authority, you can enter all MVS operator commands. The
master console cannot be a subsystem console. The corresponding authority levels for JES3 are:

MASTER: JES3 authority level=15
CONS: JES3 authority level=10
I/O: JES3 authority level=10
SYS: JES3 authority level=5
INFO: JES3 authority level=0

INFO specifies that any informational commands can be entered from this console.

SYS specifies that system control commands and informational commands may be entered from
this console.

IO specifies that I/O control commands and informational commands may be entered from this
console.

CONS specifies that console control commands and informational commands may be entered
from this console.

ALL specifies that information, system control, I/O control, and console control commands may be
entered from this console.

Notes:

1. AUTH is not valid with UNIT(PRT).

2. You can separate multiple values with a blank or a comma.

CONSOLxx

174 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

For information about which commands can be entered from a console with a specific authority
level, see z/OS MVS Planning: Operations.

Default: INFO is the default for all consoles except the system console, which defaults to
AUTH(MASTER).

USE {(FC)}
{(MS)}
{(SD)}

USE specifies how the display console is used.

FC defines a full-capability console able to enter commands and receive status displays and
messages. If the console is a display device, specify USE(FC).

MS defines a message stream console. If the console is a printer, specify USE(MS).

SD defines a status display console.

Note:

1. The USE keyword is ignored if specified with DEVNUM(SYSCONS).

2. SMCS does not support USE(MS) or USE(SD) consoles. Only USE(FC) is accepted for
a SMCS console.

Default: If you do not specify USE:
v FC is the default if the console is a display device
v MS is the default if the console is a printer.

ALTERNATE {(devnum) }
{(conname)}

ALTERNATE specifies the device number or the console name of the alternate console. An
alternate console is eligible to backup this console for a console failure. The console specified on
the ALTERNATE parameter must be an MCS console defined on a different CONSOLE statement.

ALTERNATE can not be specified for SMCS consoles, and is not recommended for other types of
consoles. ALTGRP is recommended instead.

Notes:

1. An extended MCS must already be active to become an active alternate to another failed or
varied offline console.

2. An extended MCS console can be defined as the alternate to an MCS or SMCS console. But,
an extended MCS console, including the system console, should NOT be defined as an
alternate console to the master console. (Some master console functions cannot be transferred
to an extended MCS console.)

In a sysplex, if you want a console on a different system to act as an alternate console, you must
define it by console name. If during system initialization the alternate console name you specified
is in error, or names a console that is unavailable, the master console becomes the alternate.

An alternate console is considered available only when the system it is defined to is online. MVS
will automatically change the status of an alternate console from unavailable to available when a
system comes online.

If you specify an alternate console by device number, the consoles must be attached to the same
system. Otherwise, the master console becomes the backup for the failing console.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 175

Note: An output-only console can have any console as its alternate. A full-capability console must
have as its alternate a console defined as full-capability or one that can become
full-capability. A printer cannot be the alternate for a full-capability console.

For information about how the system handles alternate consoles that become disabled during
system processing, see z/OS MVS Planning: Operations .

If you want to define the same console to more than one system in a sysplex, you must specify
the same value for the ALTERNATE parameter on the CONSOLE statement for each system’s
CONSOLxx Parmlib member.

Specify either ALTERNATE or ALTGRP, but not both. If both are specified, the system will use the
value specified for ALTGRP for the console’s alternate definition.

Notes:

1. The ALTERNATE keyword is ignored if specified with DEVNUM(SYSCONS) and
DEVNUM(SMCS).

2. For SMCS, ALTGRP should be used instead.

Value Range: devnum is 1 to 4 hexadecimal digits, optionally preceded by a slash (/). conname is
from 2 to 8 characters. The first character of conname must begin with the letters A through Z or
with a #, $, or @; the remaining characters can be A through Z, 0 through 9, or #, $, or @.

Default : If you specify neither ALTERNATE nor ALTGRP on the CONSOLE statement, the master
console becomes the backup.

ALTGRP(groupname)

ALTGRP specifies the name of the alternate group for this console. The alternate group specifies
those consoles eligible to backup this console for a console failure. You define the group using the
CNGRPxx parmlib member and can contain MCS, SMCS and extended MCS consoles. See
Chapter 11, “CNGRPxx (Specify alternate console groups)” on page 139 for more information
about specifying console groups.

Notes:

1. An extended MCS console must already be active to become an active alternate to another
failed or varied offline console.

2. An extended MCS console can be defined as the alternate to an MCS or SMCS console. But,
an extended MCS console, including the system console, should NOT be defined as an
alternate console to the master console. (Some master console functions cannot be transferred
to an extended MCS console.)

Specify either ALTERNATE or ALTGRP, but not both. If both are specified, the system will use the
value specified for ALTGRP for the console’s alternate definition.

Note: The ALTGRP keyword is ignored if specified with DEVNUM(SYSCONS).

Value Range: Group names are 1 to 8 alphanumeric or special (#,@,$) characters. Do not give
your console group the same name as any console, as it may become confusing.

Default : If you do not specify ALTERNATE or ALTGRP on the CONSOLE statement, the master
console becomes the backup.

ROUTCODE {(ALL) }
{(NONE) }
{(nnn[,nnn-nnn][,nnn]...)}

CONSOLxx

176 z/OS V1R4.0 MVS Initialization and Tuning Reference

ROUTCODE specifies the routing codes assigned to the console.

Value Range: ALL specifies all routing codes, 1 through 128. nnn specifies a decimal value from 1
through 128. nnn-nnn specifies a range of decimal value with the lower value first. You can
separate multiple values with a space or a comma.

For more information on the codes and their usage, see z/OS MVS Routing and Descriptor Codes.

Default: NONE is the default for all consoles, except the master console. The master console
always receives routing codes 1 and 2.

LEVEL {(ALL) }
{([ALL][,NB]) }
{([R][,I][,CE][,E][,IN])}

LEVEL specifies the message levels for the console.
ALL indicates that the console is to receive all messages.
NB This console is to receive no broadcast messages.
R This console is to receive the messages that require an operator reply.
I This console is to receive immediate action messages.
CE This console is to receive critical eventual action messages.
E This console is to receive eventual action messages.
IN This console is to receive informational messages.

To receive all message levels but broadcast messages, you must specify:
LEVEL (R,I,CE,E,IN)

You can separate multiple values with a space or a comma.

Default: ALL (except for the system console, which defaults to LEVEL(ALL,NB)).
CON {(Y)}

{(N)}

CON indicates whether the console is to function in conversational or nonconversational mode.

Y indicates conversational mode; on this console you must verify all messages selected for
message deletion with the cursor, or selector pen or through the CONTROL command.

N indicates nonconversational mode; all messages selected for deletion are automatically deleted.

Note: CON is not valid when UNIT is PRT, or DEVNUM is SYSCONS.

Default: N
SEG (nn)

SEG specifies the number of lines in the message area that can be deleted when the CONTROL
E, SEG command is entered.

Value Range: nn is a decimal value. The minimum is 1; the maximum is 99 or the number of lines
in the message area, whichever is smaller.

Note: SEG is not valid when UNIT is PRT, or DEVNUM is SYSCONS.

Default: Default values for SEG are shown in Table 13 on page 193.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 177

|
|
|

|

|

|

DEL {(Y) }
{(R) }
{(RD)}
{(W) }
{(N) }

DEL specifies the message deletion mode of the console.

Y indicates that all messages selected for deletion are deleted when the screen becomes full.

R indicates roll mode. In roll mode, the system deletes a specified number of messages from the
screen when a interval elapses. Deletion occurs only if the screen is full and messages are waiting
to be displayed.

RD specifies roll mode except for messages awaiting actions. These messages are displayed at
the top of the screen.

W indicates wrap mode. In wrap mode, after the screen is filled with messages, new messages
overlay the old messages beginning at the top of the screen. A separator line appears following
the most recent message on the screen. When a console is in wrap mode, WTORs and action
messages will not be retained on the screen.

Note: When wrap mode (DEL(W)) is specified, the areas that were defined by the AREA keyword
exist, but are unavailable until the console is put into a non-wrap mode.

N indicates that no automatic message deletion is in effect. Messages must be deleted manually.

Note: DEL is not valid when UNIT is PRT or DEVNUM is SYSCONS.

Default: RD
RNUM (nn)

RNUM specifies the maximum number of lines included in one message roll.

Value Range: nn is a decimal value. The minimum is 1; the maximum is 99 or the number of lines
in the message area, whichever is smaller.

Note: RNUM is not valid when UNIT is PRT or DEVNUM is SYSCONS.

Default: The default value for all unit types is 5 lines or the number of lines in the message area,
whichever is smaller.

RTME (seconds)

RTME specifies the number of seconds between message rolls or wraps.

Value Range: nnn is an integer value from 1 to 999 or the fractions 1/2 or 1/4 (for example,
RTME(1/2)).

Notes:

1. RTME is not valid when UNIT is PRT or DEVNUM is SYSCONS.

2. Do not use the values 1/2 or 1/4 for a 3290 device.

Default: The default value for all unit types is 2 seconds.
MFORM {(M) }

{([J][,S][,T][,X])}

CONSOLxx

178 z/OS V1R4.0 MVS Initialization and Tuning Reference

MFORM specifies the display format of the messages.

M indicates that the system is to display the message text only. The message display does not
include time stamp, job ID, or job name information, or the system name. M is the default.

J specifies that the display is to include the job ID or name.

S specifies that the display is to include the name of the system originating the message.

T specifies that the display is to include a time stamp.

X specifies that the system suppress the job name and system name for JES3 messages issued
from the global processor.

Notes:

1. The MFORM keyword is ignored if specified with DEVNUM(SYSCONS).

2. You can separate multiple values with a blank or a comma.

Default: M
AREA {(nn[,nn]...)}

{(NONE) }

AREA specifies the size(s) of the out-of-line display area(s) on the display console. nn is a decimal
specifying the number of lines in one display area. The first number defines the bottom area of the
screen. Subsequent numbers define areas working toward the top of the screen. The minimum
number of lines in an area is 4. The maximum number of areas is 11. The sum of the lines in all of
the areas must not exceed the screen size. No individual area can be larger than 99. You can
separate multiple values with a blank or a comma.

Note: AREA is not valid when UNIT is PRT, or DEVNUM is SYSCONS.

Default: For screen sizes and maximum and default values for AREA, see Table 13 on page 193.
PFKTAB (tablname)

PFKTAB specifies the name of the table that defines the PFK definitions.

tablname identifies the 1-8 alphanumeric name for the table and must be the same as one defined
in a PFKTABxx member of parmlib. The PFKTABxx member must be active, that is, identified in
the PFK parameter on the INIT statement in CONSOLxx.

For more information on PFK tables, see Chapter 64, “PFKTABxx (program function key table
definition)” on page 501.

Note: PFKTAB is not valid when UNIT is PRT or DEVNUM is SYSCONS.

Default: If you do not specify a valid PFK table, the system uses the IBM-supplied default PFK
definitions that are described in z/OS MVS System Commands.

MSGRT([‘inst’][,][‘inst’]...)

MSGRT allows you to specify the routing instructions to direct routable system displays to a
specified message area, console or both. inst can be one routing instruction or a string of routing
instructions. Each instruction must be enclosed in single quotes and must be less than 123
characters. You can separate multiple values with a blank or a comma. For the syntax of routing
instructions, see the description of the MSGRT command in z/OS MVS System Commands.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 179

|

|
|
|
|
|
|

|
|
|
|
|

Default: If the operator has not specified any MSGRT instructions for this console, and no values
are specified for the MSGRT keyword in CONSOLxx, the system displays the message output as
follows:

1. In the issuing console’s lowest unoccupied out-of-line display area.

2. If all areas are full, in the out-of-line display area containing the oldest display of the issuing
console.

3. If no out-of-line display area can be found (because the screen has no display areas or
because all areas are being used by dynamic displays), in the general message area Z of the
issuing console.

Note: MSGRT is not valid when UNIT is PRT or DEVNUM is SYSCONS.
[MONITOR({JOBNAMES[-T]}{,SESS[-T]}{,STATUS})]

MONITOR is an optional keyword that allows you to have the system report on selected events.
You can specify one or more parameter options for MONITOR. For example:
MONITOR(JOBNAMES-T,SESS-T,STATUS)

You can separate multiple values with a blank or a comma.

JOBNAMES specifies that the system is to display the names of jobs when they start and end.
The system also:
v Displays unit record allocation at the start of a job step
v Includes the job name in a diagnostic message if the job ends abnormally.

SESS specifies that the system is to display the userid for each TSO/E session when the session
starts and ends. The system also includes the userid in a diagnostic message if a session ends
abnormally.

-T specifies that the system is to display the time with the job name or the userid. Code -T with
the JOBNAMES or the SESS parameter. The time is displayed in hh:mm:ss format. When
specified, -T is activated for all consoles that have MONITOR turned on.

STATUS specifies that system is to display the names and volume serial numbers of data sets
having dispositions of KEEP, CATLG, or UNCATLG whenever these data sets are freed.

Default: If you do not specify the MONITOR keyword (and a valid parameter or combination of
parameters), the system does not monitor any job names, TSO/E users, or data sets.

UTME (nnn)

UTME specifies the interval in seconds for updating dynamic displays.

Value Range: nnn is a decimal value from 10 to 999.

Note: UTME is not valid when UNIT is PRT, or DEVNUM is SYSCONS.

Default: 30 (30 seconds)
MSCOPE {(sysname|*[,sysname]...)}

{(*ALL) }

MSCOPE allows you to specify those systems in the sysplex from which this console is to receive
messages not explicitly routed to this console. An asterisk (*) indicates the system on which this
CONSOLE statement is defined. You can separate multiple values with a blank or a comma.

CONSOLxx

180 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

|

|

|
|
|

*ALL indicates that unsolicited messages from all systems in the sysplex are to be received by this
console.

Default: *ALL
CMDSYS {(sysname)}

{(*) }

Indicates the system (in the sysplex) where commands entered on this console are to be sent for
processing. An asterisk (*) indicates that commands entered on this console are to be processed
on the system where this console is defined.

Note: A value of * is recommended for SMCS consoles since the console is not tied to a system
and the use of SecureWay Communication Server Generic may place the console on
different systems at different times.

Default: (*) An asterisk within parentheses.
UD {(Y)}

{(N)}

Specifies whether this console is to receive undelivered messages (those with descriptor codes 1,
2, 3, 11, or 12) and WTOR messages.

Default: N (except for the master console, which defaults to UD(Y)).
RBUF (nn)

Specifies the number of previously entered commands that can be retrieved on this console by
pressing the PA1 key. Set RBUF to a value greater than 1 to allow the operator to retrieve multiple
commands, without having to retype each command. For example, to allow the operator to retrieve
the last 5 commands entered on this console, specify RBUF(5).

Commands are retrieved as they were entered on the console. That is, commands entered with
delimiters (or “stacked commands”) are treated as a single command. For example, when
RBUF(2) is specified, and the previously entered commands were:

’D T’ followed by ’D C;D R;K E,D’

v Pressing the PA1 key once retrieves: ‘D C;D R;K E,D’

v Pressing the PA1 key a second time retrieves: ‘D T’

Commands entered through PF keys cannot be retrieved, unless the keys are in conversational
mode (CON=Y).

Value Range: nn is a decimal value from 1 to 15. If you specify a value that is not between 1 to
15, an error message is issued and the console defaults to RBUF(15).

Default: 15 (The last 15 commands entered can be retrieved).
SYSTEM (sysname)

Specifies the system you expect the console to be attached to and activated on.

The SYSTEM keyword is mutually exclusive with DEVNUM(SMCS).

Default: None

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 181

Note: It is possible that a device will not be ready (not turned on) when the system (or sysplex) is
being initialized. The device might even be attached to another system as the sysplex is
initialized (for example, during an error recovery situation). When you decide to use the
device, first turn it on or re-attach it to the proper system, then issue a VARY CN,ONLINE
command for the console.

This parameter will primarily be used for consoles which are physically attached to multiple
systems and managed by a physical switch. In this case, the SYSTEM parameter determines
which system should attempt to activate the console. You cannot define multiple CONSOLE
statements with the same DEVNUM and specify a different SYSTEM on each statement. Only the
first statement will be processed, and an error message will be issued if additional statements
exist.

LU (nnnnnnnn)

This keyword defines the Logical Unit that may only use this console. The LU keyword is optional,
but may only be specified with DEVNUM(SMCS). If LU is specified, the console can only be
activated at that LU, and no other console can be activated with that LU. For more information see
thez/OS MVS Planning: Operations book.

Value Range: nnnnnnnn is a character value from 1 to 8 characters. The first character of
nnnnnnnn must begin with the letters A through Z or with a #,@,$; the remaining characters can
be A through Z, 0 through 9, or #,@,or $.

LOGON {(REQUIRED)}
{(OPTIONAL)}
{(AUTO)}
{(DEFAULT)}

This optional parameter may be used to override the LOGON value specified on the DEFAULT
statement (if any).

IBM recommends that SMCS consoles be LOGON(REQUIRED), either by the system-wide
specification on the DEFAULT statement or by the individual CONSOLE statement.

(REQUIRED) specifies that an operator must log on to a console before issuing commands from that
console. For MCS consoles, commands may be issued without the operator logging on under the
following conditions:

v When issuing commands from the master console before a security product is active.

v When issuing the VARY devnum,MSTCONS command from this console to assign the master
console (when there is currently no master console assigned) before a security product is active.

If an operator is not logged on to the console, the system rejects commands issued from that console.

(OPTIONAL) specifies that the operators can optionally log on to the console.

(AUTO) specifies this console is automatically logged on when the console is activated. The userid will
be the console name in EBCDIC format.

(DEFAULT) specifies that this console will use the LOGON specification on the DEFAULT statement.

Default: DEFAULT, unless the console is a SMCS console that does not specify the LU keyword, in
which case the default is REQUIRED.

Syntax Format of an INIT Statement

INIT MLIM {(nnnn)}
{(1500)}

CONSOLxx

182 z/OS V1R4.0 MVS Initialization and Tuning Reference

LOGLIM {(nnnnnn)}
{(1000)}

RLIM (nnnn)

AMRF {(Y)}
{(N)}

UEXIT {(Y)}
{(N)}

MPF {(NO)}
{(xx[,xx,...])}

MMS {(NO)}
{(xx)}

PFK {(NONE)}
{(xx) }

CNGRP {(xx[,xx,...])}
{(NO)}

MONITOR([SPACE][,DSNAME])

CMDDELIM {(c) }
{(X’hh’)}

NOCCGRP(groupname)

CTRACE {(CTnOPSxx)}
{(CTIOPS00)}

ROUTTIME {(nnn)}
{(30)}

APPLID (nnnnnnnn)

GENERIC (nnnnnnnn)

INIT
Specifies that the communications task initialization values follow.
MLIM (nnnn)

MLIM specifies the maximum number of buffers that the system can use to process
write-to-operator (WTO) messages. Each buffer is 352 bytes, and is obtained from private storage
(subpool 229) in the communications task (COMMTASK) address space.

Value Range: nnnn is a decimal value from 20 to 9999.

Default: 1500 (meaning 1500 buffers).
LOGLIM (nnnnnn)

LOGLIM specifies the maximum number of buffers that the system can use to process write-to-log
(WTL) messages. Each buffer is 140 bytes, and is obtained from the extended common service
area (ECSA).

Value Range: nnnnnn is a decimal value from 1000 to 999999.

Default: 1000 (meaning 1000 buffers).

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 183

Notes:

1. Ensure that there is storage in extended CSA available for the LOGLIM value specified.
Otherwise, an error will result.

2. JES3 systems using DLOG require a higher default for the LOGLIM parameter to prevent WTL
buffer shortages and SYSLOG constraints. IBM recommends setting the LOGLIM value based
on the JES3 configuration at your installation at least equal to:

LOGLIM = (4000 + (2000 x the-number-of-JES3-locals))

RLIM (nnnn)

RLIM specifies the maximum number of buffers that the system can use to process
write-to-operator-with-reply (WTOR) messages. Each buffer is 96 bytes, and is obtained from the
extended common service area (ECSA).

Value Range: nnn is a decimal value from 5 to 9999.

Default: The default is 10 (meaning 10 buffers), unless you have set the PLEXCFG= parameter of
the IEASYSxx parmlib member to a value other than XCFLOCAL or MONOPLEX. Here, the
default is equal to the value of the RMAX parameter on the DEFAULT statement of the
CONSOLxx parmlib member of the first system that joined the sysplex.

For more information see “the PLEXCFG parameter” on page 366.
AMRF {(Y)}

{(N)}

AMRF specifies whether the action message retention facility is to be active.

Note: If AMRF(N) is specified, then the OPERPARM segment for the SYSCONS extended MCS
console will default to DOM(ALL) instead of DOM(NORMAL). It will remain DOM(ALL) even
is AMRF is later set to AMRF(Y). If AMRF(Y) is specified or defaulted, then the
OPERPARM segment for the SYSCONS extended MCS console will default to
DOM(NORMAL). If AMRF is later set to AMRF(N), then the SYSCONS will be set to
DOM(ALL). If AMRF is subsequently reset to AMRF(Y), then the SYSCONS will be reset to
DOM(NORMAL).

For more information on the DOM attribute for extended MCS consoles, see z/OS MVS
Planning: Operations.

Value Range: Y indicates that AMRF is to be active, and N indicates that it is not to be active.

Default: Y (AMRF is active).
UEXIT {(Y)}

{(N)}

UEXIT specifies whether the WTO/WTOR installation exit IEAVMXIT is to be active. A default
IEAVMXIT is no longer shipped in SYS1.LINKLIB.

Value Range: Y indicates that IEAVMXIT is to be active and N indicates that it is not to be active.

Default: Y (IEAVMXIT is activated if it exists).
MPF {(NO) }

{(xx[,xx,...])}

MPF indicates whether the message processing facility is to be active.

CONSOLxx

184 z/OS V1R4.0 MVS Initialization and Tuning Reference

Value Range: xx must be two alphanumeric characters indicating the MPFLSTxx member to use.
You can specify one or more MPFLSTxx parmlib members. Multiple members are concatenated.

Default: NO (the message processing facility is not active).
MMS {(NO)}

{(xx)}

MMS indicates whether the MVS message service is to be active.

Value Range: xx must be two alphanumeric characters indicating the MMSLSTxx parmlib member
to use.

Default: NO (the MVS message service is not active).
PFK {(NONE)}

{(xx) }

PFK specifies the PFKTABxx member in parmlib that contains any PFK tables for your consoles.

xx must be two alphanumeric characters, matching the suffix of the PFKTABxx member to be
used.

NONE indicates that no PFK tables are defined; the system is to use the IBM-supplied default
PFK definitions that are described in z/OS MVS System Commands.

Default: NONE
CNGRP {(xx[,xx,...])}

{(NO) }

CNGRP indicates whether the system or sysplex is to activate console group definitions.

Value Range: xx must be two alphanumeric characters indicating the CNGRPxx parmlib member
to use. You can specify a maximum of 38 two-character suffixes.

Default: NO is the default; no active console group definitions are to be activated from the system
or sysplex.

MONITOR ([SPACE][,DSNAME])

MONITOR specifies whether the system is to add status information to mount messages displayed
on consoles.

Value Range:

SPACE indicates that, in mount messages, the system is to display the available space on the
direct access volume.

DSNAME indicates that, in mount messages, the system is to display the name of the first
non-temporary data set allocated on the volume to which a message refers.

Default: There is no default value for this keyword. That is, if you do not specify a value for
MONITOR on the INIT statement, neither the data set name nor the available space is displayed
in MOUNT messages.

Note: If a data set has a disposition of delete, its name does not appear in the mount messages.
CMDDELIM {(c) }

{(X'hh')}

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 185

CMDDELIM specifies an MCS and SMCS command delimiter that the installation chooses.
CMDDELIM allows the operator to enter multiple commands on the console at one time. Each
command separated by the delimiter is processed separately. Do not use the command delimiter
within a quoted string. If you do, the system considers the delimiter as part of the text and it will
not process the delimiter. The order in which the system processes the commands may be
different from the order in which the operator entered them. PF keys continue to use a semicolon
(;) as the delimiter.

The command delimiter is only honored when it is entered from an MCS or SMCS console. It is
not honored when entered from a Subsystem (SS) console. If a command is entered from an
extended MCS console, such as a TSO CONSOLE, SDSF LOG, or ULOG functions, the
recognition of the command delimiter is dependent on the interface reading the command.

Choose the command delimiter carefully because the delimiter character affects MVS command
processing. For example:

v Do not use ‘%’ or ‘?’ as a command delimiter if the SLIP command is to be used with indirect
addressing.

v Do not use ‘;’ as a command delimiter if the online test executive program (OLTEP) is to be
used.

v Do not use ‘&’ as a command delimiter if the installation uses system symbols.

v Use of ‘&’ as a command delimiter will cause the DUMPDS NAME function to fail if the
command is issued from an MCS or SMCS console.

v Use of ‘:’ as a command delimiter will cause the SETIOS TIME function to fail if the command is
issued from an MCS or SMCS console.

The command delimiter may be specified in EBCDIC (c) or in hexadecimal (X'hh') format. Valid
values are:

EBCDIC
HEXADECIMAL

< 4C
> 6E
& 50
; 5E
% 6C
? 6F
: 7A
" 7F

Default: There is no default value for this keyword. If you do not specify a value for CMDDELIM,
your operators cannot enter more than one command at a time.

NOCCGRP(groupname)

In a system or sysplex, NOCCGRP specifies the console group whose members are eligible to be
selected as the master console during a no-consoles condition. Members of this console group
cannot be extended MCS consoles and the group must be defined in an active CNGRPxx parmlib
member. For more information on no-consoles conditions, see z/OS MVS Planning: Operations.

Value Range: groupname can be 1-8 alphanumeric characters or #,@,$.

Default: If you do not specify a valid console group on the NOCCGRP keyword, any active MCS
console or any active master-authority SMCS console in the system or sysplex is eligible to
become the master console during a no-consoles condition.

CTRACE (member-name)

CONSOLxx

186 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

Specifies the member of Parmlib that contains the tracing options for the operations services
(OPS) component.

Value Range: The 8-character member name must be in the format CTnOPSxx.

n An alphanumeric character that specifies the source of the member. IBM-supplied
members will use “I”.

xx Any two characters to identify the member.

Default: CTIOPS00.

For more information about specifying options for the operations services component trace, see
z/OS MVS Diagnosis: Tools and Service Aids. For information about specifying the component
trace member of Parmlib see Chapter 21, “CTncccxx (component trace parameters)” on page 219.

ROUTTIME (nnn)

In a sysplex, ROUTTIME specifies the maximum number of seconds the ROUTE *ALL, ROUTE
*OTHER, or ROUTE systemgroupname command waits for responses from each system to the
command being routed before aggregating responses. The value specified for ROUTTIME in the
INIT statement of the first system in the sysplex applies to all systems which join the sysplex,
unless you change the value with a CONTROL M command.

Value Range: nnn is a decimal value between 0 and 999. If the value is zero, MVS does not
aggregate command responses, but sends separate responses for each command back to the
originator of the ROUTE command.

Default: 30
APPLID (nnnnnnnn)

Specifies the SecureWay Communications Server APPLID that SMCS is to use on this system.
Each system must have a unique APPLID. If an APPLID is not specified, SMCS will not be
available for the life of the system.

Value Range: nnnnnnnn is a character value from 1 to 8 characters. The first character of
nnnnnnnn must begin with the letters A through Z or with a #,@,$; the remaining characters can
be A through Z, 0 through 9, or #,@,or $.

GENERIC (nnnnnnnn)

Specifies the SecureWay Communications Server Generic Resource name that SMCS is to use in
this sysplex. The first system that IPLs into the sysplex that specifies GENERIC will set the
GENERIC for the life of the sysplex unless modified by the CONTROL M command.

This keyword is optional, but if it is specified, APPLID must also be specified.

Value Range: nnnnnnnn is a character value from 1 to 8 characters. The first character of
nnnnnnnn must begin with the letters A through Z or with a #,@,$; the remaining characters can
be A through Z, 0 through 9, or #,@,or $.

Note: The following rules must be true for GENERIC to work:

v SecureWay Communications Server must be an APPN node.

v The system must be in a sysplex. It is not valid for a monoplex or a single system.

v A Coupling Facility must be available.

v The SecureWay Communications Server ISTGENERIC structure must be defined in the
Coupling Facility policy.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 187

v SecureWay Communications Server must be able to communicate with the Coupling
Facility.

Syntax Format of a HARDCOPY Statement

HARDCOPY DEVNUM {(devnum) }
{(SYSLOG) }
{(OPERLOG) }
{(devnum,OPERLOG)}
{(SYSLOG,OPERLOG)}

ROUTCODE {(ALL) }
{(NONE) }
{(nn[,nnn-nnn][,nnn]...)}

CMDLEVEL {(NOCMDS)}
{(INCMDS)}
{(STCMDS)}
{(CMDS) }

HCPYGRP(groupname)

UD {(Y)}
{(N)}

HCFORMAT {(CENTURY)}
{(YEAR)}

HARDCOPY
HARDCOPY identifies the hardcopy medium, defines the hardcopy message set, specifies the name
of the alternate console group, or specifies whether UD messages not sent to any other console will
be delivered to the system console, depending on the options specified.

DEVNUM {(devnum) }
{(SYSLOG }
{(OPERLOG) }
{(devnum,OPERLOG)}
{(SYSLOG,OPERLOG)}

DEVNUM specifies the output device.

devnum specifies the device number of a printer console that is to be the hardcopy medium.

Value Range: devnum is 1 to 4 hexadecimal digits, optionally preceded by a slash (/).

SYSLOG indicates that the system log is to be the hardcopy medium.

OPERLOG indicates that the operations log will be activated and will receive the hardcopy message
set. You can specify OPERLOG alone or with devnum or SYSLOG. When you specify OPERLOG with
devnum or SYSLOG, both OPERLOG and devnum or SYSLOG will receive the hardcopy message
set.

You can specify both subparameters in either order; (OPERLOG,SYSLOG) is equivalent to
(SYSLOG,OPERLOG).

Note: A display console (including SMCS consoles) cannot be the hardcopy medium. The device you
specify for the hardcopy medium must be defined as a console in CONSOLxx.

Default: The system defaults to SYSLOG as the hardcopy medium in any of the following cases:
v You do not code a HARDCOPY statement.
v You specify an unusable hardcopy console.
v You specify OPERLOG alone but the operations log is unusable.

CONSOLxx

188 z/OS V1R4.0 MVS Initialization and Tuning Reference

ROUTCODE {(ALL) }
{(NONE) }
{(nnn[,nnn-nnn][nnn]...)}

ROUTCODE specifies the routing codes the system is to use to select messages for the hardcopy
message set. At system initialization, processing of the HARDCOPY statement sets up a minimum set
of routing codes (1,2,3,4,7,8,10, and 42), in addition to any others specified for the hardcopy message
set.

ALL indicates that all routing codes (1-128) are used to select messages for the hardcopy message
set.

NONE indicates that no routing codes are used to select messages for the hardcopy message set. It
will contain the minimum set established at initialization.

nnn is a decimal number from 1 to 128. You can specify a range of routing codes by coding an
ascending range of numbers. You can separate multiple values with a blank or a comma.

Default: ALL
CMDLEVEL {(NOCMDS)}

{(INCMDS)}
{(STCMDS)}
{(CMDS) }

CMDLEVEL specifies the types of commands and command responses that are to be included in the
hardcopy message set.

NOCMDS specifies that the system is not to include operator or system commands or their responses
in the hardcopy message set unless they meet other criteria, such as routing codes. The system
ignores this option and assumes CMDS, unless all of the following conditions are met:
v Only one console is active on the system.
v The console is a non-display console, such as a printer.
v The system is a member in a sysplex.

INCMDS specifies that the system is to include operator and system commands and their responses,
excluding any status displays, in the hardcopy message set.

STCMDS specifies that the system is to include operator and system commands, their responses, and
static status displays in the hardcopy message set.

CMDS specifies that the system is to include operator and system commands and their responses,
and static and dynamic status displays in the hardcopy message set.

Default: CMDS
HCPYGRP(groupname)

Specifies the name of the alternate console group that MVS will use to select a console device, or
SYSLOG, as the hardcopy medium during a hardcopy switch. See Chapter 11, “CNGRPxx (Specify
alternate console groups)” on page 139 for information on specifying alternate console groups.

Value Range: groupname can be 1-8 alphameric or special (#,@,$) characters long.

Default: If you do not specify groupname, or if the group you specified does not contain any eligible
candidates (or if the group name is not valid), the system will scan all consoles on this system to find
an eligible hardcopy console. See Chapter 11, “CNGRPxx (Specify alternate console groups)” on
page 139 for a description of how MVS handles hardcopy recovery if you do not specify HCPYGRP.

UD{(Y|N)}

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 189

|
|

Specifies whether UD messages (those with descriptor codes 1, 2, 3, 11, or 12, as well as WTOR
messages, that are not received by any other console) are to be delivered only to the hardcopy
device.

The UD keyword on the HARDCOPY statement provides an additional filtering of UD messages before
they appear on the system console.

N UD messages are not delivered only to the hardcopy device. These messages will also appear on
the system console. N is the default.

Y UD messages are delivered only to the hardcopy device. These messages will not appear on the
system console.

Default: N

Note: The system rejects the UD parameter if a system console is not installed.
HCFORMAT{(CENTURY|YEAR)}

Specifies the format of the Julian date as it is to appear in the SYSLOG and Master Trace hardcopy
records, where:

YEAR
Indicates that the Julian date is to use the format yyddd, showing a 2-digit year and 3-digit day.

CENTURY
Indicates that the Julian date is to use the format yyyyddd, showing a 4-digit year and 3-digit day.

Note: If you are using CENTURY, examine programs that use SYSLOG to ensure that they can
handle the new 4-digit year format.

Default: The default is YEAR.

Syntax Format of a DEFAULT Statement
DEFAULT ROUTCODE {(ALL) }

{(NONE) }
{(nnn[,nnn-nnn][,nnn]...)}

LOGON {(REQUIRED)}
{(OPTIONAL)}
{(AUTO) }

HOLDMODE {(YES)}
{(NO) }

RMAX {(nnnn)}
{(99) }

SYNCHDEST(groupname)

DEFAULT
DEFAULT allows you to define the system defaults used by the Communications Task.

ROUTCODE {(ALL) }
{(NONE) }
{(nnn[,nnn-nnn],[nnn]...)}

ROUTCODE specifies one or more default routing codes for messages that do not have any routing
information. ALL specifies 1 through 128 are to be assigned. NONE specifies that no routing codes

CONSOLxx

190 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

are to be assigned. nnn is a decimal number from 1 to 128. You can specify a range of routing codes
by coding an ascending range of numbers. You can separate multiple values with a blank or a comma.

Default: If you do not code ROUTCODE, the default is routing codes 1 through 16.
LOGON {(REQUIRED)}

{(OPTIONAL)}
{(AUTO) }

LOGON lets you define whether operators must issue LOGON and LOGOFF commands on MCS and
SMCS consoles. This definition only applies to consoles that do not specify LOGON on the CONSOLE
statement, or specify LOGON(DEFAULT) on the CONSOLE statement. (For information on securing
access to system commands, see z/OS MVS Planning: Operations.)

IBM recommends that SMCS consoles be LOGON(REQUIRED), either by the system-wide DEFAULT
or by the individual CONSOLE statement.

(REQUIRED) specifies that an operator must log on to an MCS console before issuing commands
from that console except under the following conditions:

v When issuing commands from the master console before a security product is active.

v When issuing the VARY devnum,MSTCONS command from any console to assign the master
console (when there is currently no master console assigned) before a security product is active.

If an operator is not logged on to the console, the system rejects commands issued from that console.

(OPTIONAL) specifies that the operators can optionally log on to the MCS or SMCS consoles.

(AUTO) specifies that consoles are automatically logged on when the consoles are activated. The
userid will be the console name in EBCDIC format.

Default: OPTIONAL
HOLDMODE {(YES)}

{(NO) }

Specifies whether you want hold mode for the console when the console is roll, roll-deletable, hold
mode, or wrap mode. Specifying HOLDMODE(YES) allows an operator to press the ENTER key to
suspend or hold messages on the console screen. An operator can enter and exit hold mode by
pressing the ENTER key with no input.

Default: NO
RMAX {(nnnn)}

{(99) }

Specifies the maximum value of a reply id in the sysplex. RMAX also determines the size of the reply
id displayed in the message text. For example, specifying an RMAX value of 9999 will result in all
messages having a 4 character reply id.

Value Range: 99 - 9999

Notes:

1. The value you specify for RMAX can affect the size of the XCF couple data set. For more
information, see z/OS MVS Setting Up a Sysplex.

2. If the RMAX value is in fact below 99, MVS forces the minimum RMAX value to 99 if all the
following occur:

v The sysplex supports more than eight systems (as defined in the sysplex couple data set).

v A WTOR is issued, or a REPLY is made to a WTOR.

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 191

|
|

MVS issues message IEA403I when forcing the RMAX value to 99.

Default: 99
SYNCHDEST(groupname)

Indicates that synchronous messages (those messages issued using WTO and WTOR macros with
SYNCH=YES) should be sent to the first available console in the group specified. A console is
available if it is attached to this member of the sysplex. Synchronous messages cannot be sent to
another member of the sysplex.

Consoles in this console group must be MCS consoles or the system console. SMCS consoles cannot
display synchronous messages. The SYNCHDEST console group can include other types of consoles,
such as SMCS consoles or extended MCS consoles, but the system will skip these types of consoles
when processing synchronous messages.

See Chapter 11, “CNGRPxx (Specify alternate console groups)” on page 139 for information about
specifying alternate console groups.

Value Range: 1 - 8 alphanumeric or special (#,@,$) characters. The following reserved console
names have special meanings when used as part of this console group:

Console name
Meaning

SYSCON
When used in a group specified on the SYNCHDEST keyword, this routes a synchronous
message to the system console.

MSTCON
When used in a group specified on the SYNCHDEST keyword, this routes a synchronous
message to the master console. When the system processes a synchronous message, the
master console will be skipped if it is active on another system or is a SMCS console.

Default: The SYNCHDEST keyword is optional. If you do not specify a SYNCHDEST value, the
system routes synchronous messages to the master console. If the master console is not attached to
this system, or is unavailable, the system routes synchronous messages to the system console, as the
console of last resort. If SYNCHDEST is not specified, the system will not attempt to display a
synchronous message on the master console if the master console is a SMCS console.

Devices used as MCS consoles
Table 12. Devices used as MCS Consoles

Device Input/Output Devices Output Only
Devices

Specified As Description

1403 X Printer

3203-5 X Printer

3211 X Printer

3284-1 X Printer

3284-2 X Printer

3286-1 X Printer

3286-2 X Printer

3277-2 X X Display

3278-2 X X Display

3278-2A X X Display

3278-3 X X Display

CONSOLxx

192 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 12. Devices used as MCS Consoles (continued)

Device Input/Output Devices Output Only
Devices

Specified As Description

3278-4 X X Display

3278-5 X X 3270-X Display

3279-2A X X Display

3279-2B X X Display

3279-2C X X Display

3279-3A X X Display

3279-3B X X Display

3279-2X X X 3270-X Display

3279-3X X X 3270-X Display

3279-S2B X X 3270-X Display

3279-S3G X X 3270-X Display

3290 X X 3270-X Display

Maximum and default specifications for AREA and SEG
Table 13. Maximum and Default Specifications for AREA and SEG

Unit

Full Capability AREA Size Status Display AREA Size

Screen Size SEG DefaultMax Default Max Default

3270-X Note 3270–X Note 3270–X Note 3270–X Note 3270–X Note SMCS Note 3270–X

3277-2 19 14 23 11,12 24x80 9

3278-2 20 14 24 12,12 24x80 10

3278-2A 16 4 20 10,10 20x80 8

3278-3 28 14 32 16,16 32x80 14

3278-4 39 14 43 21,22 43x80 19

3278-5 24 14 27 13,14 27x132 12

3279-2A 20 14 24 12,12 24x80 10

3279-2B 20 14 24 12,12 24x80 10

3279-2C 16 4 20 10,10 20x80 8

3279-2X 20 14 24 12,12 24x80 10

3279-3A 28 14 32 16,16 32x80 14

3279-3B 28 14 32 16,16 32x80 14

3279-3X 28 14 32 16,16 32x80 14

3279-S2B 20 14 24 12,12 24x80 10

3279-S3G 28 14 32 16,16 32x80 14

3290 20 14 24 12,12 24x80 10

3290 24 14 27 13,14 27x132 12

3290 27 14 31 15,16 31x80 13

3290 28 14 31 15,16 31x160 14

3290 28 14 32 16,16 32x80 14

3290 39 14 43 21,22 43x80 19

3290 46 14 50 25,25 50x106 23

CONSOLxx

Chapter 17. CONSOLxx (Console configuration definition) 193

Table 13. Maximum and Default Specifications for AREA and SEG (continued)

Unit

Full Capability AREA Size Status Display AREA Size

Screen Size SEG DefaultMax Default Max Default

3290 58 14 62 31,31 62x80 29

3290 59 14 62 31,31 62x160 28

SMCS Note SMCS Note SMCS Note SMCS Note SMCS Note SMCS Note SMCS

Note: SMCS screen size requires a minimum screen size of 24 rows x 80 columns to display the SMCS
Console Selection Screen. SMCS consoles that do not have a predefined LU should be at least
24x80.

Note: 3270–X values are calculated dynamically as follows:

Full Capability AREA Size

Max
#rows - #rows of entry area

Default
14 or the Max Area, whichever is smaller.

Status Display AREA Size

Max
#rows

Default
2 areas, each is #rows/2. (For odd screen sizes, the B area is one row larger so that it
takes up the entire screen.)

Screen Size
See SMCS Screen Size Note

SEG Default
(#rows - (3 or 4))/2 Where 3 or 4 depends on the number of lines in the entry area.

Message Stream
#rows - 1

CONSOLxx

194 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 18. COUPLExx (cross-system coupling facility (XCF)
parameters)

The cross-system coupling facility (XCF) provides the MVS coupling services that allow authorized
programs on MVS systems in a multisystem environment to communicate (send and receive data) with
programs on the same MVS system or other MVS systems. The cross-system extended services (XES)
allow authorized programs on MVS to use a coupling facility to share data with other programs on the
same MVS system or other MVS systems. The eventual goal for the coupling services provided by XCF
and XES is to allow an installation to view multiple MVS systems as one MVS system.

References

For more information about using XCF, see z/OS MVS Setting Up a Sysplex.

You must specify a COUPLExx parmlib member for each system in the sysplex. Use the COUPLExx
member of SYS1.PARMLIB to specify the following installation values for this system in your sysplex:
v The sysplex name
v The names of the sysplex couple data sets
v The names of other types of couple data sets
v The failure detection interval
v The operator notification interval
v The cleanup interval
v The default message buffer space
v The default message size for a signalling path
v The transport classes
v The outbound signalling paths
v The inbound signalling paths
v The default retry limit
v The local message buffer space
v XCF CTRACE parmlib member
v XES CTRACE parmlib member
v CPUID toleration indicator for VM guest systems

Parameter in IEASYSxx (or supplied by the operator):

COUPLE=xx

The two-character identifier (xx) is appended to COUPLE to identify the COUPLExx member of parmlib.

Syntax rules for COUPLExx
The following syntax rules apply to COUPLExx:

v Use columns 1 through 71. Do not use columns 72 - 80 for data; these columns are ignored.

v At least one delimiter (space or comma) is required between a statement and keyword. Delimiters are
not required between keywords.

v Use at least one delimiter to separate multiple keyword values within parentheses.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

© Copyright IBM Corp. 1991, 2002 195

Syntax format of COUPLExx

IBM-supplied default for COUPLExx
The default parmlib member, COUPLE00, contains:
COUPLE SYSPLEX(LOCAL)

which brings a system up in XCF-local mode because the member does not include the PCOUPLE
statement.

Statements/parameters for COUPLExx
COUPLE

Describes the sysplex (systems complex) in which the system participates.

CFRMPOL(CFRMPOLNAME)
Specifies the name of the CFRM policy that is to be started at IPL-time if there is no other
previously-activated CFRM policy. If there is a previously-activated CFRM policy, the CFRMPOL
specification is ignored. The CFRM couple data set that contains the policy must be accessible to
all members of the sysplex. See the PCOUPLE and ACOUPLE statements for a description of the
couple data sets.

VALUE RANGE: cfrmpolname is a 1-8 character name of a CFRM policy. Valid characters are A-Z
and 0-9. The policy name must start with an alphabetic character.

[COUPLE SYSPLEX(sysplex-name)]
[CFRMPOL(CFRMPOLNAME)]
[PCOUPLE(primary-dsname[,primary-volume])]
[ACOUPLE(alternate-dsname[,alternate-volume])]
[INTERVAL(time-interval)]
[OPNOTIFY(time-interval)]
[CLEANUP(cleanup-interval)]
[MAXMSG(default maxmsg)]
[RETRY(default retry-limit)]
[CLASSLEN(default class-length)]
[CTRACE(parmlib-member)]
[VMCPUIDTOLERATION(NO|YES)]

[CLASSDEF]
[CLASS(class-name)]
[[CLASSLEN(class-length)]]
[[MAXMSG(max-messages)]]
[[GROUP(group-name[,group-name]...)]]
[PATHIN]
[{DEVICE(device-number[,device-number]...) }]
[{STRNAME(strname[,strname]...) }]
[[MAXMSG(max-messages)]]
[[RETRY(retry-limit)]]
[PATHOUT]
[{DEVICE(device-number[,device-number]...) }]
[{STRNAME(strname[,strname]...) }]
[[MAXMSG(max-messages)]]
[[RETRY(retry-limit)]]
[[CLASS(class-name)]]
[LOCALMSG]
[MAXMSG(max-messages)]
[[CLASS(class-name)]]
[DATA]
[TYPE(name[,name]...)]
[PCOUPLE(primary-dsname[,primary-volume])]
[[ACOUPLE(alternate-dsname[,alternate-volume])]]

COUPLExx

196 z/OS V1R4.0 MVS Initialization and Tuning Reference

DEFAULT: None. If you omit the CFRMPOL keyword, and there is no previously-activated CFRM
policy, the system does not automatically start a CFRM policy at IPL time.

SYSPLEX(sysplex-name)
Specifies the name of the sysplex in which the system participates. The sysplex name is also the
substitution text for the &SYSPLEX system symbol. Specify a sysplex name that is different than
any of the system names in the sysplex.

The optional SYSPLEX parameter in the LOADxx parmlib member also specifies the sysplex
name. LOADxx defines the substitution text for &SYSPLEX early in system initialization so other
parmlib members can use it. Therefore, if you plan to use the &SYSPLEX system symbol in
parmlib, specify the sysplex name in LOADxx.

When you specify a sysplex name on this parameter, consider the content of LOADxx:

v If the sysplex name is specified in LOADxx, code the &SYSPLEX system symbol on this
parameter, as follows:
SYSPLEX(&SYSPLEX.)

The use of &SYSPLEX ensures that the sysplex name is the same in both LOADxx and
COUPLExx. Do not code a name that is different from the name specified in LOADxx. If
you do, the substitution text for &SYSPLEX changes during system initialization, and might
generate unpredictable results. See “Step 6. Code support for system symbols in LOADxx” on
page 40 for details on how to specify the sysplex name in LOADxx.

v If you specify the sysplex name only in COUPLExx, code the name on this parameter. Be
aware that the system will not define the substitution text for &SYSPLEX until late in system
initialization. The system will substitute the text LOCAL for &SYSPLEX in all parmlib members
that are processed until the COUPLExx parmlib member is completely processed. If you want to
resolve the substitution for &SYSPLEX to anything other than LOCAL during the processing of
COUPLExx, you need to specify the substitution in LOADxx.

System logger also may use the sysplex name as part of the staging data set name for a
DASD-only log stream. The sysplex name specified here allows you to use a digit as the first
character, but this is not valid in a staging data set name. If you use a digit as the first character in
the sysplex name, system logger substitues ’STG’ for the digit and uses part of the system name
in the low level qualifier for the staging data set name. For complete information, see z/OS MVS
Setting Up a Sysplex and look for the topic on Naming Conventions for the Log Stream and DASD
Log data sets.

Value Range: One of the following:

v A 1- through 8-character sysplex name. Valid characters are alphanumeric (A-Z and 0-9) and
national (@,#,$) characters. The name must match the name specified on the SYSPLEX
parameter of the XCF couple data set format utility.

Default: None. A value must be specified for this parameter.

PCOUPLE(primary-dsname[,primary-volume])
Specifies the name of the primary sysplex couple data set and, optionally, the volume on which that
data set resides.

Value Range: The primary-dsname must be a valid data set name of up to 44 characters. Valid
characters are alphanumeric (A-Z and 0-9) and national (@,#,$) characters and periods (.).

The primary-volume is the 1 to 6 character name of a mounted and ready DASD volume. Valid
characters are alphanumeric and national characters. If the volume is not specified, the data set must
be cataloged in the master catalog.

Default: None. If you omit the PCOUPLE keyword the system comes up in XCF-local mode. Also, the
system ignores the PATHIN and PATHOUT statements and the ACOUPLE keyword.

COUPLExx

Chapter 18. COUPLExx (cross-system coupling facility (XCF) parameters) 197

|
|
|
|
|
|

ACOUPLE(alternate-dsname[,alternate-volume])
Specifies the name of the alternate sysplex couple data set and, optionally, the volume on which that
data set resides. XCF maintains information about the sysplex in both the primary and alternate data
sets concurrently. XCF automatically switches to the alternate couple data set when the primary couple
data set fails. You cannot specify the ACOUPLE parameter without a PCOUPLE parameter.

Value Range: The alternate-dsname must be a valid data set name of up to 44 characters. Valid
characters are alphanumeric (A-Z and 0-9) and national (@,#,$) characters and periods (.).

The alternate-volume is the 1 to 6 character name of a mounted and ready DASD volume. Valid
characters are alphanumeric and national characters. If the volume is not specified, the data set must
be cataloged in the master catalog.

Default: None. If you omit the ACOUPLE keyword, XCF is started with only the XCF primary couple
data set specified on the PCOUPLE parameter (if it was specified).

INTERVAL(seconds)
Specifies the failure detection interval, the amount of elapsed time at which XCF on another system is
to initiate system failure processing for this system because XCF on this system has not updated its
status within the specified time.

Note: IBM recommends that you specify a value at least as large as the total of twice the effective
excessive spin loop timeout value (SPINTIME in the EXSPATxx parmlib member) plus 5. The
SPINTIME parameter is explained in 244.

Specifying this value allows spin loop processing time to complete before the failure detection interval
time expires.

Value Range: 3 - 86400 (seconds)

Default: XCF uses twice the default spin loop timeout value, plus 5, for the default failure detection
interval.

v For MVS running in a native or basic mode, or in an LPAR with dedicated CPs, the default for spin
loop timeout is 10; therefore the default INTERVAL value is 25.

v For MVS running on VM or in an LPAR with shared CPs, the default for the spin loop timeout is 40;
therefore the default INTERVAL value is 85.

Note that XCF uses the default spin loop timeout value and not what you specified in the EXSPATxx
parmlib member. If you specify a SPINTIME value in the EXSPATxx parmlib member, then also specify
the appropriate INTERVAL value for XCF to use. MVS does not do any validity checking between the
SPINTIME value and the INTERVAL value; if you change the SPINTIME value, you must also change
the INTERVAL value accordingly. If you do not set the INTERVAL value to coordinate with the
SPINTIME value, XCF might remove a system from the sysplex before that system has had sufficient
time to recover from a spin loop.

OPNOTIFY(seconds)
Specifies the amount of elapsed time at which XCF on another system is to notify the operator (by
using message IXC402D) that this system has not updated its status. This value must be greater than
or equal to the value specified on the INTERVAL keyword.

Value Range: 3 - 86400 (seconds)

Default: 3 + the value of the INTERVAL keyword

CLEANUP(seconds)
Specifies how many seconds the system waits between notifying members that this system is
terminating and loading a non-restartable wait state. This is the amount of time members of the
sysplex have to perform cleanup processing.

Value Range: 0 - 86400 (seconds)

COUPLExx

198 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default: 60

Default: 15

MAXMSG(nnnnnn)
Specifies a value XCF uses to determine the allotment of message buffers when the MAXMSG
parameter is not specified on any one of following:
v The CLASSDEF statement
v The PATHIN statement
v The SETXCF START,CLASSDEF command
v The SETXCF START,PATHIN command.

For more information about determining message buffer space, see z/OS MVS Setting Up a Sysplex.

Value Range: 1 - 999999 K-byte blocks of storage.

Default: 750

RETRY(nnn)
Indicates the system default for how much tolerance XCF has for signalling path failures. The lower
the value, the sooner XCF stops the signalling path. A higher value indicates that XCF will tolerate
more signalling path failures before XCF stops the signalling path. The system uses this value when
the RETRY parameter is not on any one of the following:
v The PATHOUT statement
v The PATHIN statement
v The SETXCF START,PATHOUT command
v The SETXCF START,PATHIN command.

Value Range: 3 - 255

Default: 10

CLASSLEN(nnnnn)
Specifies the system default for message length that the system uses when CLASSLEN is not
specified on either:
v The CLASSDEF statement
v The SETXCF START,CLASSDEF command.

Value Range: 0 - 62464

Default: 956 bytes

CTRACE(parmlib-member)
Specifies the member of SYS1.PARMLIB that contains component trace options. You can specify
either a CTnXCFxx or a CTnXESxx parmlib member, or both (by specifying the CTRACE keyword
more than once).

Value Range: The 8-character member name must be in the format CTnXCFxx or CTnXESxx, where:

n An alphanumeric character to specify the source of the member. IBM-supplied members will
use “I”.

xx Any two characters.

Defaults: CTIXCF00 and CTIXES00

The contents of CTIXCF00 are:
TRACEOPTS

ON
BUFSIZE(72K)

COUPLExx

Chapter 18. COUPLExx (cross-system coupling facility (XCF) parameters) 199

The contents of CTIXES00 are:
TRACEOPTS

ON
OPTIONS(‘CONFIG’,‘CONNECT’,‘RECOVERY’)
BUFSIZE(168K)

For more information about specifying options for the XCF component trace, see z/OS MVS
Diagnosis: Tools and Service Aids. For information about coding the component trace member of
SYS1.PARMLIB, see Chapter 21, “CTncccxx (component trace parameters)” on page 219.

VMCPUIDTOLERATION(NO|YES)
Controls the verification of CPU identification information that:

v A VM guest system will perform at SCF initialization with respect to any other active systems in the
sysplex

v An LPAR system will perform at XCF initialization with respect to any other active VM guest
systems in the sysplex

when a simulated external time reference identifier (SIMETRID) is being used.

The keyword has no effect if the system is not running as either a VM guest or LPAR system. The
keyword also has no effect on system operation subsequent to XCF initialization.

Value Range: One of the following:

NO Specifies that a VM guest system or LPAR system IPLing into a sysplex will verify its CPU
identification information against that of other systems in the sysplex. The system will not
tolerate disparate CPU identification information with respect to other systems in the sysplex
when SIMETRID is being used.

YES Specifies that a VM guest system or LPAR system IPLing into a sysplex will not verify its
virtual CPU identification information against that of other systems in the sysplex. It will
tolerate disparate CPU identification information with respect to the other systems in the
sysplex when SIMETRID is being used.

Also, an LPAR system IPLing into a sysplex will not verify its CPU identification information
against the virtual CPU information of any VM guest systems active in the sysplex. It will
tolerate disparate CPU identification information with respect to VM guest systems in the
sysplex, but not with respect to other LPAR or native systems in the sysplex when SIMETRID
is being used.

VMCPUIDTOLERATION(YES) allows VM guest systems participating in a sysplex under VM to
have disparate CPU identification information, which might be useful in using VM to simulate a
sysplex comprised of systems on different CECs.

When this option is specified, the system has no way to verify that the VM guest systems in
the sysplex are in fact guests of the same VM host system. The installation must ensure that
all systems participating in a sysplex are guests of the same VM host system, in order to
ensure that the simulated Sysplex Timer support (SIMETRID) provides a common time
reference.

Default: NO

CLASSDEF
Each optional CLASSDEF statement defines an XCF transport class (in addition to the DEFAULT
transport class) for message traffic. You can define a maximum of 62 different transport classes. If you
do not define the DEFAULT transport class, the system will create a default transport class with these
characteristics:

v CLASS - The default classname is DEFAULT

COUPLExx

200 z/OS V1R4.0 MVS Initialization and Tuning Reference

v CLASSLEN - The default message length that is specified with the CLASSLEN parameter of the
COUPLE statement

v MAXMSG - The amount of message buffer space that is specified with the MAXMSG parameter of
the COUPLE statement

v GROUP - Although no groups are explicitly assigned to the default transport class, the DEFAULT
transport class handles the messages for any group not explicitly assigned to a specific transport
class. The collection of these groups is referred to by the pseudo-group name UNDESIG. Groups
are explicitly assigned to a transport class by using the GROUP parameter on the CLASSDEF
statement or the SETXCF command.

CLASS(classname)
Indicates the name of the transport class. Each transport class must have a unique class name on
a system. You can specify the same class name on other systems in the sysplex for convenience;
but there is no relationship between transport classes on different systems. To modify the definition
of the default transport class, use the classname of DEFAULT.

Value Range: 1 to 8 alphanumeric characters (A-Z and 0-9) and national characters (@, #, and
$).

Default: None. A value must be specified.

CLASSLEN(nnnnn)
Defines the message length (in bytes) for this transport class. Specify a length equal to the length
of the longest messages that are most often sent by the group(s) assigned to the transport class.
The class length you specify is the message length for which the signalling class will optimize its
processing.

The class length establishes the size of the message buffers that the signalling service will provide
in the transport class.

Value Range: 0 - 62464 bytes

Default: The value specified or defaulted on the CLASSLEN parameter of the COUPLE statement.

MAXMSG(nnnnnn)
Specifies the default amount of 1K message buffers allotted for messages sent in this transport
class. The system uses this value when MAXMSG is not specified on either of the following:
v The PATHOUT statement
v The SETXCF START,PATHOUT command.

For more information about determining message buffer space, see z/OS MVS Setting Up a
Sysplex.

Value Range: 1 - 999999

Default: The value specified or defaulted on the MAXMSG parameter on the COUPLE statement.

GROUP(groupname,groupname ...)
Specifies one or more groups assigned to this transport class. A group is the set of related
members defined to XCF by a multisystem application in which members of the group can
communicate between MVS systems with other members of the same group. A group can be
assigned to more than one transport class.

By explicitly assigning a group to a transport class, you give the group preferential access to the
signalling resources (signalling paths and message buffer space) of the transport class.

Value Range: 1 to 8 alphanumeric characters, including @, #, and $.

Default: If the GROUP parameter is omitted, no groups are explicitly assigned to the transport
class. In this case, all groups that are not explicitly defined to a transport class (by specifying their
groupname on the GROUP parameter on at least one CLASSDEF statement) are implicitly

COUPLExx

Chapter 18. COUPLExx (cross-system coupling facility (XCF) parameters) 201

assigned to this transport class. A group that has not been explicitly assigned to any transport
class is called an undesignated group. To explicitly assign the collection of undesignated groups to
a transport class, use the pseudo-group name UNDESIG. The pseudo-group name UNDESIG
then refers to the collective set of groups that are not explicitly defined to a transport class.

PATHIN
Describes the XCF signalling paths for inbound message traffic. More than one PATHIN statement can
be specified. The PATHIN statement is not required for a single system sysplex.

DEVICE(devnum[,devnum ...])
Specifies the device number(s) of a signalling path used to receive messages sent from another
system in the sysplex.

Value Range: devnum is 3 or 4 hexadecimal digits

Default: None. Either this parameter or STRNAME must be specified on the PATHIN statement.

STRNAME(strname[,strname ...])
Specifies the name of one or more coupling facility list structures that are to be used to establish
XCF signalling paths.

Either the STRNAME keyword or the DEVICE keyword is required. If you specify the STRNAME
keyword, you must provide at least one structure name.

Value Range: The strname can be 1 to 16 characters, including alphanumeric characters (A-Z and
0-9), national characters (@,#,$), and an underscore (_), where the first character is uppercase
alphabetic. XCF signalling structures must begin with the letters IXC.

Default: None. Either this parameter or DEVICE must be specified on the PATHIN statement.

MAXMSG(max-messages)
Specifies the amount of message buffers space (in 1K units) that XCF can use to receive
messages over each inbound XCF path defined on the PATHIN statement.

You can specify MAXMSG with either a DEVICE or STRNAME statement.

Value Range: 1 - 999999 K byte blocks of storage

Default: The value specified or defaulted on the MAXMSG parameter of the COUPLE statement.

RETRY(nnn)
Specifies how much tolerance XCF has for failures on the inbound paths defined on this PATHIN
statement. The lower the value, the sooner XCF stops the path. A higher value indicates that XCF
will tolerate more path failures before XCF stops the path.

You can specify RETRY with either a DEVICE or STRNAME statement.

Value Range: 3 - 255

Default: The value specified or defaulted on the RETRY parameter of the COUPLE statement.

PATHOUT
Describes the XCF signalling paths for outbound message traffic. More than one PATHOUT statement
can be specified. The PATHOUT statement is not required for a single system sysplex.

DEVICE(devnum[,devnum...])
Specifies the device number(s) of a signalling path used to send messages to another system in
the sysplex.

Value Range: devnum is 3 or 4 hexadecimal digits

Default: None. Either this parameter or STRNAME must be specified on the PATHOUT statement.

STRNAME(strname[,strname...])
Specifies the name of one or more coupling facility list structures that are to be used to establish
XCF signalling paths.

COUPLExx

202 z/OS V1R4.0 MVS Initialization and Tuning Reference

Either the STRNAME keyword or the DEVICE keyword is required. If you specify the STRNAME
keyword, you must provide at least one structure name.

Value Range: The strname can be 1 to 16 characters, including alphanumeric characters (A-Z and
0-9), national characters (@,#,$), and an underscore (_), where the first character is uppercase
alphabetic. XCF signalling structures must begin with the letters IXC.

Default: None. Either this parameter or DEVICE must be specified on the PATHOUT statement.

MAXMSG(max-messages)
Specifies how much buffer space is contributed to the total amount of buffer space XCF can use
to send messages over outbound XCF paths defined on the PATHOUT statement. This value
represents a portion of the maximum amount of buffer space for the transport class that this path
is assigned to.

You can specify MAXMSG with either a DEVICE or STRNAME statement.

Value Range: 1 - 999999 K byte blocks of storage. You must specify enough buffer space to
contain at least one message whose size is equal to the CLASSLEN value on the CLASSDEF
statement for the transport class that this path is defined to.

Default: The value specified or defaulted on the MAXMSG parameter of the CLASSDEF
statement for the XCF transport class this path is assigned to.

RETRY(nnn)
Specifies how much tolerance XCF has for failures on the outbound paths defined on this
PATHOUT statement. The lower the value, the sooner XCF stops the path. A higher value
indicates that XCF will tolerate more path failures before XCF stops the path.

You can specify RETRY with either a DEVICE or STRNAME statement.

Value Range: 3 - 255

Default: The value specified or defaulted on the RETRY parameter of the COUPLE statement.

CLASS(classname)
Assigns the outbound XCF path(s) to a transport class. A corresponding CLASSDEF statement
must define this class, unless you specify a classname of DEFAULT.

You can specify CLASS with either a DEVICE or STRNAME statement.

Value Range: 1 to 8 alphanumeric characters, including @, #, and $.

Default: DEFAULT (The classname of the default XCF transport class).

LOCALMSG
Specifies resources for local message traffic between members running on the same system. This
statement is optional.

MAXMSG(nnnnnn)
Specifies how much additional buffer space XCF can use for local message traffic beyond the
defaults specified on the COUPLE and CLASSDEF statements. The total amount of buffer space
used for local messages is this value added to the value specified or defaulted on the MAXMSG
parameter on the CLASSDEF statement for the transport class indicated by the CLASS parameter.

Value Range: 1 - 999999 K byte blocks of storage. You must specify enough buffer space to
contain at least one message whose size is equal to the CLASSLEN value on the CLASSDEF
statement for this transport class.

Default: None. This parameter must be specified.

CLASS(classname)
Assigns the local message buffer space to a transport class. A corresponding CLASSDEF
statement must define this class, unless you specify a classname of DEFAULT.

Value Range: 1 to 8 alphanumeric characters, including @, #, and $.

COUPLExx

Chapter 18. COUPLExx (cross-system coupling facility (XCF) parameters) 203

Default: DEFAULT (The classname of the default XCF transport class).

DATA
Defines the use of additional couple data sets. More than one DATA statement is permitted.

TYPE(name,name...)
Specifies the name or names of the coupling service(s) that are to use the couple data set. Names
of the coupling services include:
v ARM for automatic restart management
v CFRM for coupling facility resource management
v LOGR for system logger
v SFM for sysplex failure management
v WLM for workload management

PCOUPLE(primary-dsname[,primary-volume])
Specifies the name of a primary couple data set to support the service, and optionally, the volume
on which the data set resides. The PCOUPLE keyword is required with a DATA statement. If the
volume is specified, the master catalog is not used to locate the couple data set. If the volume is
not specified, the data set must be cataloged in the master catalog.

The PCOUPLE specification is ignored if the service is already operational in the sysplex. If the
service is already operational, the system uses the couple data sets for the service that are
currently in use by the sysplex.

Value Range: The primary-dsname must be a valid data set name of up to 44 characters. Valid
characters are alphanumeric (A-Z and 0-9) and national (@,#,$) characters and periods (.). The
primary-volume is the 1 to 6 character name of a mounted and ready DASD volume. Valid
characters are alphanumeric and national characters.

Default: None.

ACOUPLE(alternate-dsname[,alternate-volume])
Specifies the name of the alternate couple data set to support the service, and optionally, the
volume on which the data set resides. The ACOUPLE keyword is optional with a DATA statement.
If the volume is specified, the master catalog is not used to locate the couple data set. if the
volume is not specified, the data set must be cataloged in the master catalog.

The ACOUPLE specification is ignored if the service is already operational in the sysplex. If the
service is already operational, the system uses the couple data sets for the service that are
currently in use by the sysplex.

Value Range: The alternate-dsname must be a valid data set name of up to 44 characters. Valid
characters are alphanumeric (A-Z and 0-9) and national (@,#,$) characters and periods (.). The
altername-volume is the 1 to 6 character name of a mounted and ready DASD volume. Valid
characters are alphanumeric and national characters.

Default: None. If the ACOUPLE keyword is omitted, the system is initialized with only the primary
couple data set to support the service name on the TYPE keyword.

COUPLExx

204 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 19. CSVLLAxx (library lookaside (LLA) list)

Use the CSVLLAxx member to specify which libraries (in addition to the LNKLST concatenation) library
lookaside (LLA) is to manage. If you do not supply a CSVLLAxx member, LLA will, by default, manage
only the libraries that are accessed through the LNKLST concatenation.

You can also use CSVLLAxx to specify the following:

v Libraries to be added or removed from LLA management while LLA is active.

v Whether LLA is to hold an enqueue for the libraries it manages.

v Libraries for which LLA is to use the performance-enhancing FREEZE|NOFREEZE option.

v Members of libraries, or whole libraries, to be selectively refreshed in the LLA directory.

v Multiple CSVLLAxx members to be used to control LLA processing. These members can reside in data
sets other than SYS1.PARMLIB. Use the PARMSUFFIX(xx) parameter to specify additional data sets.
(See z/OS MVS Initialization and Tuning Guide for an example.)

v Whether exit routines are to be called during LLA processing.

The operator can change these options dynamically by specifying alternative CSVLLAxx members through
the MODIFY LLA,UPDATE=xx command.

In MVS/ESA™ 4.3 with DFSMS 1.1.0 and SMS active, you can produce a program object, an executable
program unit that can be stored in a partitioned data set extended (PDSE) program library. Program
objects resemble load modules in function, but have fewer restrictions and are stored in PDSE libraries
instead of PDS libraries. LLA can only manage PDSE libraries containing program objects. LLA manages
both load and program libraries.

Reference

For guidance information about specifying values for CSVLLAxx, see z/OS MVS Initialization and
Tuning Guide.

Starting LLA
The START LLA,LLA=xx command identifies the CSVLLAxx parmlib member to be used to build the LLA
directory. This command is issued by the IBM-supplied IEACMD00 parmlib member during system
initialization; the command can also be entered by the operator. For more information about starting LLA,
see z/OS MVS Initialization and Tuning Guide.

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax rules for CSVLLAxx
The syntax for CSVLLAxx is:

v Data, including comments, must be contained in columns 1-71; the system ignores columns 72-80.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v There is no limit to the number of times a keyword can be specified.

v Commas or blanks in any combination constitute a delimiter.

v Delimiters or comments can precede the keywords.

© Copyright IBM Corp. 1991, 2002 205

v Delimiters are not required between keywords with value; the right parenthesis after the specified
keyword is sufficient.

v Continuation is indicated by placing a comma followed by at least one blank after the last name on a
record. Comments are allowed between keywords or values.

v The LLA command will not be processed if there are any errors in the contents of the CSVLLAxx
parmlib member(s).

Syntax format of CSVLLAxx

IBM-supplied default for CSVLLAxx
None.

Statements/parameters for CSVLLAxx
LIBRARIES(libname1,libname2,...[-LNKLST-],...)

The LIBRARIES statement lists the names of libraries (libname1,libname2,...) that are to be added to
LLA, if they are not already being managed by LLA, or selectively refreshed, if they are already being
managed by LLA.

A library name must be 1 to 44 characters long.

-LNKLST- (the hyphens are coded) can be used to designate the whole LNKLST concatenation. It is a
shorthand way to identify all the data sets in the LNKLST instead of listing each of them, that is:
(-LNKLST-,non-LNKLST libname1,non-LNKLST libname2). In a Dynamic LNKLST environment,
-LNKLST- designates a list of data sets compiled from all active LNKLST sets. When specified and a
new LNKLST set is activated by the Dynamic Lnklst function, any data set in the new LNKLST set that
is not currently managed is added to LLA’s management. If a new LNKLST data set is the target of a
prior REMOVE request, it is not dynamically added to LLA.

Default Value: None

MEMBERS(mmbr1,mmbr2,...)
The MEMBERS statement allows you to refresh dynamically members in the previously named
production libraries.

Each MEMBERS statement must be preceded by a LIBRARIES statement that identifies the libraries
that contain the new versions of the members.

The member names (mmbr1,mmbr2...) must be 1 to 8 characters long.

LIBRARIES(libname1,libname2,...[-LNKLST-],...) MEMBERS(mmbr1,mmbr2,..)

LNKMEMBERS(mmbr1,mmbr2,...)

REMOVE(libname1,libname2,...[-LNKLST-],...)

GET_LIB_ENQ(YES|NO)

PARMLIB(dsn) SUFFIX(xx)

FREEZE(libname1,libname2,...[-LNKLST-],...)

NOFREEZE(libname1,libname2,...[-LNKLST-],...)

EXIT1(ON|OFF)

EXIT2(ON|OFF)

PARMSUFFIX(xx)

CSVLLAxx

206 z/OS V1R4.0 MVS Initialization and Tuning Reference

The LLA directory for each of the listed libraries is updated with the directory entries for the listed
members found in each of the data sets. That is, LIBRARIES(LIB.1, LIB.2, LIB.3) MEMBERS(A,B,C)
result in the LLA directory for LIB.1 being refreshed with directory entries found for members A, B and
C in the DASD directory for LIB.1; the LLA directory for LIB.2 being refreshed with directory entries
found for members A, B and C in the DASD directory for LIB.2, and so forth.

If -LNKLST- is in the LIBRARIES statement list, LLA will dynamically refresh the specified members in
the LNKLST. All occurrences of the member name in the LNKLST concatenation are used to refresh
the LLA directory. In a Dynamic LNKLST environment, the specified member is refreshed in all active
LNKLST sets.

Default Value: None

LNKMEMBERS(mmbr1,mmbr2,mmbr3,...)
The LNKMEMBERS statement lists the member names (mmbr1,mmbr2,mmbr3...) that are in the
LNKLST concatenation and that are to be selectively refreshed. LNKMEMBERS is equivalent to
specifying LIBRARIES(-LNKLST-) MEMBERS(mmbr1,mmbr2,mmbr3...).

The member names (mmbr1,mmbr2,mmbr3...) must be 1 to 8 characters long.

Default Value: None

REMOVE(libname1,libname2,...)
The REMOVE(libname1,libname2,...) statement allows you to remove libraries from the list of libraries
managed by LLA. That is, LLA will no longer be used to provide directory entries or staged modules
for these libraries.

Specify REMOVE(-LNKLST-,...) to remove each of the specified LNKLST libraries from LLA
management. Note that REMOVE(-LNKLST-,...) does not change the contents of the LNKLST
concatenation. In a Dynamic LNKLST environment, this parameter designates a list of data sets
compiled from all active LNKLST sets.

Note: It is not valid to specify the following:

v A library specified on the LIBRARIES statement or on the FREEZE|NOFREEZE option of this
member or a member concatenated through use of the PARMLIB(dsn) SUFFIX(xx)
statement.

v A data set in the LNKLST if -LNKLST- is specified on the LIBRARIES statement of this
member or a member concatenated through use of the PARMLIB(dsn) SUFFIX(xx)
statement.

v You cannot specify a library to be added to LLA management and designate it to be removed
in the same operation.

Note: When REMOVE is specified for a data set that is in a LNKLST, it does change how LLA
provides the directory and module for any member on that data set. All data sets in the
LNKLST concatenation, except those that were the target of a REMOVE statement, continue to
get full LLA management. As the LNKLST contatenation is searched, I/O is done to DASD
storage for members on REMOVEd data sets as required.

Default Value: None

GET_LIB_ENQ(YES|NO)
The GET_LIB_ENQ keyword specifies whether LLA obtains a shared enqueue for the libraries it
manages.

If you specify GET_LIB_ENQ (YES), which is the default, LLA obtains a shared enqueue for the
libraries it manages. The shared enqueue allows your job to read the libraries, but not to move or
erase them. To update these libraries, you must first remove them from LLA management (through the
REMOVE keyword).

CSVLLAxx

Chapter 19. CSVLLAxx (library lookaside (LLA) list) 207

If you specify GET_LIB_ENQ(NO), LLA does not obtain an enqueue for libraries it manages. Your
installation’s jobs can update, move, or delete libraries while LLA is managing them.
GET_LIB_ENQ(NO) is generally not recommended, however, because of the risks it poses to data
integrity. IBM recommends that you use GET_LIB_ENQ (NO) only when necessary.

The system processes the GET_LIB_ENQ keyword only when LLA is started; you cannot set this
value while LLA is active. If you attempt to do so (for example, by specifying the GET_LIB_ENQ value
on an LLA UPDATE command), the system ignores the GET_LIB_ENQ value without issuing a
corresponding message.

If you specify the GET_LIB_ENQ keyword multiple times in a CSVLLAxx member, the system uses
only the first occurrence of the keyword and ignores subsequent occurrences without issuing a
corresponding message.

Default Value: YES

PARMLIB(dsn)
SUFFIX(xx)

The PARMLIB (dsn) SUFFIX(xx) statement allows you to specify an additional CSVLLAxx member to
be processed. The system processes this member completely when encountering this statement.

PARMLIB(dsn) identifies the data set where the CSVLLAxx member identified by (xx) should be found.
Note that the PARMLIB keyword allows you to include CSVLLAxx members from data sets other than
SYS1.PARMLIB, thereby allowing you to control LLA’s specifications without having update access to
SYS1.PARMLIB.

Default Value: None. No additional CSVLLAxx members are read.

FREEZE|NOFREEZE(libname1,libname2,...[-LNKLST-],......)
The FREEZE|NOFREEZE option allows you to specify for a library whether to have LLA use the
directory it maintains in its own storage (FREEZE) or to use the directory on DASD storage
(NOFREEZE). When a LLA library is specified with FREEZE, the installation takes full advantage of
LLA’s I/O reduction for directory search for the library and for fetching load modules.

References to members in the data sets of the LNKLST concatenation, when referenced via the
appropriate LNKLST DCB, are always treated as FREEZE and cannot be changed by this parameter.

References to members in the data sets of the LNKLST concatenation, when referenced outside the
LNKLST (that is., via JOBLIB, STEPLIB, or TASKLIB) are processed as individual libraries. This
parameter changes how LLA provides the directory for those references.

-LNKLST- can be used to designate a list of data sets for this parameter, which is derived from all
active LNKLST sets. When specified, LLA builds this list for you as part of its normal processing. It is a
shorthand way to identify all of the data sets in the LNKLST instead of listing each of them using
(-LNKLST-, non-LNKLST libname1, non-LNKLST libname2). As an example, specifying FREEZE
(-LNKLST-) directs LLA to set each of the data sets in the LNKLST concatenations list in FREEZE
mode. (LLA provides directories from the saved information in LLA storage for requests via JOBLIB,
STEPLIB, or TASKLIB.) Specifying NOFREEZE (-LNKLST-) directs LLA to manage each of the data
sets (in the LNKLST concatenations list) in NOFREEZE mode, whenever the data set is accessed
outside of the LNKLST. That is, LLA provides directories by doing I/O to the DASD storage for these
data sets specified via JOBLIB, STEPLIB, or TASKLIB. However, references to members via any
active LNKLST concatenation are always provided from LLA storage, so NOFREEZE does not affect
that request.

You can change the FREEZE|NOFREEZE status of a LLA library at any time by using the MODIFY
LLA command.

For more information about using the FREEZE|NOFREEZE option, see z/OS MVS Initialization and
Tuning Guide.

Default Value: By default, LNKLST data sets that are accessed through the LNKLST concatenation
are in FREEZE mode and cannot be changed with this parameter. All other libraries (specified by

CSVLLAxx

208 z/OS V1R4.0 MVS Initialization and Tuning Reference

-LNKLST- or individually by library name) are set to NOFREEZE by default. To take full advantage of
LLA, it is recommended that all libraries be explicitly specified as FREEZE.

EXIT1(ON|OFF)
Specifying EXIT1(ON) means that LLA, each time it fetches a module from an LLA library, logs
statistics and then calls the installation exit CSVLLIX1. If you specify EXIT1(OFF), CSVLLIX1 is not
called.

You can use CSVLLIX1 to:

v Monitor and collect fetch statistics

v Control the 2000 fetch default limit

v Cause staging to happen regardless of statistics for all libraries or even just one library

For more information about CSVLLIX1, see z/OS MVS Installation Exits.

Default Value: EXIT1(ON)

EXIT2(ON|OFF)
Specifying EXIT2(ON) means that the LLA staging routine calls installation exit CSVLLIX2 before
applying weighting factors that determine whether a module should be staged. If you specify
EXIT2(OFF), CSVLLIX2 is not called.

You can use CSVLLIX2 to:

v Analyze fetch statistics provided in the LLA module staging parameter list

v Influence the calculation of the LLA value (which determines if a module should be staged) by
altering the weighting factors

v Direct that the module must be staged or must not be staged by setting the appropriate return and
reason codes.

For more information about CSVLLIX2, see z/OS MVS Installation Exits.

Default Value: EXIT2(ON)

PARMSUFFIX(xx)
The PARMSUFFIX statement allows you to specify an additional CSVLLAxx member to be processed.
The system processes this member completely when encountering this statement.

This statement is very similar to the PARMLIB(dsn) SUFFIX(xx) statement. The difference is that
instead of having to specify a data set name, PARMSUFFIX searches the logical parmlib for the
CSVLLAxx member.

Default Value: None. No addtional CSVLLAxx members are read.

CSVLLAxx

Chapter 19. CSVLLAxx (library lookaside (LLA) list) 209

CSVLLAxx

210 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 20. CSVRTLxx (Define the RTLS configuration)

Use the CSVRTLxx member to define the run-time library services (RTLS) configuration.

RTLS enables you to eliminate STEPLIBs from the JCL that runs your applications. By eliminating
STEPLIBs you reduce the installation management your application requires, as well as the system
overhead involved in searching STEPLIB data sets when loading modules into storage. In place of
STEPLIBs, the CSVRTLS macro connects to and loads from a given RTLS logical library.

Language Environment applications currently can exploit RTLS by using the Language Environment
run-time options RTLS(ON), LIBRARY(le_run-time_lib), and VERSION(version), which identify the RTLS
logical library to be connected.

The CSVRTLxx parmlib member is optional and does not directly affect performance. It is read at IPL time
through the RTLS=xx parameter (which may be specified either in IEASYSxx or by the operator when
replying to system parameters) or after IPL through the SET RTLS=xx command. CSVRTLxx can be used
to specify names of libraries to be managed, as well as storage limits for caching modules from the
libraries.

The operator command, SET RTLS=xx, allows dynamic configuration of the RTLS library definitions. Each
of these library definitions, or logical libraries, identifies a load library search order that is to be used when
an application connects to and loads from a specific logical library. Each logical library search order
definition contains one or more physical library definitions that can consist of one or more load library data
sets. Caching to common storage is performed on a physical library basis to provide optimal performance
for commonly used libraries. Each physical library is either authorized or unauthorized. This determination
is made when the library is added or replaced; it is not changed or affected by changes to the APF status
of the individual data sets.

The SET RTLS=xx command, like the system parameter at IPL, uses the CSVRTLxx parmlib members.
The SET command allows for the introduction of new physical and logical libraries, removal of physical
and logical libraries, or the replacement of libraries. The DISPLAY RTLS command displays the current
status of the RTLS environment. The information supplied through DISPLAY RTLS optionally includes the
physical and logical libraries in use, the users of the logical libraries, and the cache utilization for a given
library or for all libraries. For more information about SET RTLS=xx, see z/OS MVS System Commands.

The contents supervision services XCTL, LINK, ATTACH, IDENTIFY, CSVQUERY, and CSVINFO all work
with modules loaded through the CSVRTLS REQUEST=LOAD service of the CSVTRLS macro. (For more
information about the CSVRTLS macro, see z/OS MVS Programming: Assembler Services Reference
ABE-HSP.)

ACCESS:

By default, RTLS will verify that each connector to a logical library has appropriate authority, defined as
READ access to the RACF FACILITY class resource named:

CSVRTLS.LIBRARY.library.version

Access is denied only when a matching profile indicates that the connector is not authorized to the
resource.

For example, if you define a Facility class profile for CSVRTLS.LIBRARY.LIB01.03, you can give everyone
in user group Dept060 READ access to LIB01, version 03 and deny access to all others with the following
RACF definition:

© Copyright IBM Corp. 1991, 2002 211

RDEFINE FACILITY CSVRTLS.LIBRARY.LIB01.03 UACC(NONE)
PERMIT CSVRTLS.LIBRARY.LIB01.03 ACCESS(READ) ID(DEPT060)
SETROPTS RACLIST(FACILITY) REFRESH

As another example, you can deny access to everyone in user group Dept037 with the following RACF
definition:

RDEFINE FACILITY CSVRTLS.LIBRARY.LIB01.03 UACC(READ)
PERMIT CSVRTLS.LIBRARY.LIB01.03 ACCESS(NONE) ID(DEPT037)
SETROPTS RACLIST(FACILITY) REFRESH

You can deactivate this checking by creating a RACF Facility class resource named:
CSVRTLS.NOSECCONNECT.LIB01.03

If there is a matching profile with a name beginning with CSVRTLS.NOSEC when RTLS initializes the
library, any user can connect to that library. This implies that a matching profile of * would not deactivate
the security checking.

For example, if you define a Facility class profile to bypass security checking for LIB01, version 03:
RDEFINE FACILITY CSVRTLS.NOSECCONNECT.LIB01.03
CSVRTLS.NOSECCONNECT.LIB01.03

no security checking is done on attempts to connect to LIB01 version 03.

Likewise, if you define a Facility class profile:
CSVRTLS.NOSECCONNECT.*

no security checking is done on attempts to connect to any RTLS library.

But, if you define a Facility class profile:
CSVRTLS.NO*

the matching profile does not begin with CSVRTLS.NOSEC and security checking is done on attempts to
connect to library LIB01 version 03.

You can also use RACF to override the limit of 32 connections by unauthorized callers in a single address
space; define a RACF FACILITY class profile that protects a resource named CSVRTLS.CONNECT and
grant UPDATE access to the appropriate users. If no profile protects CSVRTLS.CONNECT or if the profile
exists but a user does not have UPDATE access, the limitation applies.

For more information about the RACF FACILITY class, see z/OS Security Server RACF Security
Administrator’s Guide .

Parameter in IEASYSxx (or supplied by the operator):
RTLS=(xx[,xx...])

The RTLS system parameter allows the operator to tell the system to process the statements in one or
more CSVRTLxx parmlib members to establish the RTLS definition. The two-character identifier (xx) is
appended to CSVRTL to identify a member of parmlib. The CSVRTLxx parmlib member or members must
exist. The specified parmlib members are processed in order; processing stops if any member does not
exist. The CSVRTLxx parmlib member can also be processed by the SET RTLS=xx command.

The results of successive operations are cumulative. For example, SET RTLS=(A2,A3) is equivalent to
SET RTLS=A2 followed by SET RTLS=A3. The resulting definitions can be displayed using the DISPLAY RTLS
command.

CSVRTLxx

212 z/OS V1R4.0 MVS Initialization and Tuning Reference

For information about SET RTLS and DISPLAY RTLS, see z/OS MVS System Commands.

Syntax rules for CSVRTLxx
The following syntax rules apply to CSVRTLxx:

v Use columns 1 through 71. Do not use columns 72-80; the system ignores them.

v Comments can appear in columns 1-71 and must begin with “/*” and end with “*/”. You can continue a
comment; it does not need to end on the line on which it begins.

v Blanks can appear between keywords, between values, and between statements. Blanks cannot appear
within a keyword value unless the keyword is enclosed in quotation marks.

v The system recognizes the end of a statement when it encounters either the beginning of the next valid
statement or an end-of-file (EOF) indicator.

v Statements can continue on as many records as needed; indication of continuation is not required.

v You can use both uppercase and lowercase letters; the system translates all lowercase letters to
uppercase letters before processing.

v Use valid delimiters to separate keyword parameters. A valid delimiter is a comma, a blank, or column
71. The system treats multiple blanks as one. Column 71, when within a string enclosed in quotation
marks, is not a valid delimiter.

v If a syntax error is detected, the system skips processing of the statement and moves on to the next
statement.

CSVRTLxx

Chapter 20. CSVRTLxx (Define the RTLS configuration) 213

Syntax format of CSVRTLxx

IBM-supplied default for CSVRTLxx
None.

Statements/parameters for CSVRTLxx
MAXBELOW(maxb)

represents the maximum amount of common storage below 16 megabytes that the system will use to
cache modules from all RTLS libraries. If the number is followed by the letter K, the storage amount
specified is in units of 1024 bytes. If the number is followed by the letter M, the storage amount
specified is in units of 1,048,576 (1024*1024) bytes. Otherwise, it is in units of bytes. When you omit
MAXBELOW, no common storage below 16 megabytes will be used to cache modules.

You can use MAXB as a synonym for MAXBELOW.

MAXABOVE(maxa)
represents the maximum amount of common storage above 16 megabytes that the system will use to
cache modules from all RTLS libraries. If the number is followed by the letter K, the storage amount
specified is in units of 1024 bytes. If the number is followed by the letter M, the storage amount
specified is in units of 1,048,576 (1024*1024) bytes. Otherwise, it is in units of bytes. When you omit
MAXABOVE, the limit is set to 10 megabytes (10*1024*1024) of common storage above 16
megabytes storage.

You can use MAXA as a synonym for MAXABOVE.

MAXBELOW(maxb)

MAXABOVE(maxa)

FULLCACHELIM(fcl)

PHYSICAL(LIBRARY(pname) {ADD DSLIST(dsn[CATALOG|VOLUME(ser)],...) }
{ [MODULES(mname[,...])] [NOREFRESH] }
{ [MAXBELOWP(maxbp)] [MAXABOVEP(maxap)] }
{ [FULLCACHELIMP(fclp)] }
{ }
{REPLACE DSLIST(dsn[CATALOG|VOLUME(ser)],...) }
{ [MODULES(mname[,...])] [NOREFRESH]) })
{ [MAXBELOWP(maxbp)] [MAXABOVEP(maxap)] }
{ [FULLCACHELIMP(fclp)] }
{ }
{DELETE }
{ }
{UPDATE [MAXBELOWP(maxbp)] [MAXABOVEP(maxap)] }
{ [FULLCACHELIMP(fclp)] }

LOGICAL(LIBRARY(lname) VERSION(ver)
{ADD [DEFAULT] PHYSICAL(pname[,...]) }
{ [MODULES(mname[,...])] }
{ }
{REPLACE [DEFAULT] PHYSICAL(pname[,...]) }
{ [MODULES(mname[,...])] })
{ }
{DELETE }
{ }
{UPDATE [DEFAULT] }

REFRESH

Note that both PHYSICAL and LOGICAL statements begin with (and end with a matching).

CSVRTLxx

214 z/OS V1R4.0 MVS Initialization and Tuning Reference

FULLCACHELIM(fcl)
represents the maximum number of failed attempts to reserve space in the RTLS cache when loading
modules. When the number of failed attempts exceeds the limit, the system marks the cache as being
full and does no further caching unless the limit is changed or the space limitations are changed. In
either case, the number of failing attempts is reset to 0, and caching attempts begin again. Attempts to
reserve space below 16 megabytes are not counted if the below 16 megabyte storage limit for RTLS is
set to 0.

If the number is followed by the letter K, the amount specified is in units of 1024. If the number is
followed by the letter M, the amount specified is in units of 1,048,576 (1024*1024). Otherwise, it is in
units of 1. When you omit FULLCACHELIM, the limit is set to 256.

You can use FCL as a synonym for FULLCACHELIM.

PHYSICAL
Begins a statement that describes a physical library.

You can use PHYS as a synonym for PHYSICAL.

LIBRARY(pname)
specifies the name of the physical library followed by the action for the library. The 1-8 character
name of the library must comply with MVS DDNAME requirements.

If the library name contains characters other than uppercase alphanumeric or national, then
enclose the name in single quotes. Be aware that the Language Environment product requires the
library name to consist of the following characters:
v Uppercase alphabetic characters
v Numeric characters
v Any of the following special characters: period (.), underscore (_), hyphen (-), plus (+), and the

national characters ($, @, and #).

You can use LIB as a synonym for LIBRARY.

Select one of the following actions:
ADD Adds a definition. ADD will succeed only when no library of the given name is yet defined.
REPLACE

Replaces a definition. REPLACE will succeed when a library of the given name is defined
and when no library of the given name is defined (in which case it works like ADD). If this
physical library is part of a logical library to which users are connected, those existing
connections to the logical library will continue to use the definition of the physical library
that was current when the connection occurred. New connections will use the replaced
definition.

DELETE
Deletes a definition. DELETE will succeed only when a library of the given name is
defined.

UPDATE
Updates a definition. UPDATE will succeed only when a library of the given name is
defined.

DSLIST(dsn,...)
specifies a list of one or more data set names that are to be concatenated to form the physical library.
dsn is a 1-44 character data set name that must comply with MVS data set name requirements. The
data set must be partitioned. It must not be a multi-volume set. If the data set is not cataloged, it must
not be an alias. A physical library may consist of no more than 255 data set extents. A data set has
from one to 16 extents; a PDSE is always considered to have only one extent.

You can use DSL as a synonym for DSLIST.

CSVRTLxx

Chapter 20. CSVRTLxx (Define the RTLS configuration) 215

CATALOG|VOLUME(ser)
If the data set is not cataloged, use VOLUME(ser) to specify the 1-6 character volume serial
number of the volume that contains the data set. If you omit VOLUME or specify CATALOG, the
system uses the catalog to locate the data set.

You can use VOL and VOLSER as synonyms for VOLUME and CAT as a synonym for CATALOG.

MODULES(mname)
specifies a list of 1 to 1024 load module names that are to be loaded into the physical library cache.
These modules are preloaded into the physical library cache before any other modules can be
referenced within this physical library. mname specifies the 1-8 character name of a load module.

You can use MOD and MODULE as synonyms for MODULES.

NOREFRESH
indicates that the logical libraries that contain this physical library, are not to be refreshed. If you omit
NOREFRESH, then all logical libraries that contain this physical library, or any other physical library
that had been replaced with the NOREFRESH option, are refreshed.

Refreshing a logical library consists of connecting it to the current level of each physical library defined
for that logical library. After refresh, subsequent connectors to the logical library will connect to the
refreshed library, as opposed to a previous level.

You can use NOREF as a synonym for NOREFRESH.

MAXBELOWP(maxbp)
represents the maximum amount of common storage below 16 megabytes that the system will use to
cache modules from the physical library. If the number is followed by the letter K, the storage amount
specified is in units of 1024 bytes. If the number is followed by the letter M, the storage amount
specified is in units of 1,048,576 (1024*1024) bytes. Otherwise, it is in units of bytes. When you omit
MAXBELOW, no common storage below 16 megabytes storage will be used to cache modules.

You can use MAXBP as a synonym for MAXBELOWP.

MAXABOVEP(maxap)
represents the maximum amount of common storage above 16 megabytes that the system will use to
cache modules from the physical library. If the number is followed by the letter K, the storage amount
specified is in units of 1024 bytes. If the number is followed by the letter M, the storage amount
specified is in units of 1,048,576 (1024*1024) bytes. Otherwise, it is in units of bytes. When you omit
MAXABOVEP, the limit is set to 1M (1024*1024) bytes of common storage above 16 megabytes
storage.

MAXAP may be used as a synonym for MAXABOVEP.

FULLCACHELIMP(fclp)
represents the maximum number of failed attempts to reserve space in the physical library cache
when loading modules. When the number of failed attempts exceeds the limit, the system marks the
cache as being full and does no further caching unless the limit is changed or the space limitations are
changed. In either case, the number of failed attempts is reset to 0, and caching attempts begin again.
Attempts to reserve space below 16 megabytes are not counted if the below 16 megabytes storage
limit for the physical library is set to 0.

If the number is followed by the letter K, the amount specified is in units of 1024. If the number is
followed by the letter M, the amount specified is in units of 1,048,576 (1024*1024). Otherwise, it is in
units of 1. When you omit FULLCACHELIMP, the limit is set to 256.

You can use FCLP as a synonym for FULLCACHELIMP.

LOGICAL
Begins a statement that describes a logical library.

You can use LOG as a synonym for LOGICAL.

CSVRTLxx

216 z/OS V1R4.0 MVS Initialization and Tuning Reference

LIBRARY(lname) VERSION(ver)
specifies the name and version of a logical library, followed by the action for the library. The
specified 1-8 character version name identifies the version of the logical library.

You can use LIB as a synonym of LIBRARY.

When a request to connect to a logical library (made through CSVRTLS REQUEST=CONNECT)
does not specify a version, the logical library that was identified with the DEFAULT parameter is
used.

You can use VER and VERS as synonyms for LIBRARY.

If the library name or the version name contains characters other than uppercase alphanumeric or
national, then surround the name with single quotes. Be aware that the Language Environment
product requires either name to consist of the following characters:
v Uppercase alphabetic characters
v Numeric characters
v Any of the following special characters: period (.), underscore (_), hyphen (-), plus (+), and the

national characters ($, @, and #).

Select one of the following actions:
ADD Adds a definition. ADD will succeed only when no library of the given name is yet defined.
REPLACE

Replaces a definition. REPLACE will succeed when a library of the given name is defined
and when no library of the given name is defined (in which case it works like ADD).
Existing connections to this library will continue to use the definition that was current when
the connection occurred. New connections will use the replaced definition.

DELETE
Deletes a definition. DELETE will succeed only when a library of the given name is
defined.

UPDATE
Updates a definition. UPDATE will succeed only when a library of the given name is
defined.

DEFAULT
indicates if this library is to be used when LIBRARY is specified without VERSION. Each named
library may have just one default across all its versions. Specifying DEFAULT marks the specified
library or version as the default and removes the default indication from any previously marked
library/version.

IBM recommends that you use the DEFAULT specification if you plan to create multiple logical
libraries that have the same name but different versions, to make it easier to keep track of which
logical library the system will use as the default. If DEFAULT was not specified for any version of a
particular library name and the connection request only specifies LIBRARY, the first-found library
of the requested name will be used.

Your can use DEF as a synonym for DEFAULT.

PHYSICAL(pname[,...])
specifies the name of a physical library.

The specified 1-8 character library name must comply with MVS DDNAME requirements, and it
must be defined on a PHYSICAL statement before it is used in a LOGICAL statement. A LOGICAL
library can consist of no more than 128 physical libraries.

You can use LIB as a synonym for LIBRARY.

MODULES(mname)
specifies a list of one to 1024 load module names that are to be loaded into the logical library
cache. These modules are preloaded into the cache before any other modules can be referenced
within this logical library. mname specifies the 1-8 character of a load module.

CSVRTLxx

Chapter 20. CSVRTLxx (Define the RTLS configuration) 217

You can use MOD and MODULE as synonyms for MODULES.

REFRESH
requests any logical library refreshing deferred due to use of the NOREFRESH parameter when a
physical library was replaced. See the description of the NOREFRESH parameter for further
information.

You can use REF as a synonym for REFRESH.

Detailed information on how RTLS can be used with Language Environment can be found in z/OS
Language Environment Customization.

Examples

Example 1
Indicates that RTLS caching is to be limited to 10 megabytes common storage above 16 megabytes and 0
bytes below 16 megabytes.
MAXABOVE(10M) MAXBELOW(0)

Example 2
Defines a physical library and logical library for LE:
PHYSICAL(

LIBRARY(SYSCEE) ADD
DSLIST(SYS1.SCEERUN,
MY.RTLS.TEST1 VOLUME(430PAK),
MY.RTLS.TEST2 CATALOG)
MAXABOVEP(10M)
)

LOGICAL (
LIBRARY(SYSCEE) VERSION(1) ADD DEFAULT
PHYSICAL(SYSCEE)
)

To exploit this installation setup, a Language Environment enabled application would specify RTLS(YES)
LIBRARY(SYSCEE) as run-time options. This would cause the Language Environment application to have
the run-time library routines loaded from the SYS1.SCEERUN library.

CSVRTLxx

218 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 21. CTncccxx (component trace parameters)

Use the CTncccxx parmlib member to specify tracing options for a component trace of either an MVS
component or an application. The specific tracing options for those MVS components that support
component tracing can be found in z/OS MVS Diagnosis: Tools and Service Aids. For tracing options for
non-IBM supplied applications, refer to the documentation for those applications.

The CTncccxx parmlib member is specified as an 8-character member in the following format:

CT Indicates that the member contains component trace options

n Specifies the source of the member. IBM-supplied members use “I”.

ccc Identifies the component being traced.

xx Any two alphanumeric characters.

The CTncccxx parmlib member is specified on:
v The CTRACE macro (with the DEFINE parameter)
v The TRACE CT operator command
v The parmlib member for some IBM-supplied components.

Tracing of MVS components
The CTncccxx parmlib member is specified in the PARM parameter of the TRACE CT operator command.
See z/OS MVS System Commands for information on the TRACE CT command.

Tracing of installation-provided applications
The CTncccxx parmlib member is specified in the PARM parameter of the CTRACE macro in the
application. See z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN for
information about the CTRACE macro.

The CTncccxx member specified on the CTRACE macro allows an application to establish component
tracing options at initialization. A CTncccxx member can specify options for only one trace; if an application
has multiple, concurrent traces, called sublevel traces , a CTncccxx member must be specified for each
sublevel trace.

Tracing options specified in the CTncccxx parmlib member identified by the CTRACE macro can be
overridden by a CTncccxx parmlib member identified on a TRACE CT command. You can use the PARM
parameter on a TRACE CT command:

v To specify a CTncccxx member that contains the desired options. This trace will begin immediately.

v To specify a CTncccxx member that contains a PRESET parameter to turn on the trace later when the
CTRACE macro is invoked.

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax rules for CTncccxx
The following syntax rules apply to CTncccxx:

v Use columns 1 through 71. Do not use columns 72 - 80 for data; these columns are ignored.

v A comma must be used to separate multiple keyword values within a list.

v Comments may appear in columns 1-71 and must begin with ″/*’ and end with ″*/″.

© Copyright IBM Corp. 1991, 2002 219

v The parameters must be in the order shown in the syntax format, to meet the following requirements:

– The SUB parameter must be followed by a PRESET, ON, OFF, or LIKEHEAD parameter.

– The SUB parameter must not be before the WTRSTART parameter.

Syntax examples
The following is an example of a CTncccxx member that could be used on a TRACE CT command to
preset multiple sublevel traces.
TRACEOPTS

SUB(SUB201)
PRESET(DEFINE)
ON
ASID(000E,0002,0003)
JOBNAME(TEST1,TEST2,TEST3,TEST5,SMF,JES2) BUFSIZE(10K)
OPTIONS(’new optionlist to record problem data’)

SUB(SUB202)
PRESET(DEFINE)
LIKEHEAD

SUB(TEST5NODE1.TEST5NODE2.ASID(12,22,23))
PRESET(DEFINE)
OFF

The following example member turns on a trace that writes the trace data to a data set.
TRACEOPTS
WTRSTART(CTWTR)
ON
WTR(CTWTR)
ASID(0001,0002,0003)
JOBNAME(TEST1,TEST2,TEST3,SMF,JES2)
BUFSIZE(10K)
OPTIONS(’list of options’)

The following example member stops an external writer for a trace. Before this member is used, the trace
must be turned off with a TRACE CT,OFF operator command or with a CTncccxx member that specifies
TRACEOPTS and OFF. Do not turn off the writer in the same parmlib member as you turn off the trace.
TRACEOPTS
WTRSTOP(CTWTR)

The following CTnXESxx member turns on three sublevel SYSXES traces and starts an external writer for
each sublevel trace. The last two sublevel traces will start later, when they are defined.
TRACEOPTS
WTRSTART(XWTRGLO)
WTRSTART(XWTRCO1)
WTRSTART(XWTRCO2)

SUB(GLOBAL)
ON
WTR(XWTRGLO)
OPTIONS(’CONNECT,RECOVERY’)

SUB(LT01.ASID(18).CONN1)
PRESET(DEFINE)
ON
WTR(XWTRCO1)
OPTIONS(’GLOBAL,REQUEST’)

CTncccxx

220 z/OS V1R4.0 MVS Initialization and Tuning Reference

SUB(LT01.ASIG(1A).CONN2)
PRESET(DEFINE)
ON
WTR(XWTRCO2)

Syntax format of CTncccxx

IBM-supplied default for CTncccxx
IBM supplies defaults for specific components that support component tracing. For more information about
default CTncccxx parmlib members, see the following:
v Chapter 9, “BPXPRMxx (z/OS UNIX System Services parameters)” on page 103
v Chapter 18, “COUPLExx (cross-system coupling facility (XCF) parameters)” on page 195
v Chapter 28, “GRSCNFxx (global resource serialization configuration)” on page 247
v Chapter 17, “CONSOLxx (Console configuration definition)” on page 165

Statements/parameters for CTncccxx
To determine if the component to be traced allows the following parameters, see component traces in
z/OS MVS Diagnosis: Tools and Service Aids.

TRACEOPTS
Specifies the component tracing options for an MVS component or an application.

WTRSTART(membername){WRAP|NOWRAP}
Identifies a member containing source JCL for a started task that the system uses to start the
component trace external writer and to open the data sets that the writer uses.

You must also specify the WTR parameter.

WRAP or NOWRAP
If you specify WRAP, when the system reaches the end of the data set or group of data sets,
it writes over the oldest data at the start of the data set or the start of the first data set. If you
specify NOWRAP, the system stops writing to the data set or sets when the data set or sets
are full.

TRACEOPTS
{ WTRSTART(membername){WRAP } }
{ {NOWRAP} }

{ SUB(subname) }

{ PRESET{(DEFINE)} }
{ {(DELETE)} }

{ ON{ASID(asid) } }
{ {JOBNAME(jobname-list) } }
{ {BUFSIZE(nnnnK|M) } }
{ {OPTIONS(options) } }
{ {WTR{(membername) } } }
{ { {(DISCONNECT) } } }

{ OFF }

{ LIKEHEAD }

TRACEOPTS WTRSTOP(jobname)

CTncccxx

Chapter 21. CTncccxx (component trace parameters) 221

If the WTRSTART parameter on the CTncccxx parmlib member or TRACE CT command
specifies NOWRAP, the system uses the primary and secondary extents of the data set or
sets. If the WTRSTART parameter specifies WRAP or omits the parameter, the system uses
only the primary extent or extents.

Default: WRAP

SUB(subname)
Identifies a sublevel trace for a component or application with multiple traces. The subname is
defined by the component or installation-supplied application.

If subname is a head level, all of the head’s sublevel traces that are defined with a
LIKEHEAD=YES parameter inherit the options specified in this parmlib member. Therefore, the
options you specify for a head level can affect many sublevel traces.

If you specified the SUB parameter on the parmlib member to activate these trace options, the
operator should not specify the SUB parameter on the TRACE CT command.

SUB(subname) cannot be specified in a parmlib member activated during system initialization.

The SUB parameter must be followed by a PRESET, ON, OFF, or LIKEHEAD parameter.

Value Range: Specify the sublevel trace as it was defined through the CTRACE macro as:
v A name
v An ASID
v A job name.

Default: None.

PRESET(DEFINE | DELETE)
PRESET(DEFINE) specifies that the component trace options established in the CTncccxx
member are to be remembered until the component trace is defined. When a CTRACE macro later
defines the trace, the preset information is used to set the options.

Use the PRESET parameter to set up the trace options in anticipation of a job entering the system
or an address space being run. Later, when the CTRACE macro is invoked in the job or address
space, the system will override the tracing options set up at initialization and instead use the
options in the CTncccxx parmlib member with the PRESET.

The PRESET parameter is valid only in a parmlib member specified on the TRACE CT command;
the PRESET parameter is ignored if specified from the CTRACE macro.

To use the preset options, a sublevel trace (SUB) can be defined as either ASID or JOBNAME. If
there are both ASID and JOBNAME presets, the system uses only the ASID preset.

Once the information established through the preset has been used for a trace, the preset no
longer exists.

If you specified a valid preset and then a CTRACE macro is issued with a PARM option, the
system ignores the information in the parmlib member specified by the CTRACE macro and,
instead, uses the preset information. But, if your preset was not valid, the system will issue an
error message and then proceed to process the trace options specified on the CTRACE macro;
the preset information is then deleted.

You can change the preset options by using the TRACE CT command with the PARM parameter
and specifying PRESET(DEFINE) in the parmlib member.

PRESET(DELETE) deletes the existing preset.

ON
If the component trace is currently off, the parmlib member turns the trace on. If the component
trace is currently on and can be changed, the parmlib member changes the trace. An
installation-supplied application trace can be changed if the CTRACE macro that defined the trace
contained a MOD=YES parameter.

CTncccxx

222 z/OS V1R4.0 MVS Initialization and Tuning Reference

When a head trace that was defined with HEADOPTS=YES is turned on, all sublevel traces
currently defined as LIKEHEAD are also turned on. An installation-supplied application trace can
also have head and sublevel traces, if specified in the CTRACE macro that defined the trace.

Whenever a trace that has sublevel traces is changed, all sublevel traces currently in the
LIKEHEAD state will also be changed. Therefore, a change may cascade down a number of
levels.

A head trace may have been defined so that it is not allowed to be changed (HEADOPTS=NO on
the CTRACE macro). If this is the case, the trace is really just a place holder for options for other
traces.

ASID(asid-list)
Specifies the address space identifiers (ASIDs) of address spaces to be used as a filter for
tracing. Events in these ASIDs are to be recorded by the component trace.

Value Range: A list of 0 to 16 hexadecimal ASIDs separated by commas. An empty ASID list,
ASID(), turns off filtering by address spaces. In the ASID parameter, list all address spaces to
be traced; address spaces specified for previous traces will not be traced unless listed.

JOBNAME(jobname-list)
Specifies the names of jobs to be used as a filter for tracing. Events in these jobs are to be
recorded by the component trace.

Value Range: A list of 1 to 16 job names separated by commas. An empty job list,
JOBNAME(), turns off filtering by jobs. In the JOBNAME parameter, list all jobs to be traced;
jobs specified for previous traces will not be traced unless listed.

BUFSIZE(nnnnK | nnnnM)
Specifies the size, in kilobytes (K) or megabytes (M), of the trace buffer you want the system
to use.

Value Range:

nnnnK
The buffer size in kilobytes, where nnnn is a decimal number from 1 to 9999.

nnnnM
The buffer size in megabytes, where nnnn is a decimal number from 1 to 2047.

When the size is not specified, the system uses the component-defined default or, for some
components, the size specified in a TRACE CT command.

The size specified for an installation-supplied application trace must be within the range
specified on the CTRACE macro for the trace; see the programmer for the size value.

OPTIONS
Specifies component-specific options for tracing. See z/OS MVS Diagnosis: Tools and Service
Aids for the options for an IBM-supplied component that supports component tracing. Refer to
the installation-supplied application for the options for the application.

Value Range: A list of component-specific options with each option enclosed in quotes and
the options separated by commas. For example:
OPTIONS(’optionA’,’optionB’,’optionN’)

The options for some IBM-supplied component traces can be changed while the trace is
running; to change the options for others, stop the trace and restart it with the new options. An
installation-supplied application trace, defined with MOD=YES in the CTRACE macro, can be
changed while running.

CTncccxx

Chapter 21. CTncccxx (component trace parameters) 223

The options for a head level defined with HEADOPTS=NO cannot be changed. When a head
level that was defined with HEADOPTS=YES is changed, all of the sublevel traces currently in
LIKEHEAD status will also be changed. Therefore, a change may cascade down a number of
levels.

Omit OPTIONS to allow the component to use its default options.

WTR(membername|DISCONNECT)
Connects or disconnects the component trace external writer and the trace. The member
name identifies the member that contains the source JCL that invokes the external writer. The
membername in the WTR parameter must match the membername in the WTRSTART
parameter.

WTR(DISCONNECT) disconnects the writer and the trace. The component continues tracing
and placing the trace records in the address-space buffer, but stops passing trace records to
the external writer.

You must also specify a WTRSTART or WTRSTOP parameter to start or stop the writer.

OFF
The system is to stop tracing for the component. If the component is connected to a component
trace external writer, the system forces an implicit disconnect.

Some components do not stop tracing completely but reduce the tracing activity to the minimum
required for serviceability data in a dump. An installation-supplied application trace will reduce
tracing to a minimum if the head level is defined with MINOPS. All sublevel traces with the
LIKEHEAD attribute will also reduce tracing to the minimum. Component trace writes a message
to the operator when tracing is reduced to the minimum.

A head level defined with HEADOPTS=NO cannot be turned off.

When a head level defined with HEADOPTS=YES is turned off, all sublevel traces currently
defined as LIKEHEAD will also be turned off. An installation-supplied application trace can have
head level and sublevel traces, if specified in the CTRACE macro that defined the trace.

LIKEHEAD
Specifies that the trace specified in the SUB parameter is to use the options that are defined to
that sublevel trace’s head level.

If you use the TRACE CT command to change a trace that is currently ON or OFF to LIKEHEAD,
be aware of the following:

v The attributes of the sublevel trace must match the head level trace.

v The sublevel trace inherits the state (ON or OFF) and the options (ASID, JOBNAME, OPTIONS,
and BUFSIZE) of the head level.

v The head level must have been defined with HEADOPTS=YES.

Component traces are defined by the IBM-supplied component; for components that use heads
and subheads, see information about the component trace in z/OS MVS Diagnosis: Tools and
Service Aids. Application traces are defined by the application using the CTRACE macro; for more
information, see the documentation for the application.

WTRSTOP(jobname)
Identifies the name of the job for a currently running component trace external writer that the
system is to stop. The system also closes the data sets the writer used.

The jobname is either:
v Member name, if the source JCL is a procedure
v Job name, if provided on a JOB statement within the source JCL

You must also specify the WTR parameter. Otherwise, traces connected to the writer remain
connected after the system stops it.

CTncccxx

224 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 22. CUNUNIxx (Unicode Conversion Environment)

CUNUNIxx contains information that Unicode conversion services uses to activate a conversion
environment, or delete an inactive conversion environment. Through the use of the IMAGE,
REALSTORAGE and DELETE statements, you can:

v Identify the name of the conversion image to be selected.

v Specify the upper storage limit for pages to be used by conversion images.

v Delete an inactive conversion environment.

Selecting a CUNUNIxx member
You can select a CUNUNIxx parmlib member in one of the following ways:

v Specifying the UNI keyword in IEASYSxx.

v Issuing the SET UNI command after system initialization.

Two alphanumeric characters are appended to CUNUNI to form the name of the CUNUNIxx parmlib
member. After initialization, you can issue the SET UNI command to change the CUNUNIxx member;
however, this change is temporary. At the next IPL, the system uses the CUNUNIxx member specified in
IEASYSxx. For information on IEASYSxx, see Chapter 47, “IEASYSxx (system parameter list)” on
page 335. For descriptions of the SET command, see z/OS MVS System Commands.

Parameter in IEASYSxx:

The two character identifier (xx) is appended to CUNUNI to identify the CUNUNIxx member of
SYS1.PARMLIB.

Syntax rules for CUNUNIxx
These rules apply to the creation of CUNUNIxx:

v Use columns 1–71 to code statements.

v The IMAGE statement begins with the statement identifier ″IMAGE″ followed by the image name. The
IMAGE statement ends with a semi-colon (;).

v The REALSTORAGE statement begins with the statement identifier ″REALSTORAGE″ followed by the
real storage value. The REALSTORAGE statement ends with a semi-colon (;).

v The DELETE statement begins with the statement identifier ″DELETE″ followed by the string literal
″INACTIVE″. The DELETE statement ends with a semi-colon (;).

v Comments may appear after the semi-colon (;) and must begin with ″/*″ and end with ″*/″.

v Comments can span statements.

v The keywords DELETE and IMAGE cannot be specified in the same member.

v If a new conversion environment is to be activated, you need to include both the IMAGE and
REALSTORAGE keywords in CUNUNIxx.

UNI= {xx }

© Copyright IBM Corp. 1991, 2002 225

|

|

Syntax format of CUNUNIxx

IBM-supplied default for CUNUNIxx
None.

Statements/parameters for CUNUNIxx
IMAGE member

Specifies the name of the conversion image to be activated. The image member specified must be
present in SYS1.PARMLIB or in another data set in the logical parmlib concatenation.

Value Range: any valid z/OS member name.

Example:
IMAGE CUNUNI01;

Note: When an image is activated with the IMAGE statement, the image specified will become the
active conversion environment and the previous version will be set to inactive. You can only
have one active and one inactive conversion environment on the system at any one time. If an
inactive conversion environment already exists when a new conversion environment is
activated, the system will automatically delete the original inactive conversion environment
before making another one inactive.

REALSTORAGE nnn
Defines the upper storage limit, in pages, to be used by the conversion environment. For information
about the amount of storage required for a conversion environment, see z/OS Support for Unicode™:
Using Conversion Services .

Value Range: 0 to 524287.

Example:
REALSTORAGE 0; /* no explicit limit */
REALSTORAGE 12800; /* 50 MB limit */

Notes:

1. The request to load a new conversion environment will be rejected when the value of the
REALSTORAGE keyword is lower than the amount of storage needed.

2. The selection of ’0’ results in no limit (=524287).

DELETE mode
Deletes an inactive unused conversion enviroment. The string literal INACTIVE must be specified.

Value Range: INACTIVE is the only valid value.

Example:
DELETE INACTIVE;

Note: The keywords DELETE and IMAGE cannot be specified in the same member.

IMAGE member;

REALSTORAGE nnn;

DELETE mode;

CUNUNIxx

226 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 23. DEVSUPxx (Device Support Options)

DEVSUPxx specifies the installation default for device support options.

If no installation default is provided through the DEVSUPxx member, and storing data in a compacted
format is not explicitly requested on a DD statement, dynamic allocation request, the MOD= parameter on
the JES3 *CALL DJ command, or DCB macro, then the system uses the compaction default for the
device. For example, the compaction default for a 3480 is NOCOMP. To determine the compaction default
for a particular device, see the planning or migration manual that accompanies the device.

DEVSUPxx also specifies the installation default for the VOLID facility. The VOLID facility allows tape
volumes written in 3480-2 XF (36-track) format and which are mounted on a tape drive not capable of
reading this format, to be re-labelled by the OPEN or EOV label editor routines. The label editor routines
permit the re-label option only when RACF allows the user ALTER authority to the volume. The volume
serial number passed to RACF is obtained from the VOLID mark written on the cartridge by the device,
and placed in the sense data.

If no installation default for the VOLID facility VOLNSNS, is provided by using the DEVSUPxx member, the
system assumes VOLNSNS=NO.

The MEDIAxx parameters of the DEVSUPxx parmlib member allow the customer to specify partitioning
category codes. Library partitioning is the ability to partition volumes in a 3494/3495 tape library between
different MVS/ESA systems (or sysplexes). Partitioning allows each system (or sysplex) to limit its view of
library volumes to only those volumes that it owns. This is accomplished when each system connected to
a library uses unique category codes. The DEVSUPxx category codes are read during IPL and the codes
are stored into the SSVT (replacing the default category codes).

DEVSUPxx also specifies the installation default for creating AL tapes. Use the ALVERSION keyword to
specify whether AL tapes are created using the ISO/ANSI/FIPS Version 3 or ISO/ANSI Version 4 label
standards. ALVERSION is also used to specify if the specified version level should override (force) the
current Version 3 or Version 4 labels of an AL tape. ALVERSION is valid only if the AL tape data set is
being opened for output processing to the first file of the first or only volume of the data set. Otherwise,
the current AL version level of the tape will not be changed, even if force is specified. The default for
ALVERSION is Version 3.

Parameter in IEASYSxx (or Issued By the Operator)

DEVSUP= {aa }
{(aa,bb...)}

The two alphanumeric characters (aa, bb, and so forth) are appended to DEVSUP to form the name of the
DEVSUPxx member of SYS1.PARMLIB.

Syntax Rules for DEVSUPxx
The following rules apply to the creation of DEVSUPxx:

v Each DEVSUPxx parmlib member can contain any number of keyword entries. These entries are
processed left to right, top to bottom.

v Comments may appear in columns 1-80 and must begin with “/*”. After finding an opening comment
delimiter, the rest of the line will be ignored. Therefore, comments may appear as the only entry in a

© Copyright IBM Corp. 1991, 2002 227

line, or following DEVSUPxx keywords, such as COMPACT and VOLNSNS. Comments cannot span
more than one line. Multiple line comments can be included as a series of one-line comments, each
starting with the opening comment delimiter.

v One or more blanks may precede or follow the statement types.

v Uppercase or lowercase letters can be used.

v The equal sign “=” between keywords and their values is mandatory. Intervening blanks are allowed
between the keyword and the equal sign, and between the equal sign and the assigned value.

v Multiple lines are allowed, but every statement specification must be complete on a single line. To
specify continuation lines, a comma must be coded following the last entry on the line, without
intervening blanks and before any comments on that record.

An example of the syntax:
COMPACT = YES,
VOLNSNS = YES,
MEDIA1 = 0011,
MEDIA2 = 0012,
MEDIA3 = 0013,
MEDIA4 = 0014,
ERROR = 001E,
PRIVATE = 001F,
ALVERSION = FORCE3

Syntax Format of DEVSUPxx

Note: xxxx must be a 4-character hexadecimal value within the range 0010-FEFF.

IBM-Supplied Default for DEVSUPxx
VOLNSNS = NO,
MEDIA1 = 0001,
MEDIA2 = 0002,
MEDIA3 = 0003,
MEDIA4 = 0004,
ERROR = 000E,
PRIVATE = 000F
ALVERSION = 3

Note: The values listed for MEDIA1, MEDIA2, MEDIA3, MEDIA4, ERROR, and PRIVATE are IBM
defaults. If you use DEVSUPxx to specify these values, they must match the IBM supplied defaults.
For example, MEDIA1=0002 is invalid. If you want to specify a value for MEDIA1, it must be 0001.

COMPACT={[YES|NO]}

VOLNSNS={[YES|NO]}

MEDIAn=xxxx

ERROR=xxxx

PRIVATE=xxxx

ALVERSION={3|4|FORCE3|FORCE4}

TAPEBLKSZLIM={nnnnn|nnnnnK|nnnnnM|nG}

COPYSDB={YES|SMALL|LARGE|INPUT|NO}

DEVSUPxx

228 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|

Statements/Parameters for DEVSUPxx
COMPACT=

YES
Specifies that data is to be stored in a compacted format on each 3480, 3490, or 3590 tape
subsystem, unless overridden by the user.

NO
Specifies that data is not to be stored in a compacted format on each 3480, 3490 or 3590 tape
subsystem, unless overridden by the user.

If no installation default is provided through the DEVSUPxx member, and storing data in a
compacted format is not explicitly requested on a DD statement, dynamic allocation request, the
MOD=parameter on the JES3 *CALL, DJ command, or DCB macro, then the system uses the
compaction default for the device. For example, the compaction default for a 3480 is NOCOMP. To
determine the compaction default for a particular device, see the planning or migration
documentation that accompanies the device.

VOLNSNS=

YES
Specifies that tape cartridges written at track capacities that the drive is not capable of reading (for
example, a 36-track cartridge on a D/T3480, or a 256-track cartridge on a D/T3590), be re-labelled
at the device-capable track capacity by the OPEN or EOV label editor routines. This re-label editor
option is permitted only if the user is RACF-authorized to the volume. The volume serial number
that is passed to RACF is obtained from the VOLID mark written on the cartridge by the device,
and placed in the sense data.

NO
Specifies that tape cartridges written at track capacities that the drive is not capable of reading (for
example, a 36-track cartridge on a D/T3480, or a 256-track cartridge on a D/T3590), are not
allowed to be re-labelled to 18-track format. Attempts to re-label the cartridges are rejected when
RACF protection for tape volumes is active.

If no installation default for the VOLID facility VOLNSNS is provided by using the DEVSUPxx
member, the system assumes VOLNSNS=NO.

Note: The examples given for 36–track and 256–track cartridges apply only to Medial Cartridge
System Tapes (CST) and not to Media2 Enhanced Capacity Cartridge System Tapes
(ECCST).

ALVERSION=
Specifies whether AL tapes are created using Version 3 or Version 4 standards.

3 Specifies that new AL labels are written as ISO/ANSI/FIPS Version 3. Current version 3 and 4
labels are preserved.

4 Specifies that new AL labels are written as ISO/ANSI Version 4. Current version 3 and 4 labels are
preserved.

FORCE3
Specifies that all AL labels are forced as ISO/ANSI/FIPS Version 3, including any current version 3
and 4 labels.

FORCE4
Specifies that all AL labels are forced as ISO/ANSI Version 4, including any current version 3 and
4 labels.

TAPEBLKSZLIM=
Specifies the default block size limit for the system to use when a user omits the block size limit on a
DD statement for a tape data set and the data class does not supply one. The system stores this

DEVSUPxx

Chapter 23. DEVSUPxx (Device Support Options) 229

value in the DFA (data facilities area), for use by the system and by application programs. See z/OS
DFSMSdfp Advanced Services. The system uses this value only in cases when all of the following are
true:

v An application program uses the large block interface (LBI) of BSAM or QSAM to open a tape data
set for output without DISP=MOD. Check the information for the program; if its maximum block size
is 32760 or less, or it cannot write to tape, the program probably does not use the LBI.

v The BLKSIZE (block size) value is omitted from all sources.

v The DD statement or dynamic allocation equivalent and the data class do not specify a BLKSZLIM
value.

An application program that uses EXCP can take this value from the DFA.

If you code K, M, or G at the end of the number, the system multiplies the number by 1024, 1,048,576
or 1,073,741,824 respectively. The minimum values are 32760 when specified in bytes, 32K when
specified in kilobytes, 1M when specified in megabytes, and 1G when specified in gigabytes. The
maximum values are 2147483648, 2097152K, 2048M and 2G. These maximum block size values are
much larger than the system actually supports for BLKSIZE. Coding a large value, however, allows the
system to choose the largest optimal block size for the device.

The default for this parameter is 32760. IBM recommends that you not code a value that exceeds
32760 in DEVSUPxx if both of the following are true:

v Your system has a job that writes on tape using the large block interface and the job does not
supply a value for BLKSIZE or BLKSZLIM. Programs that use the large block interface include
IEBGENER, ICEGENER, DFSORT™, and programs compiled with COBOL for OS/390 and VM
Version 2 Release 2.

v The tapes with a large block size might be read on a level of MVS that precedes OS/390 Version 2
Release 10 or might be read on another type of system that does not support such large blocks.
OS/400® supports large blocks.

COPYSDB=
Supplies the system-level default for the SDB keyword for IEBGENER. The system uses this value to
set a code in the DFA that any application program can use. See z/OS DFSMSdfp Advanced Services.
The keyword is designed for use by assembler language programs that copy data sets.

The meanings for the keyword values are described in z/OS DFSMSdfp Utilities. The default is no
code in the DFA, which means that IEBGENER assumes SDB=INPUT.

Note: DFSORT’s ICEGENER uses the DFSORT SDB installation value as its default. The
IBM-supplied default is SDB=INPUT. See DFSORT Installation and Customization R14 for
details.

Notes:

1. In all cases, the Volume Mount (VOLMT) exit can override the version specified by ALVERSION . See
z/OS DFSMS Installation Exits for more information on VOLMT.

2. ALVERSION is valid only if the AL tape data set is being opened for output processing to the first file
of the first or only volume of the data set.

Volume Partitioning Parameters
Each volume inside an SMS-managed tape library is assigned a two-byte Library Manager category
number based on the ’use attribute’ of the volume and the media type. The 3494/3495 Library Manager
category numbers are used by the operating system to group tape volumes together for specific purposes.
Currently, DFSMS/MVS uses the following fixed set of category numbers:
X’0001’

All 3490 standard capacity(CST) scratch cartridges.

DEVSUPxx

230 z/OS V1R4.0 MVS Initialization and Tuning Reference

X’0002’
All 3490 enhanced capacity(ECST) scratch cartridges.

X’0003’
All 3590 high performance scratch cartridges.

X’0004’
All 3590 high performance scratch cartridges.

X’0005’
Reserved for future media.

X’0006’
Reserved for future media.

X’0007’
Reserved for future media.

X’0008’
Reserved for future media.

X’0009’
Reserved for future media.

X’000A’
Reserved for future media.

X’000B’
Reserved for future media.

X’000C’
Reserved for future media.

X’000D’
Reserved for future media.

X’000E’
The ERROR category. Used for tape volumes for which the system has detected an error. Tape
volumes are added to this category to prevent them from being mounted in response to a ’scratch’
tape mount.

X’000F’
The PRIVATE category.

Library partitioning is the ability to partition volumes in a 3494/3495 tape library between different
MVS/ESA systems (or sysplexes). Partitioning allows each system (or sysplex) to limit its view of library
volumes to only those volumes that it owns. Partitioning is accomplished when each system connected to
a library uses unique category codes. DEVSUPxx parameters are used to specify category codes that
replace the default system codes.

The following DEVSUPxx parameters are used to specify category codes for library partitioning:
MEDIA1=xxxx

xxxx specifies a 2-byte hexadecimal value to be used as the 3490 standard capacity (CST) scratch
category code.

MEDIA2=xxxx
xxxx specifies a 2-byte hexadecimal value to be used as the 3490 enhanced capacity (ECST) scratch
category code.

MEDIA3=xxxx
xxxx specifies a 2-byte hexadecimal value to be used as the 3590 high performance cartridge tape
scratch category code.

MEDIA4=xxxx
xxxx specifies a 2-byte hexadecimal value to be used as the 256 track, 3590 high performance
cartridge tape scratch category code.

ERROR=xxxx
xxxx specifies a 2-byte hexadecimal value to be used as the error category code.

PRIVATE=xxxx
xxxx specifies a 2-byte hexadecimal value to be used as the private category code.

Note: xxxx must be a 4-character hexadecimal value within the range 0000-FEFF.

DEVSUPxx

Chapter 23. DEVSUPxx (Device Support Options) 231

|
|

|

DEVSUPxx

232 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 24. DIAGxx (Control common storage tracking and
GFS trace)

DIAGxx contains statements that control the following functions:

v Common service area (CSA), extended CSA (ECSA), system queue area (SQA), and extended SQA
(ESQA) tracking.

v GETMAIN/FREEMAIN/STORAGE (GFS) trace.

To obtain GFS trace data output, GTF must be started for USR F65 records. For more details, see the
GFS trace information in z/OS MVS Diagnosis: Tools and Service Aids.

References
See the description of the VERBEXIT VSMDATA subcommand in z/OS MVS IPCS Commands for
information about:

v How to format the data that the storage tracking function collects from a dump.

v How to identify jobs or address spaces that own CSA, ECSA, SQA, and ESQA storage.

Specifying the DIAGxx members
The following methods can be used to specify the current DIAGxx members:

v The operator can enter the SET DIAG=xx command at any time after IPL.

v You can specify the DIAG=xx parameter in the IEASYSxx parmlib member during IPL, and then select
IEASYSxx in the LOADxx parmlib member or specify SYSP=xx in response to the SPECIFY SYSTEM
PARAMETERS system message.

v You can specify DIAG=xx in response to the SPECIFY SYSTEM PARAMETERS system message.

You can specify one or more current DIAGxx parmlib members during IPL. For example, a DIAG=(03,04)
system parameter tells the system to use DIAG03 and DIAG04 as current members. The system
processes these members in the order they are specified.

The VSM TRACK parameter is cumulative. For example, if you specify VSM TRACK SQA(ON) in DIAG03
and VSM TRACK CSA(ON) in DIAG04, the system turns SQA/ESQA tracking on when it processes
DIAG03, and turns CSA/ECSA tracking on when it processes DIAG04 (so both are turned on). The VSM
TRACE parameter, in contrast, is not. For example, if you specify VSM TRACE GETFREE(ON)
SUBPOOL(127) in DIAG03 and VSM TRACE GETFREE(ON) SUBPOOL(0) ASID(1) in DIAG04, the
second specification replaces the first, with the result that the system performs a GFS trace for ASID 1
only.

IBM provides the following parmlib members:

Parmlib Member
Function

DIAG00 (default)
Sets storage tracking on and GFS trace off.

DIAG01
Sets storage tracking on but does not change GFS trace settings.

DIAG02
Sets storage tracking off but does not change GFS trace settings.

© Copyright IBM Corp. 1991, 2002 233

If you do not specify a DIAGxx parmlib member during IPL, the system processes the default member
DIAG00.

Parameter in IEASYSxx (or specified by the operator):
DIAG=(xx[,yy...])

The two-character identifier xx is appended to DIAG to identify the DIAGxx parmlib member. You can also
specify multiple DIAGxx members on this parameter. For example, you can specify two active members
using the form DIAG=(xx,yy). If you do not specify the DIAG=xx parameter, the system processes the
DIAG00 parmlib member.

Syntax rules for DIAGxx
When creating DIAGxx, enter data only in columns 1 through 71. Do not enter data in columns 72 through
80; the system ignores these columns.

If the system finds a syntax error in DIAGxx, the system issues an error message, and then attempts to
continue processing the next keyword.

Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

Syntax format of DIAGxx
[VSM TRACE]
[{GETFREE(ON)|GET(ON|OFF) FREE(ON|OFF) }]
[[ASID({asid1|asid1-asidx}[,{asid2|asid2-asidx}]...)]]
[[DATA(data1[,data2]...)]
[[KEY({key1|key1-keyx}[,{key2|key2-keyx}]...)]]
[[LENGTH({len1|len1-lenx}[,{len2|len2-lenx}]...)]]
[[SUBPOOL({sub1|sub1-subx}[,{sub2|sub2-subx}]...)]]
[[JOBNAME([job1,job2...])]
[[ADDRESS([addr1|addr1-addrx][,addr2-|addr2-addrx..)]]
[[LOCREAL(loc1[,loc2]...)]
[{GETFREE (OFF) }]
[VSM TRACK]
[{CSA (ON|OFF) }]
[{SQA (ON|OFF) }]
[{CSA (ON|OFF) SQA (ON|OFF) }]

IBM-supplied default for DIAGxx
The IBM-supplied default parmlib member is DIAG00, which contains the following:

VSM TRACE GETFREE (OFF)
VSM TRACK CSA(ON) SQA(ON)

If you do not specify a DIAGxx parmlib member during IPL, the system uses the default member, DIAG00,
which turns on storage tracking and turns off GFS trace.

If you specify a DIAGxx parmlib member during IPL omitting either the storage tracking or GFS trace
statement, the omitted element is turned off.

The system expects a DIAG00 member to be present. If you do not specify a DIAGxx parmlib member
during IPL, and member DIAG00 does not exist, the system uses the following options:

VSM TRACE GETFREE (OFF)
VSM TRACK CSA(ON) SQA(ON)

In this case:

DIAGxx

234 z/OS V1R4.0 MVS Initialization and Tuning Reference

v CSA and SQA tracking are active and will remain active until turned off through a SET DIAG=xx
command.

v GFS tracing is off.

v The system issues informational message IEA301I to the operator.

Statements/parameters for DIAGxx
VSM TRACE

Indicates that the statement defines a GFS trace of storage obtained and released.

GETFREE (ON|OFF)
Specifies the current status of the GFS trace.

GET(ON|OFF) FREE(ON|OFF)

ASID({asid1|asid1-asidx}[,{asid2|asid2-asidx}]...)
Indicates that the system is to produce trace records only for one or more specified address space
identifiers (ASIDs). Each ASID must be a hexadecimal number from 0 to 7FFF. The ASID that the
system checks when it determines whether to produce a trace record is as follows:

Private Storage=
The target address space of the storage.

CSA Storage=
If CSA tracking is on, the associated ASID is the one indicated by the OWNER parameter on
GETMAIN or STORAGE. IF CSA tracking is off (or for a request to release storage, was off when
the storage was obtained), the associated ASID is unknown, causing no ASID filtering to be done
and a trace record to be produced.

SQA Storage =
If SQA tracking is on, the associated ASID is the one indicated by the OWNER parameter on
GETMAIN or STORAGE. IF SQA tracking is off (or for a request to release storage, was off when
the storage was obtained), the associated ASID is unknown, causing no ASID filtering to be done
and a trace record to be produced.

ASID 0 matches conmmon storage requests with OWNER=SYSTEM.

If you omit this parameter, the system produces trace records for all ASIDs. You may specify from 1 to
32 ASIDs.

You may specify a specific ASID, a range of ASIDs, or any combination of both, as shown in the
following examples:

v ASID(5,6,9) - The system produces trace records for ASIDs 5, 6, and 9.

v ASID(5-7,9,11-13) - The system produces trace records for ASIDs 5, 6, 7, 9, 11, 12, and 13.

If you specify a range of ASIDs, ensure that the ASID at the end of the range is greater than the ASID
at the beginning of the range.

DATA(data1[,data2]...)
Specifies the data items that you want to include in the trace, which can be one or more of the
following:

Data Information Included in Trace

ALL All trace information (BASIC plus REGS).

REGS The contents of the caller’s registers when the system processed the linkage instruction to
GETMAIN, FREEMAIN, or STORAGE.

DIAGxx

Chapter 24. DIAGxx (Control common storage tracking and GFS trace) 235

BASIC
All of the trace information except REGS. The BASIC data is included in every trace record.

Note: RETADDR, RETCODE, TYPE, SVCNUM, ADDR, LENGTH, SPKEY, FLAGS, ASID, and TCB
are accepted for compatability with older releases and are ignored.

If you omit the DATA keyword, the default is DATA(ALL).

KEY({key1|key1-keyx}[,{key2|key2-keyx}]...)
Specifies the storage keys for which the system is to produce trace records. If you do not specify this
parameter, the system produces trace records for all storage keys. You may specify any number of
keys or key ranges. Each key must be a decimal number from 0 to 15.

If you specify a range of keys, ensure that the key at the end of the range is greater than or equal to
the key at the beginning of the range.

You may specify a specific key, a range of keys, or any combination of both, as shown in the following
examples:

v KEY(1,2) - The system produces trace records for storage keys 1 and 2.

v KEY(1-3,15) - The system produces trace records for storage keys 1, 2, 3 and 15.

KEY filtering does not apply to a subpool FREEMAIN request, causing a trace record to be produced
for the subpool FREEMAIN, as well as an associated ″Releasing Subpool″ trace record. (For a
description of the ″Releasing Subpool″ trace record, refer to Formatted GFS Trace Output in z/OS
MVS Diagnosis: Tools and Service Aids, under GETMAIN, FREEMAIN, STORAGE (GFS) Trace.)

LENGTH({len1|len1-lenx}[,{len2|len2-lenx}]...)
Indicates that the system is to produce trace records only for requested storage of specific lengths (in
bytes). You may specify up to eight storage lengths. Each length must be a decimal number from 1 to
10 digits (the maximum value is 2147483640 bytes). If you do not specify this parameter, the system
produces trace records for requested storage of all lengths.

Specify each length as a multiple of 8 bytes. If you do not, the system rounds the value up to the next
higher multiple of 8.

You may specify a specific length, a range of lengths, or any combination of both, as shown in the
following examples:

v LENGTH(512,1024) - The system produces trace records for requested lengths of 512 and 1024
bytes.

v LENGTH(512,520-528,1024-1032) - The system produces trace records for requested lengths of
512, 520-528, and 1024-1032 bytes.

If you specify a range of lengths, ensure that the length at the end of the range is greater than or
equal to the length at the beginning of the range. If the requested storage is of a variable length, the
system uses the length of the storage that was actually obtained.

LENGTH filtering does not apply to a subpool FREEMAIN request, causing a trace record to be
produced for the subpool FREEMAIN, as well as an associated ″Releasing Subpool″ trace record. (For
a description of the ″Releasing Subpool″ trace record, refer to Formatted GFS Trace Output in z/OS
MVS Diagnosis: Tools and Service Aids, under GETMAIN, FREEMAIN, STORAGE (GFS) Trace.)

SUBPOOL({sub1|sub1-subx}[,{sub2|sub2-subx}]...)
Specifies the subpools for which the system is to produce trace records. If you omit this parameter, the
system produces trace records for all subpools. You may specify any number of subpools.

You may specify a specific subpool, a range of subpools, or any combination of both, as shown in the
following examples:

v SUBPOOL(129,132) - The system produces trace records for subpools 129 and 132.

DIAGxx

236 z/OS V1R4.0 MVS Initialization and Tuning Reference

v SUBPOOL(129-131, 227-229, 252) - The system produces trace records for subpools 129, 130,
131, 227, 228, 229 and 252.

If you specify a range of subpools, ensure that the subpool at the end of the range is greater than or
equal to the subpool at the beginning of the range.

JOBNAME(job1{,job2}...)
Specifies that the system is to produce trace records only for one or more specified job names. Each
job name must be from 1 to 8 alphanumeric or national characters. The wildcard characters ? and *
can be included.

The job name that the system checks when it determines whether to produce a trace record is the job
name for the ASID which would be used to match an ASID filter (see the ASID parameter).

Private Storage=
The target JOBNAME of the storage.

CSA Storage=
If CSA tracking is on, the associated JOBNAME is the one indicated by the OWNER parameter on
GETMAIN or STORAGE. IF CSA tracking is off (or for a request to release storage, was off when
the storage was obtained), the associated JOBNAME is unknown, causing no JOBNAME filtering
to be done and a trace record to be produced.

SQA Storage =
If SQA tracking is on, the associated JOBNAME is the one indicated by the OWNER parameter on
GETMAIN or STORAGE. IF SQA tracking is off (or for a request to release storage, was off when
the storage was obtained), the associated JOBNAME is unknown, causing no JOBNAME filtering
to be done and a trace record to be produced.

ADDRESS(addr1|addr1–addrx,[addr2|addr2–addrx]...)
Specifies that the system is to produce trace records only for requested storage of specific addresses.
You may specify up to eight storage addresses. Each address must be a hexadecimal number from 0
to 7FFFFFFF. If you do not specify this parameter, the system produces trace records for requested
storage of all addresses.

You may specify a specific address, a range of addresses, or any combination of both, as shown in
the following examples:

v ADDRESS(0–FFFFFF) - The system produces trace records for all addresses less than 16
megabytes.

v ADDRESS(8000,70000000–7FFFFFFF) - The system produces trace records for addresses 8000
and 70000000–7FFFFFFF.

If you specify a range of addresses, ensure that the address at the end of the range is greater than or
equal to the address of the beginning of the range. A request matches a range if any byte of the
request is within the range.

ADDRESS filtering does not apply to a subpool FREEMAIN request, causing a trace record to be
produced for the subpool FREEMAIN, as well as an associated ″Releasing Subpool″ trace record. (For
a description of the ″Releasing Subpool″ trace record, refer to Formatted GFS Trace Output in z/OS
MVS Diagnosis: Tools and Service Aids, under GETMAIN, FREEMAIN, STORAGE (GFS) Trace.)

LOCREAL(loc1[,loc2]...)
Specifies the central storage location (as specified by the LOC keyword on the GETMAIN and
STORAGE macros) for which trace records should be produced. Specify 24, BELOW, 31, ANY, or 64.

24 or BELOW
The system produces trace records for requests that specify locations in 24-bit central storage.

31 or ANY
The system produces trace records for requests that specify locations in 31-bit central storage.

DIAGxx

Chapter 24. DIAGxx (Control common storage tracking and GFS trace) 237

64 The system produces trace records for requests that specify locations in 64-bit central storage.

If you do not specify this parameter, trace records are produced for all central storage locations.

VSM TRACK
Indicates that the system is to process the VSM tracking parameters.

CSA (ON | OFF)
The status of the common service area (CSA and ECSA) tracking function. Specifying CSA(ON) may
lead to a small performance degradation and an increase in ESQA use. Omitting this parameter leaves
the status of CSA/ECSA tracking unchanged.

SQA (ON | OFF)
The status of the system queue area (SQA and ESQA) tracking function. Specifying SQA(ON) may
lead to a small performance degradation and an increase in ESQA usage. Omitting this parameter
leaves the status of SQA/ESQA tracking unchanged.

Example 1: The following example shows a DIAGxx parmlib member that starts GFS trace for requests to
obtain or release virtual storage in subpools 1 through 127 and 229. The GFS trace includes requests for:
v Address spaces 1 and F
v A length of 4096 bytes
v Keys 8, 10, 11, and 12.

GFS trace includes all data in the trace, with the exception of register information.
VSM TRACE GETFREE(ON)

SUBPOOL(1-127,229)
ASID(1,F)
LENGTH(4096)
KEY(8,10-12)
DATA(RETADDR,RETCODE,TYPE,SVCNUM,

ADDR,LENGTH,SPKEY,FLAGS,ASID,TCB)

Example 2: The following example shows a DIAGxx parmlib member that starts GFS trace for requests to
obtain or release virtual storage in subpools 129 through 255. The GFS trace includes requests for:
v All address spaces (the ASID keyword is not specified)
v Lengths in the 4096-8192 byte range
v All keys (the KEY keyword is not specified)

GFS trace includes all data in the trace, with the exception of register information.
VSM TRACE GETFREE(ON)

SUBPOOL(129-255)
LENGTH(4096-8192)
DATA(RETADDR,RETCODE,TYPE,SVCNUM,

ADDR,LENGTH,SPKEY,FLAGS,ASID,TCB)

Example 3: The following example shows a DIAGxx parmlib member that turns CSA/ECSA tracking on
and turns SQA/ESQA tracking off:

VSM TRACK CSA(ON) SQA(OFF)

For examples of output from storage tracking, see z/OS MVS Diagnosis: Tools and Service Aids. For
information about the location of GFS trace records, see z/OS MVS Diagnosis: Tools and Service Aids.

DIAGxx

238 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 25. EPHWP00 (BookManager ® topic extraction)

To use man pages on z/OS UNIX, you must have a SEPHTAB data set cataloged in your system. (See
z/OS UNIX System Services Planning for information on cataloging the SEPHTAB data set.)

You must make the SEPHTAB data set name available to the BookRead service called by the ″man″
command. You do this with one of the following methods:

1. Use the default data set EPH.SEPHTAB.

2. Specify a non-default prefix of the SEPHTAB data set, right-justified on line one of the EPHWP00
member in SYS1.PARMLIB.

3. Specify a non-default prefix of the SEPHTAB data set, right-justified on line one of the default HFS
configuration file: /etc/booksrv/bookread.conf

4. Specify a non-default prefix of the SEPHTAB data set, right-justified on line one of a NON-default HFS
configuration file. Specify the non-default HFS configuration file by setting the EPHBookReadConfig
environment variable to the HFS file name and path.

5. Specify a data set containing the members of SEPHTAB but not ending in SEPHTAB by entering
″DSN=MY.FB4096.DATA.SET″ right-justified without the double quotes on line one of
’SYS1.PARMLIB(EPHWP00)’.

6. Specify a data set containing the members of SEPHTAB but not ending in SEPHTAB by entering
″DSN=MY.FB4096.DATA.SET″ right-justified without the double quotes on line one of the default HFS
configuration file: /etc/booksrv/bookread.conf

7. Specify a data set containing the members of SEPHTAB but not ending in SEPHTAB by entering
″DSN=MY.FB4096.DATA.SET″ right-justified without the double quotes on line one of a non-default
HFS configuration file. Specify the NON-default HFS configuration file by setting the
EPHBookReadConfig environment variable.

To use man pages on z/OS UNIX, you must have a SEPHTAB data set cataloged in your system and an
EPHWP00 member in SYS1.PARMLIB. The SEPHTAB data set contains translation tables used to
translate data from the internal BookManager softcopy format to the code page BookManager is being
asked to display. (See z/OS UNIX System Services Planning for information on cataloging the SEPHTAB
data set.)

A sample EPHWP00 parmlib member is provided in SEPHSAMP. To use man pages, you must copy that
sample from SEPHSAMP into SYS1.PARMLIB.

A sample EPHWP00 parmlib member is provided in SEPHSAMP. To override the default EPH.SEPHTAB
data set name, you must copy that sample from SEPHSAMP into the configuration file
/etc/booksrv/bookread.conf or into SYS1.PARMLIB.

The sample EPHWP00 parmlib member contains a left-justified statement of ″EPH″. This is the
IBM-supplied prefix for the SEPHTAB data set. If you change the prefix of the SEPHTAB data set, you
must manually change this left-justified statement to match the prefix of the SEPHTAB data set. For
example, if you used a prefix of ABC in the SEPHTAB data set, you must change the EPHWP00 parmlib
member from ″EPH″ to ″ABC″.

If you do not change the prefix of the SEPHTAB data set, no changes are required to
/etc/booksrv/bookread.conf or to the EPHWP00 parmlib member.

Parameter in IEASYSxx (or issued by the operator):
None.

© Copyright IBM Corp. 1991, 2002 239

Syntax rules for EPHWP00
Line one of a bookread configuration file or EPHWP00 member of SYS1.PARMLIB starting with DSN=
indicates a fully qualified data set name follows the ″=″.

″DSN=″ NOT occurring on line one indicates that line one begins with a prefix for the SEPHTAB suffixed
data set.

Comments cannot be entered on the first line. Comments can be entered on subsequent lines.

Syntax format of EPHWP00
There is no syntax for EPHWP00. If the EPH prefix of the SEPHTAB data set is changed, it must be
manually changed in /etc/booksrv/bookread.conf or in SYS1.PARMLIB.

IBM-supplied default for EPHWP00
There is no default parmlib member supplied by IBM. A sample member, EPHWP00, is provided in
SEPHSAMP.

EPHWP00

240 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 26. EXITxx (allocation installation exit list)

Use the EXITxx member of SYS1.PARMLIB to specify installation exits for the following allocation
decisions:

Exit Purpose

Volume ENQ
When a job must wait to enqueue on a volume or a series of volumes, code the volume ENQ exit
routine to make exceptions, if any, to the installation default policy for certain jobs and/or volumes.
See Chapter 4, “ALLOCxx (allocation system defaults)” on page 57 for information about
specification of the installation default policy. See z/OS MVS Installation Exits for information about
coding the volume ENQ installation exit.

Volume Mount
When a job’s allocation request requires a volume to be mounted, code the volume mount exit
routine to make exceptions, if any, to the installation default policy for certain jobs and/or volumes.
See Chapter 4, “ALLOCxx (allocation system defaults)” on page 57 for information about
specification of the installation default policy. See z/OS MVS Installation Exits for information about
coding the volume mount installation exit.

Specific Wait
When a job must wait for a specific volume or device to become available, code the specific waits
exit routine to make exceptions (for certain jobs and/or volumes) to the installation default policy.
See Chapter 4, “ALLOCxx (allocation system defaults)” on page 57 for information about
specification of the installation default policy. See z/OS MVS Installation Exits for information about
coding the specific waits installation exit.

Allocated/Offline Device
When a job must wait because the device it requested is offline or allocated to another job, code
the allocated/offline device exit routine to make exceptions, if any, to the installation default policy
for certain jobs and/or devices. See Chapter 4, “ALLOCxx (allocation system defaults)” on page 57
for information about specification of the installation default policy. See z/OS MVS Installation Exits
for information about coding the allocated/offline device installation exit.

Note: IBM provides the PROGxx parmlib member as an alternative to EXITxx. PROGxx allows you to
specify exits, control their use, and associate one or more exit routines with exits, at IPL or while
the system is running. IBM recommends that you use PROGxx to specify exits whether or not you
want to take advantage of these functions.

You can convert the format of EXITxx to PROGxx using the IEFEXPR REXX exec provided by IBM. For
example, the following statement in EXITxx
EXIT EXITNAME(xx)MODNAME(yy)

would look like this in PROGxx:
EXIT ADD EXITNAME(xx) MODNAME(yy)

For information on how to use the IEFEXPR REXX exec to convert the exit definitions in EXITxx to
equivalent definitions in PROGxx, see Chapter 32, “IEAAPFxx (authorized program facility list)” on
page 265.

For information on how to use PROGxx to define and control the use of exits, see “PROG” on page 367.

Parameter in IEASYSxx (or issued by the operator):

© Copyright IBM Corp. 1991, 2002 241

EXIT= aa

The two alphanumeric characters, represented by aa are appended to EXIT to identify the EXITxx member
of parmlib.

Syntax rules for EXITxx
The following syntax rules apply to EXITxx:

v Use columns 1 through 71. Do not use columns 72 through 80 for data; these columns are ignored.

v At least one delimiter (space or comma) is required between a statement and keyword. Delimiters are
not required between keywords.

v Comments may appear in columns 1-71 and must begin with ″/*’ and end with ″*/″.

Syntax format of EXITxx

IBM-supplied default for EXITxx
There is no default EXITxx parmlib member supplied by IBM. A sample parmlib member, EXIT00, is
provided in SYS1.SAMPLIB.

Statements/parameters for EXITxx
EXIT

Specifies installation exit information for a single exit point and exit routine name. You must specify an
EXIT statement for each installation exit that you want to get control.

EXITNAME
This required parameter specifies the name of an installation exit point. Valid values are:
v IEF_VOLUME_ENQ for the volume ENQ installation exit
v IEF_VOLUME_MNT for the volume mount installation exit
v IEF_SPEC_WAIT for the specific waits installation exit
v IEF_ALLC_OFFLN for the allocated/offline device installation exit.

See z/OS MVS Installation Exits for information about the individual exits.

MODNAME
This required parameter specifies the exit’s load module name. The exit routine name can be any
1-8 character string of alphanumeric or special (#, @, or $) characters. The first character of the
routine name cannot be a number.

EXIT EXITNAME(exitname)
MODNAME(module name)

EXITxx

242 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 27. EXSPATxx (excessive spin condition actions)

The EXSPATxx member allows an installation to specify actions to be taken to recover from excessive
spin conditions without operator involvement. A system routine might be spinning because it cannot obtain
a resource held by another processor. EXSPATxx allows you to specify the action or actions to be taken to
end the spin loop if the excessive spin is detected while spinning for one of the following:
v A RISGNL response
v A spin lock to be released
v A successful BIND BREAK completion
v The RESTART resource
v An address space to quiesce
v An INTSECT release
v A CPU in the stopped state.

EXSPATxx does not support actions for spin loops that are caused by SIGP failures.

The IBM-supplied defaults for the system are appropriate in a normal environment. In a test environment,
however, you might want to specify particular actions to be taken.

In addition to recovery actions, EXSPATxx allows you to specify a timeout interval. If an excessive spin
continues beyond the timeout interval, the system automatically issues a SPIN action before taking any
recovery action specified in an EXSPATxx member. If the excessive spin continues until the timeout
interval is reached again, then the recovery actions specified in the EXSPATxx member are taken.

For more information on handling excessive spin conditions, see z/OS MVS Recovery and Reconfiguration
Guide.

Parameter in IEASYSxx (or issued by the operator):
There is no IEASYSxx parameter to set EXS=xx. It can be set only by the SET command.

SET EXS=xx

The two alphanumeric characters (xx) indicate the EXSPATxx member that contains the excessive spin
recovery actions and the excessive spin loop timeout interval.

Syntax rules for EXSPATxx
The following syntax rules apply to EXSPATxx:

v SPINRCVY or SPINTIME can start in any column between column 1 and 71.

v SPINRCVY or SPINTIME must be the first entry on a record.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

v Any number of blanks can exist between SPINRCVY and the first action.

v Multiple actions on a SPINRCVY statement must be separated by commas. A blank is not a valid
delimiter between two actions.

v SPINRCVY and multiple actions must appear on the same logical record.

v SPINTIME=sss cannot contain blanks.

v The system ignores columns 72 through 80.

Syntax example of EXSPATxx
An example of the syntax for an EXSPATxx member is:

© Copyright IBM Corp. 1991, 2002 243

SPINRCVY action[,action]...
SPINTIME=sss

IBM-supplied default for EXSPATxx
None.

The EXSPATxx member is optional. At initialization time, the IBM-supplied default recovery actions are
taken for excessive spin conditions. After initialization, you can issue the SET EXS=xx command to specify
the EXSPATxx member. Two alphanumeric characters are appended to EXSPAT to form the name of the
EXSPATxx member.

The IBM-supplied default recovery actions for excessive spin conditions are:
SPINRCVY SPIN,ABEND,TERM,ACR
SPINTIME=10 or SPINTIME=40 (see note)

Note: The default spin loop timeout interval depends on the system configuration. For MVS running in a
native or basic mode, or in an LPAR with dedicated CPs, the default is 10 seconds. For MVS
running on VM or in an LPAR with shared CPs, the default spin loop timeout interval is 40 seconds.

Statements/parameters for EXSPATxx
SPINRCVY

The SPINRCVY statement allows you to specify the actions the system is to take to end a spin loop
not caused by a SIGP failure. SPINRCVY must be the first entry on a record defining these actions. At
least one action is required on a SPINRCVY statement. You can specify a maximum of eight
parameters on a SPINRCVY statement.

ABEND
The system abnormally ends the current unit of work on the processor that is causing the
excessive spin (abend code X'071') and takes a SLIP dump if the installation is running with the
IBM-supplied default for IEASLPxx. Recovery routines for the unit of work are allowed to retry.

ACR
The system invokes alternate CPU recovery (ACR) processing for the processor causing the
excessive spin. The processor is taken offline.

OPER
The system issues message IEE331A and processes the operator’s reply. If the message could
not be issued, or if the operator does not respond, the processor that is in an excessive spin is put
into a restartable wait state (X'09n'). The operator may respond to the message with ABEND,
ACR, TERM, SPIN, or U (equivalent to SPIN) to continue.

SPIN
Specifies that the spinning processor is to continue spinning. An informational message (IEE178I)
is displayed.

TERM
The system abnormally ends the current unit of work on the processor that is causing the
excessive spin (abend code X'071') and takes a SLIP dump if the installation is running with the
IBM-supplied default for IEASLPxx. Recovery routines for the unit of work are not allowed to retry.

SPINTIME=sss
SPINTIME allows you to specify the excessive spin loop timeout interval, where sss is the number of
seconds. sss can be one through three digits but must be at least 10 seconds. For MVS running in a
native or basic mode, or in an LPAR with dedicated CPs, the default is 10 seconds. For MVS running
on VM or in an LPAR with shared CPs, the default spin loop timeout interval is 40 seconds.

Default Value:

EXSPATxx

244 z/OS V1R4.0 MVS Initialization and Tuning Reference

10 seconds or 40 seconds

Notes:

1. In a PR/SM environment, system configuration and weighting affect the amount of processing
(CPU cycles) that occurs in each partition during the timeout interval.

2. The default value of SPINTIME (not the specified SPINTIME value) affects the default value of the
INTERVAL parameter in the COUPLExx member of SYS1.PARMLIB. The INTERVAL parameter is
described on 198.

3. For an MVS system running in a non-dedicated PR/SM environment or under VM, if you specify
non-default values for SPINTIME, consider that:

v The more processing power (CPU cycles) available to the system, the less time it needs to
resolve a spin loop.

v The less processing power available to the system, the more time it needs to resolve a spin
loop.

v Specifying a SPINTIME that is too low might cause premature excessive spin conditions.

If your system is running in a logical partition that is sharing central processing resources, and you
want to use a SPINTIME value of less than the default time (40 seconds), the BLWSPINR member
of SYS1.SAMPLIB contains an exec that can help you evaluate your spintime requirements.

Example of EXSPATxx
If you specify more than one action, the system executes the actions in the order of their specification. For
example, if you code
SPINRCVY ABEND,ACR
SPINTIME=30

the system allows the excessive spin to continue for about 30 seconds and then issues a SPIN action
before your first recovery action, issuing an informational message and allowing the excessive spin to
continue for another 30 seconds. The system then issues ABEND 071 to end the unit of work that is
causing the spin and takes a SLIP dump if the installation is running with the IBM-supplied default for
IEASLPxx. The recovery routines for that unit of work try to recover; if they fail, the spin is allowed to
continue for 30 seconds. Finally, the system initiates ACR (alternate CPU recovery) to take the processor
that is causing the spin offline.

Note: After the processor is taken offline, it can be brought back online by the operator through the CF
CPU(x),ONLINE command.

EXSPATxx

Chapter 27. EXSPATxx (excessive spin condition actions) 245

EXSPATxx

246 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 28. GRSCNFxx (global resource serialization
configuration)

If your installation uses global resource serialization to serialize access to global resources (usually data
sets on shared DASD volumes) among units of work on multiple systems, the contents of the GRSCNFxx
parmlib member are used during system initialization to define the attributes of the global resource
serialization complex. The GRSCNFxx statement is not required when global resource serialization is not
active. You can use the IBM-supplied default CTRACE parmlib member, CTIGRS00, to initialize a star
complex. If you use a CTRACE parmlib member other than the default supplied by IBM, you must specify
the CTRACE parameter on the GRSDEF statement in GRSCNFxx. If you want to specify different
parameters for different systems, use the MATCHSYS parameter.

A global resource serialization complex consists of two or more systems connected by communication
links. The systems in the complex use global resource serialization to serialize any shared resources such
as controlling access to data sets on shared DASD volumes at the data set level rather than at the volume
level. (For more information, see z/OS MVS Planning: Global Resource Serialization.)

To define a global resource serialization ring complex, use the GRSCNFxx parmlib member. (As noted
above, you may not need a GRSCNFxx parmlib member if you are defining a global resource serialization
star complex,) GRSCNFxx contains a GRSDEF statement for each system. The statement identifies:

v The name of the system in the complex, by means of the MATCHSYS parameter.

v The CTC links assigned to the system, by means of the CTC parameter.

v The minimum amount of time that the RSA-message is to spend in the system, by means of the
RESMIL parameter.

v Whether or not the system identified by the MATCHSYS keyword has the automatic restart capability,
by means of the RESTART parameter.

v Whether or not the system identified by the MATCHSYS keyword has the capability to automatically
rejoin the complex, by means of the REJOIN parameter.

v The maximum amount of time (the tolerance time interval) before global resource serialization will detect
a time-out, by means of the TOLINT parameter.

v The method to establish the global resource serialization ring acceleration function, by means of the
ACCELSYS parameter.

v The member of parmlib that contains the default global resource serialization component tracing
options, by means of the CTRACE parameter.

There are three basic ways to use GRSCNFxx to define your complex:

1. You can create one GRSCNFxx parmlib member that contains GRSDEF statements that define all of
the systems in the complex. After creating the member, copy it to the parmlib on each system. As each
system is initialized, it reads the GRSCNFxx member, locates its own GRSDEF statement, and uses
the information in the statement during initialization.

2. You can create a unique GRSCNFxx member for each system in the complex. The member consists of
a GRSDEF statement for that particular system. You place the unique member in parmlib on that
particular system, and that system uses the information it contains during initialization.

3. If all systems in the global resource serialization complex will belong to the same sysplex, you can
create one GRSCNFxx member that contains a single GRSDEF statement that defines consistent
information for all systems. The IBM-supplied default member, GRSCNF00, can be used for this
purpose.

Variations or combinations of these methods are, of course, possible. Which ever method you choose,
GRSCNFxx provides information about the configuration of the complex that global resource serialization
requires during initialization. Other information that global resource serialization requires comes from the
following system parameters (in IEASYSxx):

© Copyright IBM Corp. 1991, 2002 247

v GRS=
v GRSCNF=
v GRSRNL=EXCLUDE
v SYSNAME=

The GRS, GRSCNF, GRSRNL=EXCLUDE, and SYSNAME parameters can be specified only at IPL time,
either in IEASYSxx or by the operator. They all remain in effect for the duration of the IPL. For specific
details on how to specify any one of these parameters, see the description of the parameter provided in
Chapter 47, “IEASYSxx (system parameter list)” on page 335.

During initialization processing for a system that is to join an existing complex, global resource serialization
verifies that the information in GRSCNFxx is consistent with the existing complex. Even if a system is
defined in a GRSCNFxx parmlib member and initialized with GRS=JOIN, it cannot join the complex unless
either:

v at least one CTC link associated with the system in GRSCNFxx is attached to another active system in
the complex, or

v the system is joining a sysplex (see Chapter 18, “COUPLExx (cross-system coupling facility (XCF)
parameters)” on page 195)

Parameters in IEASYSxx:
GRS= {JOIN }

{START }
{TRYJOIN }
{NONE }
{STAR }

GRSCNF=xx
GRSRNL= {xx }

{(xx,yy... }
{EXCLUDE }

SYSNAME=name

Syntax rules for GRSCNFxx
The following rules apply to the creation of GRSCNFxx:

v Use columns 1 through 71; columns 72 through 80 are ignored.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”. A comment can
span lines and can appear anywhere except within a keyword or a specified value.

v Each GRSDEF statement is defined as beginning with the characters “GRSDEF” and ending with the
character immediately preceding the next GRSDEF statement.

v The GRSDEF statement format is:
GRSDEF [MATCHSYS {(name) }]

[{(*) }]
[RESMIL {(1-8 decimal digit) }]
[{(OFF) }]
[CTC (3-4 hexadecimal digit device number)...]
[RESTART {(YES) }]
[{(NO) }]
[REJOIN {(YES) }]
[{(NO) }]
[TOLINT (1-8 decimal digit)]
[ACCELSYS (1-2 decimal digit)]
[CTRACE (parmlib member name)]
[SYNCHRES {(YES) }]
[{(NO) }]

GRSCNFxx

248 z/OS V1R4.0 MVS Initialization and Tuning Reference

Notes:

1. You can put a blank anywhere except within a keyword or a specified value.

2. You can use as many lines as you need for one GRSDEF statement.

3. You can specify multiple parameters on the same line.

4. No delimiters or blanks are needed between parameters. For example, the following GRSDEF
statement is valid:

GRSDEF MATCHSYS(*) CTC(9A0)CTC(8B0)CTC(7D0)RESMIL(10)

5. Duplicate GRSDEF statements cause a syntax error. A syntax error also occurs if you specify more
than one GRSDEF statement with MATCHSYS(*), either explicitly or by default, or more than one
GRSDEF statement with the same MATCHSYS name.

6. If this system is not a member of a sysplex, each GRSDEF statement must include at least one
CTC parameter. Each GRSDEF statement can include up to a maximum of 64 CTC parameters.

IBM-supplied default for GRSCNFxx
Default member GRSCNF00 contains:
GRSDEF

RESMIL(10)
TOLINT(180)
ACCELSYS(99)

Statements/parameters for GRSCNFxx
MATCHSYS{(name)}

{(*) }

Identifies the system defined in the GRSDEF statement. A system being initialized compares the value
specified on the SYSNAME system parameter to the value specified for MATCHSYS to locate its
GRSDEF statement in GRSCNFxx. Omitting MATCHSYS or specifying MATCHSYS(*) is regarded as
a match unless a GRSDEF statement exists with an explicit name that matches the SYSNAME value.
Including both a GRSDEF statement with an explicit MATCHSYS name and a GRSDEF statement with
MATCHSYS(*), either explicitly or by default, thus does not cause a syntax error; the system ignores
the GRSDEF statement with MATCHSYS(*).

Global resource serialization initialization processing searches the statements in GRSCNFxx until it
finds a GRSDEF statement that matches the SYSNAME value, then uses the information in the
statement to continue initialization. It issues an error message if it finds no match.

Value Range: 1 to 8 alphanumeric characters, including the @,#,and $ characters.

Default: *
RESMIL(number|OFF)

Specifies the RSA-message residency time.

A value, if specified, indicates the minimum RSA-message residency time in milliseconds, (that is, the
least amount of time that the RSA-message is to spend in this system). The actual amount of time that
the RSA-message will spend in this system will vary between the time you specify in milliseconds and
a maximum value calculated by global resource serialization. In this way, global resource serialization
balances CPU utilization and ENQ response time. If you omit RESMIL, then the default for the
RSA-message residency time is 10 milliseconds.

OFF, if specified, indicates that the RSA-message residency time is zero and that global resource
serialization does no tuning. Note that RESMIL(OFF) differs from RESMIL(0). When you specify
RESMIL(0), the system tunes the residency time in a range with a minimum of zero.

GRSCNFxx

Chapter 28. GRSCNFxx (global resource serialization configuration) 249

Value Range: 0 to 99999999 milliseconds

Default: 10 milliseconds
CTC(device number)

Identifies the device number of a CTC link attached to this system that is dedicated to the use of
global resource serialization. Only one device number can be specified on each CTC parameter, but
up to 64 different CTC parameters can be specified.

Note: If this system is a member of a sysplex, it is not necessary to specify the CTC parameter
unless this system must have a link to a system outside of the sysplex.

Value Range: 3 or 4 hexadecimal digits. Note that the device number must not be preceded by a
slash.

Default: None
RESTART{(YES)}

{(NO) }

Indicates whether the system defined in the GRSCNFxx MATCHSYS parameter can automatically
rebuild a disrupted ring. A disrupted ring occurs when the RSA-message stops moving because of a
system failure or a link failure.

Note: If this system is a member of a sysplex, regardless of what you specify, RESTART will be set to
RESTART(YES).

Default: YES
REJOIN{(YES)}

{(NO) }

Indicates whether the system defined in the MATCHSYS parameter can automatically rejoin the active
ring, after that system was stopped, then started. Specifying REJOIN(YES) eliminates the need for the
operator to issue a VARY GRS, RESTART command to have the system join the active ring.

Note: If this system is a member of a sysplex, regardless of what you specify, REJOIN will be set to
REJOIN(YES).

Default: YES
TOLINT(num)

Specifies, in seconds, the maximum tolerance time interval global resource serialization allows the
RSA-message to return to that system, before it considers the RSA-message overdue.

When the TOLINT value specified is not valid, then message ISG008E is issued, the TOLINT keyword
is ignored, a default of 3 minutes (180 seconds) is used, and the IPL continues.

Value Range: The TOLINT value specified must be greater than zero (0), and less than 86000
seconds (24 hours).

Default: 180 seconds (3 minutes)
ACCELSYS(num)

GRSCNFxx

250 z/OS V1R4.0 MVS Initialization and Tuning Reference

Specifies the threshold for global resource serialization ring acceleration and the number of systems
that must see a resource request before it is granted. To use ring acceleration, every system must
have a link to every other system; ring acceleration requires a fully connected complex, and it also
requires an alternate link for each connection not in the sysplex. When the ACCELSYS keyword is not
specified, ring acceleration is turned off. The maximum performance benefit is provided when the
ACCELSYS threshold value is 2.

Specifying a different ACCELSYS value for different systems in a complex is allowed, but the complex
uses the highest ACCELSYS value specified to determine when to send the shoulder-tap
acknowledgement. If the highest value is greater than the number of systems in the ring, the
shoulder-tap acknowledgement does not take place. To ensure that shoulder-tap processing occurs,
specify ACCELSYS(num) on all systems in the ring, making sure that the value of num is less than the
number of systems in the ring.

Value Range: The ACCELSYS threshold value range is 2 through 99.

Default: The ACCELSYS default value is 99.
CTRACE(member-name)

Specifies the member of SYS1.PARMLIB that contains the default global resource serialization
component tracing options.

Value Range: The 8-character member name must be in the format CTnGRSxx, where:

n An alphameric character to specify the source of the member. IBM-supplied members will use
“I”.

xx Any two characters to identify the member.

Default: CTIGRS00

The contents of CTIGRS00 are:
TRACEOPTS

ON
OPTIONS(’CONTROL’,’MONITOR’)
BUFSIZE(128K)

For more information about specifying options for the global resource serialization component trace,
see z/OS MVS Diagnosis: Tools and Service Aids . For information about specifying the component
trace member of SYS1.PARMLIB, see Chapter 21, “CTncccxx (component trace parameters)” on
page 219.

SYNCHRES{(YES)}
{(NO) }

Indicates whether the system defined in the GRSCNFxx MATCHSYS parameter is to have
synchronous reserve processing activated.

Default: NO

GRSCNFxx

Chapter 28. GRSCNFxx (global resource serialization configuration) 251

GRSCNFxx

252 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 29. GRSRNLxx (global resource serialization resource
name lists)

GRSRNLxx consists of three resource name lists (RNLs). When a global resource serialization complex is
active, the system uses these RNLs to determine how to treat the resources defined in the RNLs. The
RNLs are:

v The SYSTEM inclusion RNL . The system treats each resource named in this RNL as a global resource
if an ENQ or a DEQ macro instruction for the resource specifies a scope of SYSTEM.

v The SYSTEMS exclusion RNL . The system treats each resource named in this RNL as a local
resource if an ENQ, DEQ, or RESERVE macro instruction for the resource specifies a scope of
SYSTEMS.

v The RESERVE conversion RNL . The system suppresses a hardware reserve for each resource named
in this RNL if a RESERVE macro instruction requests the use of the resource.

Note: Specifying RNL=NO on the ENQ macro will bypass all RNL processing. See z/OS MVS
Programming: Assembler Services Guide for information on the ENQ macro.

Use the SET GRSRNL command to change the RNL list while the system is active. For more information,
see z/OS MVS System Commands.

See z/OS MVS Planning: Global Resource Serialization for detailed information on global resource
serialization, RNLs, and the RNL syntax checker. The RNL syntax checker lets you check the syntax of
GRSRNL parameters specified on the JCL and resource names specified in GRSRNLxx.

Parameter in IEASYSxx (or supplied by the operator):

GRSRNL= {aa }
{(aa,bb...)}
{EXCLUDE }

The two alphanumeric characters, represented by aa (or bb, and so forth), are appended to GRSRNL to
form the name of the GRSRNLxx member(s). If GRSRNL=EXCLUDE is specified, no RNLs are to be used
in the complex and all resources are treated as local.

Support for system symbols
Any static symbols used must be consistent across the GRS complex. If the symbols used in the RNL
members resolve to different values, the RNL specifications for each system will differ. GRS requires that
the RNL specification used for system initialization matches the current specification for the rest of the
complex. If the RNL specifications do not match, GRS puts the initializing system into a non-restartable
wait state.

Syntax rules for GRSRNLxx
The following rules apply to the creation of GRSRNLxx:

v Use columns 1 through 71; columns 72 through 80 are ignored. Note that if you need to continue to
another line when specifying a value (such as the name on the RNAME parameter), you must start the
continuation in column 1.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”. A comment can
span lines and can appear anywhere except within a keyword or a specified value.

v Each RNLDEF statement is defined as beginning with the characters “RNLDEF” and ending with the
character immediately preceding the next RNLDEF statement.

© Copyright IBM Corp. 1991, 2002 253

v Each RNLDEF statement must contain, in any order, the RNL, TYPE, QNAME, and RNAME
parameters. For example:
RNLDEF RNL(INCL) TYPE(SPECIFIC) QNAME(SYSDTNM)

RNAME(SYS1.USR)

RNLDEF RNL(INCL) TYPE(GENERIC) QNAME(SYSDTNM)
RNAME(SYS1.U)

RNLDEF RNAME(SYS1.U) TYPE(GENERIC) RNL(INCL)
QNAME(SYSDTNM)

Exceptions to this are:

– The RNAME parameter may be omitted if TYPE(GENERIC) is specified for a generic QNAME
resource. For example:
RNLDEF TYPE(GENERIC) QNAME(X’1A4A783F2B’) RNL(EXCL)

– A null GRSRNLxx parmlib member is valid. The system does not consider a member in error if it is
empty; that is, if it contains neither RNLDEF statements nor comments.

Notes:

1. You can put a blank anywhere except within a keyword or a specified value.

2. You can use as many lines as you need for one RNLDEF statement.

3. You can specify multiple parameters on the same line.

4. You do not need to put a blank (or other delimiter) between parameters. For example, the following
RNLDEF statement is valid:
RNLDEF RNL(EXCL)TYPE(SPECIFIC)QNAME(SYSDSN)RNAME(SYS1.BRODCAST)

5. You can use from 1 to 8 characters for the name that you specify on the QNAME parameter. You must
enclose the name in parentheses.

6. You can use from 1 to 255 characters for the name that you specify on the RNAME parameter. You
must enclose the name in parentheses. Any complete line of blanks (columns 1-71) will be ignored
when specifying a value for the RNAME.

7. You can specify the names on the QNAME and RNAME parameters in any of the following formats:

v If the name contains nondisplayable characters, you must use two hexadecimal digits to specify
each character of the name. For example:
RNLDEF RNL(INCL) TYPE(GENERIC) QNAME(X’18’)

RNAME(X’19’)

v If the name contains displayable characters that are alphanumeric (A-Z and 0-9), *, ?, #, @, and $,
and/or a period (.), enter the name as is. For example:
RNLDEF RNL(EXCL) TYPE(GENERIC) QNAME(STW@7)

RNAME(REW.20)

v If the name contains displayable characters other than those already described (including a blank,
but excluding a single quotation mark), enclose the name in single quotation marks. For example:
RNLDEF RNL(CON) TYPE(SPECIFIC) QNAME(’$ ()*’)

RNAME(’A B’)

IBM-supplied default for GRSRNLxx
IBM provides default RNL statements in GRSRNL00 (the default member). See z/OS MVS Planning:
Global Resource Serialization for the default statements and their meaning.

GRSRNLxx

254 z/OS V1R4.0 MVS Initialization and Tuning Reference

Statements/parameters for GRSRNLxx
RNL {(INCL)}

{(EXCL)}
{(CON) }

Specifies the RNL in which the resource name entry is to be placed, where INCL indicates the
SYSTEM inclusion RNL, EXCL indicates the SYSTEMS exclusion RNL, and CON indicates the
RESERVE conversion RNL.

TYPE {(GENERIC) }
{(SPECIFIC)}
{(PATTERN)}

Specifies the type of resource name entry being defined in the RNL. For a SPECIFIC entry, you must
specify a QNAME (major name) and an RNAME (minor name) for the resource.

PATTERN indicates that the resource name in the RNL entry is a pattern that must fit the resource
name specified on the ENQ request. You can use wildcard characters (* or ?) in either part of the
resource name.

* Allows matching for a substring of any characters for any length,
including zero.

? Allows matching for any single character.

For example:
RNLDEF RNL(EXCL) TYPE(PATTERN)
QNAME(SYSDSN)
RNAME(SYS1.*.PARMLIB)

You can convert all hardware RESERVEs to global ENQ with the following specification:
RNLDEF RNL(CON) TYPE(PATTERN)
QNAME(*)

Note: This is recommended only on systems using GRS Star.
QNAME(name)

Specifies the major name of the resource.
RNAME(name)

Specifies the minor name of the resource.

GRSRNLxx

Chapter 29. GRSRNLxx (global resource serialization resource name lists) 255

GRSRNLxx

256 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 30. GTFPARM (generalized trace facility parameters)

GTFPARM provides default or installation-defined trace options to control the generalized trace facility
(GTF). The member is read only when the operator (or an automatic command) issues START GTF.
GTFPARM is not used during system initialization.

The member name on the START command can be the same as the IBM-supplied cataloged procedure,
GTF. The PROC statement of that procedure identifies GTFPARM as the member from which GTF will get
its trace parameters. If the installation wants to place the GTFPARM member in a data set other than
SYS1.PARMLIB, specify the alternate data set in the SYSLIB DD statement and then specify a member
from that PDS using the MEMBER keyword. If the installation wants to substitute another member in place
of GTFPARM, the operator may enter the replacement member name on the START command with the
MEMBER keyword.

The IBM procedure, GTF, as supplied in SYS1.PROCLIB, contains these statements:
//GTFNEW PROC MEMBER=GTFPARM
//IEFPROC EXEC PGM=AHLGTF,PARM=’MODE=EXT,DEBUG=NO,

TIME=YES’,TIME=1440,REGION=2880K
//IEFRDER DD DSNAME=SYS1.TRACE,UNIT=SYSDA,
// SPACE=(TRK,20),DISP=(NEW,KEEP)
//SYSLIB DD DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR

For further analysis of this procedure and additional information about GTF trace options, see z/OS MVS
Diagnosis: Tools and Service Aids or the GTF topics in z/OS MVS Diagnosis: Tools and Service Aids.

Because default options in GTFPARM specify minimal data for only a limited number of traced events, you
may wish to tailor GTF to trace specific events for problem determination purposes through one of the
following methods:

v Specify another SYS1.PARMLIB member name, using the MEMBER keyword on the START command.

v Change the trace options in GTFPARM.

v Change the SYSLIB DD statement of the IBM procedure to specify a parmlib member that has the
options you want.

v Retain the IBM procedure to handle default options, and write one or more alternate procedures, each
specifying a different alternate parmlib member. You could design each member to contain GTF options
useful under particular circumstances. Instruct the operator when to issue the START command for
each member name.

GTF tries to read parameters from the specified parmlib member. If an error occurs in opening or reading
the member, or if GTF detects a syntax error, it writes a diagnostic message to the operator, and
requesting that SPECIFY TRACE OPTIONS be used, as if no GTF parmlib member were available. The
operator therefore must have a complete list of desired GTF parameters available when he starts GTF.

Parameter in IEASYSxx (or issued by the operator):
None.

Syntax rules for GTFPARM
The following rules apply to the creation of a GTF parmlib member:

v Specify the TRACE keyword and its main options only on the first record. Do not place them on
subsequent records. For example,
Record #1: TRACE=IOP,SVCP,SSCH

© Copyright IBM Corp. 1991, 2002 257

This example requests the tracing of specific I/O interrupts, specific SVC interrupts, and all start
subchannel and resume subchannel operations.

v The second and subsequent records should contain only “prompting” keywords, such as IO= or SVC=.
These keywords provide for detailed operands that indicate which I/O interrupts or which SVC interrupts
should be traced. For example, the IOP and SVCP keywords in the Record #1 example (above) must
be followed by prompting records that name specific device numbers and specific SVC numbers for
which interrupts should be traced. As an example,
Record #2: IO=(191,192,102A),SVC=(1,2,3)

If the specific operands of any prompting keyword are missing, GTF does not prompt the operator. It
accepts a general specification. For example, if IOP is specified in Record #1, and Record #2 specifies
only SVC=(1,2,3), and no particular device numbers are specified for I/O tracing, GTF assumes that
tracing of I/O interrupts is desired for all devices.

When all of the records have been read, GTF issues message AHL103I TRACE OPTIONS SELECTED
-- IO,SVC=(1,2,3). The operator can then respond to message AHL125A RESPECIFY TRACE
OPTIONS OR REPLY U by either entering all the desired options or accepting the input that was
specified in the parmlib member.

v An END keyword or an end-of-file must follow all prompting keywords. If the END keyword is used, it
must appear either on the last record supplying prompting keywords or on its own record.

v Comments cannot be specified in GTF parmlib members.

v If you need to specify additional operands for the same keyword, restate the keyword and the additional
operands in a subsequent prompting record. The previous examples, expanded to include additional
SVC numbers and an END keyword, would appear like this:
Record #1: TRACE=IOP,SVCP,SSCH

Record #2: IO=(191,192,102A),SVC=(1,2,3)

Record #3: SVC=(4,5,6,7,8,9,10),END

v Certain trace options do not work in combination with others. Table 14 shows those trace options that
should not be specified together. If you specify two or more options from the same horizontal row, GTF
uses the option in the lowest numbered column and ignores the other options. For example, if you
specify both SYSP and SVC (row C), GTF uses SYSP and ignores SVC.

Table 14. Combining Certain GTFPARM Options
1 2 3 4 5

A SYSM SYSP SYS SSCHP SSCH
B SYSM SYSP SYS IOP IO
C SYSM SYSP SYS SVCP SVC
D SYSM SYSP SYS PIP PI
E SYSM SYSP SYS EXT
F SYSM SYSP SYS RR
G SYSM SYSP SYS CSCH
H SYSM SYSP SYS HSCH
I SYSM SYSP SYS MSCH
J URSP USR
K CCWP CCW

IBM-supplied default for GTFPARM
When GTF is started by specifying the IBM-supplied cataloged procedure, the following options exist in
GTFPARM:
TRACE=SYSM,USR,TRC,DSP,PCI,SRM

GTFPARM

258 z/OS V1R4.0 MVS Initialization and Tuning Reference

These keywords cause the following events to be recorded: SVC interruptions, I/O interruptions,
program-controlled I/O (PCI) interruptions, program interruptions, external interruptions, dispatcher
executions, start subchannel and resume subchannel operations, clear subchannel operations, halt
subchannel operations, modify subchannel operations, entries to the system resource manager, entries to
recovery routines, events associated with GTF (TRC), and data passed to GTF via the GTRACE macro
(USR). All keywords except USR result in minimal format trace entries. USR entries are the length
specified by the user in the GTRACE macro. Such entries may optionally be a maximum of 8192 bytes,
excluding the prefix.

Note: If you use the default options provided, be aware that some data will be duplicated by the system
trace if it is executing concurrently with GTF.

Statements/parameters for GTFPARM
Only the options provided in the IBM default member, GTFPARM, are described here.

For a complete list and description of GTF options, see z/OS MVS Diagnosis: Tools and Service Aids.

DSP
This parameter requests recording for all dispatchable units of work (SRB, LSR, TCB, and SVC
prologue dispatch events). The option is not included in the specification of SYS or SYSM. It must be
specified in addition to other parameters. The parameter produces comprehensive format except when
SYSM is also specified. With SYSM, data is in minimal format.

END
This parameter indicates the end of the prompting records. In the parmlib member, an end of file
serves the same purpose. Never include the END parameter in the first record (the record that
contains the TRACE parameters) because GTF regards such an occurrence as an error.

PCI
This parameter requests that program-controlled I/O interruptions (PCIs) be recorded in the same
format as other requested I/O trace records. If specific device numbers are specified through
prompting records, program controlled I/O interruptions are recorded for the specified devices. I/O
tracing must be requested because PCI must be specified with a GTF parameter that causes IO, such
as SYS or SYSM.

SRM
This parameter requests a trace entry each time that the system resource manager (SRM) is invoked.
The option is not included in the specification of SYS or SYSM. It must be specified in addition to
other parameters. Data is in comprehensive format except when SYSM is also specified.
Comprehensive format includes the jobname.

SYSM
This parameter requests recording of minimal trace data for all external interruptions (EXT), program
interruptions (PI), recovery routines (RR), and supervisor call interruptions (SVC). SYSM causes
recording of all I/O interruption (IO), start subchannel and resume subchannel operations (SSCH),
clear subchannel operations (CSCH), halt subchannel operations (HSCH), and modify subchannel
operations (MSCH). When you specify DSP, RNIO, or SRM, in addition to SYSM, GTF produces
minimal trace data for those events.

Note: Specification of SYS, SYSM, or SYSP causes GTF to ignore the following trace options if you
specify them in any form: CSCH, HSCH, MSCH, SSCH, IO, SVC, PI, EXT, RR.

TRC
This parameter requests that traced events include those related to GTF processing itself. If this
parameter is not specified, GTF-related events are excluded from the trace output.

GTFPARM

Chapter 30. GTFPARM (generalized trace facility parameters) 259

USR
This parameter requests that user data passed to GTF through the GTRACE macro be recorded with
the system data.

GTFPARM

260 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 31. IEAABD00 (ABDUMP written to a SYSABEND data
set)

IEAABD00 contains IBM defaults and/or installation assigned parameters for ABDUMP, for use when an
ABEND dump is written to a SYSABEND data set.

You may specify ABDUMP parameters for a dump to be taken to a SYSABEND data set as follows:

v The dump request parameter list pointed to by the DUMPOPT keyword of the ABEND macro.4 You can
use the list form of the SNAP macro to build the list. (For details regarding the ABEND and SNAP
macros, see z/OS MVS Programming: Assembler Services Reference ABE-HSP.)

v The initial system dump options specified in IEAABD00. These options are added to the options on the
dump request parameter list.

v The system dump options as altered by the CHNGDUMP command. With the CHNGDUMP command,
options can be added to or deleted from the system dump options list. The CHNGDUMP command can
also cause the dump request parameters to be ignored. (For a description of the CHNGDUMP
command, refer to z/OS MVS System Commands.)

The ABDUMP initialization routine reads IEAABD00 to get ABDUMP parameters. If during initialization,
IEAABD00 is invalid or can not be located, the operator is notified. No prompting occurs. If both valid and
invalid options are included in the member, or a syntax error is encountered, a message lists the valid
options that were accepted before the error occurred.

Parameter in IEASYSxx (or specified by the operator):
None.

Syntax rules for IEAABD00
The following rules apply to the replacement of IEAABD00:

v There are two keywords, SDATA and PDATA. Each keyword is followed by a string of operands that are
separated by commas and enclosed in parentheses. A single operand does not need parentheses.

Examples:
SDATA=(SQA,CB,ENQ,TRT) or SDATA=ALLSDATA

PDATA=(PSW,REGS,SA,ALLPA,SPLS) or PDATA=ALLPDATA

v Normally both parameters (that is, SDATA=operands and PDATA=operands) can fit on one line. If,
however, continuation is needed, use a comma followed by a blank.

Example:
SDATA=(SQA,CB,ENQ,TRT),
PDATA=(PSW,REGS,
SA,ALLPA,SPLS)

v To include a comment, place the comment on the same line as the data. Use at least one blank to
separate the data from the comment. The following example shows a continuation and the related
comments.

Example:
SDATA=(SQA,CB, SQA and CB data
ENQ,TRT) ENQ and trace data

4. An ABEND dump can also be requested through the CALLRTM or SETRP macros. See z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN or z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

© Copyright IBM Corp. 1991, 2002 261

IBM-supplied default for IEAABD00
IBM places the following defaults in IEAABD00:
SDATA=(LSQA,CB,ENQ,TRT,ERR,DM,IO,SUM),
PDATA=(PSW,REGS,SPLS,ALLPA,SA)

These options request a dump of the following areas:
v LSQA, including subpools 229, 230, and 249
v formatted control blocks for the task
v formatted global resource serialization control blocks for the task
v GTF trace and/or system trace
v recovery termination control blocks for the task
v data management control blocks for the task
v IOS control blocks for the task
v summary data (see explanation under SUM parameter)
v PSW at entry to ABEND
v contents of general registers at entry to ABEND
v save area linkage information and a backward trace of save areas
v modules listed on the link pack area queue for the task and the job pack area queue for the task, and

active SVC modules related to the failing task
v user storage allocated for the task.

Statements/parameters for IEAABD00
SDATA=

ALLSDATA
Except ALLVNUC and NOSYM, all the following options are automatically specified.

The following parameters request dump of specific SDATA areas, as indicated:

ALLVNUC
Entire virtual nucleus. SQA, LSQA, and the PSA are included.

NOSYM
No symptom dump is to be produced.

SUM
Requests that the dump contain summary data, which includes the following:

v Dump title.

v Abend code and PSW at the time of the error.

v If the PSW at the time of the error points to an active load module: (1) the name and address of
the load module, (2) the offset into the load module indicating where the error occurred, and (3)
the contents of the load module.

v Control blocks related to the failing task.

v Recovery termination control blocks.

v Save areas.

v Registers at the time of the error.

v Storage summary consisting of 1K (1024) bytes of storage before and 1K bytes of storage after
the addresses pointed to by the registers and the PSW. The storage will be printed only if the
user is authorized to obtain it, and, when printed, duplicate addresses will be removed.

v System trace table entries for the dumped address space.

NUC
Read/write portion of the control program nucleus. SQA, LSQA and the PSA are included.

IEAABD00

262 z/OS V1R4.0 MVS Initialization and Tuning Reference

PCDATA
Program call information for the task being dumped.

SQA
The system queue area.

LSQA
Local system queue area for the address space. If storage is allocated for subpools 229, 230 and
249, they will be dumped for the current task.

SWA
Scheduler work area used for the failing task.

CB
Control blocks related to the failing task.

ENQ
Global resource serialization control blocks for the task.

TRT
System trace table and GTF trace, as available.

DM
Data management control blocks (DEB, DCB, IOB) for the task.

IO IOS control blocks (UCB, EXCPD) for the task.

ERR
Recovery termination control blocks (RTM2WA, registers from the SDWA, SCB, EED) for the task.

PDATA=

ALLPDATA
All the following options are automatically specified.

The following parameters request dump of specific PDATA areas, as indicated:

SUBTASKS
Problem data (PDATA) options requested for the designated task will also be in effect for its
subtasks.

PSW
Program status word at entry at ABEND.

REGS
Contents of general registers at entry to ABEND.

SA or SAH
SA requests save area linkage information and a backward trace of save areas. This option is
automatically selected if ALLPDATA is specified.

SAH requests only save area linkage information.

JPA
Contents of the job pack area (module names and contents) that relate to the failing task.

LPA
Contents of the LPA (module names and contents) related to the failing task. Includes active SVCs
related to the failing task.

ALLPA
Contents of both the job pack area and the LPA, as they relate to the failing task, plus SVCs
related to the failing task.

SPLS
User storage subpools (0-127, 129–132, 244, 251, and 252) related to the failing task.

IEAABD00

Chapter 31. IEAABD00 (ABDUMP written to a SYSABEND data set) 263

|

IEAABD00

264 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 32. IEAAPFxx (authorized program facility list)

Use the IEAAPFxx member to specify program libraries that are to receive authorized program facility
(APF) authorization. List the names (dsnames) of the libraries, along with one of the following to indicate
where the library resides:

v The volume serial number of the volume on which the library resides.

v Six asterisks (******) to indicate that the library resides on the current system residence (sysres).
volume.

v *MCAT* to indicate the library resides on the volume on which the master catalog resides.

v Nothing after the library name, to indicate that the storage management subsystem (SMS) manages the
library.

If an installation wants IEAAPFxx, it must explicitly create the member. The member IEAAPF00 must be
explicitly created by the installation also.

Defining aliases in the APF List: Usually, you do not need to define aliases in the APF list because
IBM’s data management services (for example, OPEN processing) map aliases to the actual library
names. Defining an alias in the APF list is necessary only when the alias is to be used as input to the
CSVAPF QUERY macro request, or on the SETPROG APF or DISPLAY PROG,APF operator commands.

You can use IEAAPFxx to create an APF list in a static format. A static list can be updated only at IPL and
can contain a maximum of 255 entries (SYS1.LINKLIB, SYS1.SVCLIB, and 253 entries specified by your
installation).

Note: IBM provides the PROGxx parmlib member as an alternative to IEAAPFxx, which allows you to
update the APF list dynamically and specify an unlimited number of APF-authorized libraries. IBM
recommends that you use PROGxx to specify the APF list (regardless of whether you plan to take
advantage of the dynamic update capability). The system will process IEAAPFxx and PROGxx if
both parameters are specified. If you decide to use PROGxx only , remove APF=xx system
parameters from IEASYSxx and IEASYS00.

References

For information about how to use the IEAAPFPR REXX exec to convert the APF definitions in
IEAAPFxx to equivalent definitions in PROGxx, see “Specifying the APF list” on page 23.

For information about how to use PROGxx to specify the format and contents of the APF list, see
“PROG” on page 367.

For more information about using authorized libraries, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Notes:

1. Except for concatenations opened during NIP, any unauthorized library that is concatenated to
authorized libraries will cause all of the concatenated libraries to be considered unauthorized.

2. You can specify a maximum of 253 library names in an IEAAPFxx member.

3. Allowing SMS to manage a data set means that the data set might be moved to a different volume
during normal SMS processing. Though it is unlikely that SMS would move a data set that resides on
the sysres volume, you could ensure that the library retains authorization in this case by specifying the
same library name on two IEAAPFxx statements. Specify six asterisks after the library name on one

© Copyright IBM Corp. 1991, 2002 265

statement to indicate the library resides on the sysres volume. Specify nothing after the library name
on the other statement to indicate that the library is managed by SMS.

4. As of MVS 4.3, it is no longer necessary for the data sets in the LPALST to be APF-authorized.

Parameter in IEASYSxx (or Supplied by the Operator):

APF=xx

The two characters (A-Z, 0-9, @, #, or $), represented by xx, are appended to IEAAPF to identify the
IEAAPFxx member. If the APF-parameter is not specified, only SYS1.LINKLIB and SYS1.SVCLIB will be
APF-authorized.

Syntax Rules for IEAAPFxx
The following rules apply to the creation of IEAAPFxx:

v Enter data only in columns 1 through 71. Do not enter data in column 72 through 80; the system
ignores these columns.

v Place only one library name and corresponding volume serial number on a line (record).

v Duplicate data set names are valid.

v On each record, first enter the library name, then one or more blanks, then one of the following:

– The volume serial number of the volume on which the library resides.

– ****** (six asterisks), to indicate that the library resides on the current SYSRES volume.

– *MCAT*, to indicate that the library resides on the volume that contains the master catalog.

– Nothing, to indicate the library is SMS-managed.

v To continue to another record, place a comma after the volume serial number. Omit this comma on the
last record.

Example:
first record: SYS1.SUPER.UTILS 614703,

second record: W12.PAYROLL.LOADLIB 705650

v On a line, data entered after the comma is treated as a comment and ignored.

v Data records entered after the last data line are treated as comments and ignored.

Example:
SYS1.SUPER.UTILS 614703, Super utilities

SMS.MANAGED.LOADLIB , No vol=>SMS managed

W12.PAYROLL.LOADLIB 705650, /* Payroll programs */

Xll.LOADLIB 345000 /* Last line */

This line and any following lines are ignored.

v For an SMS-managed volume, use only standard comments (delimited by /* and */) on the last line.

Example:
SYS1.SUPER.UTILS 614703, Super utilities

SMS.MANAGED.LOADLIB1 , No vol=>SMS managed

W12.PAYROLL.LOADLIB 705650, Payroll programs

IEAAPFxx

266 z/OS V1R4.0 MVS Initialization and Tuning Reference

Xll.LOADLIB 345000, /* X11 programs */

SMS.MANAGED.LOADLIB2 /* Last line */

IBM-Supplied Default for IEAAPFxx
If neither IEAAPFxx nor IEAAPF00 exists, only SYS1.LINKLIB and SYS1.SVCLIB are authorized by
default. SYS1.LPALIB is not automatically authorized (except during NIP) because it is closed at the end
of NIP processing and is not required until the next IPL when the PLPA is to be reloaded. Additionally, if
the default for the LNKAUTH system parameter is taken (LNKAUTH=LNKLST) or is specified in IEASYSxx
or by the operator, libraries in the LNKLST concatenation are also authorized when accessed as part of
the LNKLST concatenation.

Note: When LNKAUTH=APFTAB is specified, the system considers SYS1.MIGLIB and SYS1.CSSLIB to
be APF-authorized when they are accessed as part of the concatenation (even when they are not
included in the APF list).

Statements/Parameters for IEAAPFxx
Not applicable.

IEAAPFxx

Chapter 32. IEAAPFxx (authorized program facility list) 267

268 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 33. IEAAPP00 (authorized I/O appendage routines)

IEAAPP00 contains the names of authorized installation-written I/O appendage routines. These
appendages, when listed, can be used by any unauthorized user program. Otherwise, only programs
authorized under APF or running under system protection key (0-7) may use the EXCP appendages. If
your installation does not use EXCP appendages, you need not create IEAAPP00.

If the EXCP caller is not in system protection key or the job step is not authorized, the system verifies that
the caller’s appendage names are listed. If the names cannot be found, the system issues a 913 ABEND.
If, however, the caller is authorized, the system loads the appendages without inspecting the list.

Syntax rules for IEAAPP00
The following rules apply to the creation of IEAAPP00:

v IEAAPP00 can contain up to five entries, with each entry specifying names of a particular type of
appendage. For example:

SIOAPP Start I/O
PCIAPP Program-Controlled Interrupt
EOEAPP End of extent
ABEAPP Abnormal end
CHEAPP Channel end

You need not necessarily use all five types of entries.

v Each entry consists of an appendage-type name, followed by a list of suffixes of that type, separated by
commas. The suffixes can range from WA to Z9. The appendage-type name can start in any column.
For example:
SIOAPP WA,X4

This entry specifies two Start I/O appendages.

v Continuation is indicated by a comma followed by one or more blanks. The next record can start in any
column.

Syntax Example:

Here is an example of a complete IEAAPP00 member:
SIOAPP Y1,Y2,
EOEAPP X1,Z2,X3,X4,X5,X6,
PCIAPP X3

In this example, note that there are no channel-end appendages and none for abnormal end. Routine
IGG019X3 is used as both end-of extent and PCI appendage.

IBM-supplied default for IEAAPP00
None.

Statements/parameters for IEAAPP00
Not applicable.

© Copyright IBM Corp. 1991, 2002 269

270 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 34. IEACMD00 (IBM-supplied commands)

IEACMD00 contains IBM-supplied commands, as follows:

v A CHNGDUMP command to add trace table, LSQA and XES information to SVC dumps.

v A SET command (SET SLIP=00) to indicate that the system is to use the IEASLP00 parmlib member to
issue IBM-supplied SLIP commands.

v A SET command (SET DAE=00) to indicate that the system is to use the ADYSET00 parmlib member to
start DAE processing.

v A START command (START LLA, SUB=MSTR) to start the library lookaside (LLA) procedure, which
resides in SYS1.PROCLIB. The LLA procedure then starts the library lookaside function.

v A START command (START BLSJPRMI, SUB=MSTR) creates IPCS tables which allows SNAP
ABDUMP and IPCS to print formatted control blocks in dumps.

An installation that uses the optional COMMNDxx parmlib member should check for commands in
COMMNDxx that conflict with commands in IEACMD00, and resolve any conflicts. It is also recommended
that an installation place its commands in the COMMNDxx member, leaving the IEACMD00 member for
IBM-supplied commands only.

Place all SLIP commands in IEASLPxx.

Notes:

1. The order in which task-creating commands appear in IEACMD00 does NOT guarantee the order in
which they are executed. Thus, IEACMD00 should not be used for commands that must be executed
in a specific order. Commands are issued in the order that they appear in IEACMD00, but they are
executed as follows:

v Immediate commands, such as DISPLAY T, are executed sequentially as they are issued from
IEACMD00.

v Execution of task-creating commands, such as DISPLAY A, are deferred until system initialization is
complete. Then, factors such as multitasking, multiprocessing, and competition for resources
influence the order in which these commands are executed.

Thus, IEACMD00 should not be used to issue task-creating commands that must be executed in a
specific order, because the execution order of these commands can vary.

2. The SET SLIP=00 command causes the IBM-supplied IEASLP00 parmlib member to execute. As a
result, the SLIP commands specified in IEASLP00 are in effect at IPL-time. These commands suppress
dumps that are considered to be unnecessary. For more information about IEASLP00, see Chapter 44,
“IEASLPxx (SLIP commands)” on page 321.

To activate an IEASLPxx member instead of the IBM-supplied member (IEASLP00), change the SET
SLIP=00 command to SET SLIP=xx (where xx is the two character suffix of the alternate IEASLPxx
member to be used).

3. The SET DAE=00 command causes the ADYSET00 parmlib member to execute. As a result, dump
analysis and elimination (DAE) processing as specified in ADYSET00 is in effect.

To prevent the system from activating DAE automatically, change ADYSET00 to contain DAE=STOP.

For more information on DAE and its parmlib members, see Chapter 3, “ADYSETxx (dump
suppression)” on page 51.

4. For descriptions of the CHNGDUMP, SET, START, and SLIP commands, see z/OS MVS System
Commands.

Parameter in IEASYSxx (or supplied by the operator):
None.

© Copyright IBM Corp. 1991, 2002 271

Syntax rules for IEACMD00
The following rules apply to the modification of IEACMD00:

v Enter only one command for each line. To do so, specify the COM= keyword, followed by the command
enclosed in single quotes.

v Do not specify continuation on any line.

v Do not specify comments.

IBM-supplied default for IEACMD00
The following commands are placed in IEACMD00 by IBM:
COM=’CHNGDUMP SET,SDUMP=(LSQA,TRT,XESDATA),ADD’
COM=’SET SLIP=00’
COM=’SET DAE=00’
COM=’START LLA,SUB=MSTR’
COM=’START BLSJPRMI,SUB=MSTR’

Statements/parameters for IEACMD00
Not applicable.

IEACMD00

272 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 35. IEADMCxx (DUMP command parmlib)

IEADMCxx enables you to supply DUMP command parameters through a parmlib member. IEADMCxx
enables the operator to specify the collection of dump data without having to remember and identify all the
systems, address spaces and data spaces involved.

This parmlib enables you to specify lengthy DUMP commands without having to reply to multiple writes to
operator with reply (WTORs). Any errors in an original specification may be corrected and the DUMP
command re-specified.

IEADMCxx is an installation-supplied member of SYS1.PARMLIB that can contain any valid DUMP
command. A dump command may span multiple lines and contain system static and (DUMP command
SYMDEF defined) symbols and comments.

Dump commands using parmlib members are specified by member suffix using the PARMLIB=keyword.
Multiple members may be specified within parentheses separated by commas. A dump command specified
using the parmlib keyword are taken immediately without prompting for further parameters through WTOR.
Since no WTOR replies are required, the ROUTE command can be used when issuing a DUMP command
specifying parmlib members for increased functionality.

Note: Do not use the ROUTE command with the DUMP command when specifying parmlib members that
use the REMOTE keyword.

Performance implications
None.

Syntax rules for IEADMCxx
The following syntax rules apply to IEADMCxx:

v Use columns 1 through 71. Do not use columns 72 - 80 for data; these columns are ignored.

v Blank lines are permitted.

v Comments may appear in columns 1-71, can span lines, and must begin with ″/*″ and end with ″*/″.

v Do not use nested comments in this parmlib member.

v A statement can be continued even though there is no explicit continuation character.

v You can use substrings of previously defined system symbols. See “Step 1. Know the rules for using
system symbols in parmlib” on page 42 for more information about using substrings.

Syntax format of IEADMCxx
The syntax of the DUMP command specified within the IEADMCxx members of SYS1.PARMLIB is
identical to that specified on the DUMP command through replies. See z/OS MVS System Commands for
more information.

IBM-supplied default for IEADMCxx
None.

© Copyright IBM Corp. 1991, 2002 273

Statements/parameters for IEADMCxx
DUMP

The DUMP command.

COMM={(title)}
{’title’}
{"title"}

TITLE={(title)}
{’title’}
{"title"}

The title (1 to 100 characters) that you assign to the dump. The title is the first record in the dump
data set.

PARMLIB=xx
PARMLIB=(xx[,xx]...)

The two alphanumeric characters indicating the IEADMCxx member of SYS1.PARMLIB that contains
the DUMP command specification.

The syntax of the DUMP command specified within the IEADMCxx members of SYS1.PARMLIB is
identical to that specified on the DUMP command through replies. See z/OS MVS System Commands
for more information.

Note: A DUMP’s title is determined as follows:

v Titles specified in the DUMP command (for example, DUMP TITLE=″DUMP Specified via
WTOR″) take precedence over titles specified within PARMLIBs.

v When a title is not specified in the DUMP command, the title specified within a PARMLIB takes
precedence.

If titles are specified in multiple PARMLIBs, the first PARMLIB’s title takes precedence. For
example, if all of the PARMLIBS in PARMLIB=(RA,XC,CF) are titled, the dump title is the one
specified in the RA PARMLIB.

v If a title is not specified in the DUMP command or PARMLIB, the title is as follows: DUMP FOR
PARMLIB=(xx,yy,zz), where xx,yy,zz are the PARMLIBs.

The following are examples of IEADMCxx usage:

Example 1: To request a dump through WTOR, enter:
DUMP COMM=(Dump specified via WTOR)

or

DUMP TITLE=(Dump specified via WTOR)

In response to this command, the system issues the following response:
* id IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

Replying to this command determines the contents of the dump.

Example 2: To request a dump of the RACF address space, including all of its private area and a
summary dump using a DUMP command parmlib member:

1. Create member IEADMCRA

IEADMCxx

274 z/OS V1R4.0 MVS Initialization and Tuning Reference

JOBNAME=RASP,SDATA=(SUM,RGN)

2. Issue the following on the MVS console:
DUMP TITLE=(RACF dump),PARMLIB=RA

Example 3: To request a dump of the XCF address space, including all of its data spaces on all systems
within the sysplex using a DUMP command parmlib member:

1. Create member IEADMCXC
JOBNAME=XCFAS,DSPNAME=(’XCFAS’.*),SDATA=COUPLE,
REMOTE=(SYSLIST=*(’XCFAS’),DSPNAME,SDATA)

2. Issue the following on the MVS console:
DUMP TITLE=(Dump all XCF data),PARMLIB=XC

Example 4: To request a dump that includes structure control data for CACHESTRUCTURE, directory
information and entry data for storage classes 3-8 and 10 with entry data written with serialization, and
directory information for all entries grouped by cast-out class uing a DUMP command parmlib member:

1. Create member IEADMCCF
STRLIST=(STRNAME=CACHESTRUCTURE,
ACCESSTIME=NOLIMIT,
(STGCLASS=(3-8,10),ENTRYDATA=SERIALIZE),(COCLASS=ALL))

2. Issue the following on the MVS console:
DUMP TITLE=(CACHESTRUCTURE dump),PARMLIB=CF

Example 5: To request a dump of the RACF address space on this system, the XCF address spaces and
data spaces on all systems in the sysplex, and the CACHESTRUCTURE structure from the coupling
facility, issue the following command on the MVS console:
DUMP TITLE=(RACF, XCFASs and CACHESTRUCTURE),PARMLIB=(RA,XC,CF)

Example 6: To show the use of variable substitution where &R is a new symbol and &SYSCLONE is a
static symbol:

1. Where a PARMLIB member, like IEADMCTC, could contain:
TSONAME=(TCPIP&SYSCLONE.,CICS&R.),SDATA=(SWA,RGN)

2. The MVS console DUMP command includes the SYMDEF for &R:
DUMP TITLE=(Dump TCPIP and CICS),PARMLIB=TC,
SYMDEF=&R.=’TOR7’)

IEADMCxx

Chapter 35. IEADMCxx (DUMP command parmlib) 275

IEADMCxx

276 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 36. IEADMP00 (ABDUMP written to a SYSUDUMP data
set)

IEADMP00 contains IBM defaults and installation parameters for ABDUMP for use when an ABEND dump
is written to a SYSUDUMP data set.

ABDUMP parameters for a SYSUDUMP data set may be specified as follows:

v The dump request parameter list pointed to by the DUMPOPT keyword of an ABEND macro.5 The list
can be built by using the list form of the SNAP macro. (For details, see ABEND and SNAP macros in
z/OS MVS Programming: Assembler Services Reference ABE-HSP.)

v The initial system dump option specified in IEADMP00. This option is added to the options on the dump
request parameter list.

v The system dump options as altered by the CHNGDUMP command. With the CHNGDUMP command,
options can be added to or deleted from the system dump options list. The CHNGDUMP command can
also cause the dump request parameters to be ignored. (For a description of the CHNGDUMP
command, refer to z/OS MVS System Commands.)

During IPL an information message will notify the operator if IEADMP00 is invalid or can’t be found. No
prompting of the operator will occur. If the member contains both valid and invalid parameters, an
information message will indicate the valid options that were accepted before the error occurred.

Parameter in IEASYSxx (or specified by the operator):
None.

Syntax rules for IEADMP00
The following rules apply to the replacement of IEADMP00:

v There are two keywords, SDATA and PDATA. Each keyword is followed by a string of operands
separated by commas and enclosed in parentheses. A single operand does not need parentheses.

Examples:
SDATA=(SQA,CB,ENQ,TRT) or SDATA=ALLSDATA

PDATA=(PSW,REGS,SA,ALLPA,SPLS) or PDATA=ALLPDATA

v Normally both parameters (SDATA=operands and PDATA=operands) can fit on one line. If, however,
continuation is needed, use a comma followed by a blank.

Example:
SDATA=(SQA,CB,ENQ,TRT),
PDATA=(PSW,REGS,
SA,ALLPA,SPLS)

v To include a comment, place the comment on the same line as the data. Use at least one blank to
separate the data from the comment. The following example shows a continuation and related
comments.

Example:
SDATA=(SQA,CB, SQA and CB data
ENQ,TRT) ENQ and trace data

5. An ABEND dump can also be requested through the CALLRTM and SETRP macros. (For details, see z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN and z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO.)

© Copyright IBM Corp. 1991, 2002 277

IBM-supplied default for IEADMP00
None.

Statements/parameters for IEADMP00
SDATA=

ALLSDATA
Except ALLVNUC and NOSYM, all the following options are automatically specified.

The following parameters request dump of specific SDATA areas, as indicated:

ALLVNUC
Entire virtual nucleus. SQA, LSQA, and the PSA are included.

NOSYM
No symptom dump is to be produced.

SUM
Requests that the dump contain summary data, which includes the following:

v Dump title.

v Abend code and PSW at the time of the error.

v If the PSW at the time of the error points to an active load module: (1) the name and address of
the load module, (2) the offset into the load module indicating where the error occurred, and (3)
the contents of the load module.

v Control blocks related to the failing task.

v Recovery termination control blocks.

v Save areas.

v Registers at the time of the error.

v Storage summary consisting of 1K (1024) bytes of storage before and 1K bytes of storage after
the addresses pointed to by the registers and the PSW. The storage will be printed only if the
user is authorized to obtain it, and, when printed, duplicate addresses will be removed.

v System trace table entries for the dumped address space.

NUC
Read/write portion of the control program nucleus. SQA, LSQA, and the PSA are included.

PCDATA
Program call information for the task being dumped.

SQA
The system queue area.

LSQA
Local system queue area for the address space. If storage is allocated for subpools 229, 230 and
249, they will be dumped for the current task.

SWA
Scheduler work area used for the failing task.

CB
Control blocks related to the failing task.

ENQ
Global resource serialization control blocks for the task.

TRT
System trace table and GTF trace, as available.

IEADMP00

278 z/OS V1R4.0 MVS Initialization and Tuning Reference

DM
Data management control blocks (DEB, DCB, IOB) for the task.

IO IOS control blocks (UCB, EXCPD) for the task.

ERR
Recovery termination control blocks (RTM2WA, registers from the SDWA, SCB, EED) for the task.

PDATA=

ALLPDATA
All the following options are automatically specified.

The following parameters request dump of specific PDATA areas, as indicated:

PSW
Program status word at entry to ABEND.

REGS
Contents of general registers at entry to ABEND.

SA or SAH
SA requests save area linkage information and a backward trace of save areas. This option is
automatically selected if ALLPDATA is specified.

SAH requests only save area linkage information.

JPA
Contents of the job pack area that relate to the failing task. These include module names and
contents.

LPA
Contents of the LPA related to the failing task. These include module names and contents. Also
includes active SVCs related to the failing task.

ALLPA
Contents of both the job pack area and the LPA, as they relate to the failing task, plus SVCs
related to the failing task.

SPLS
User storage subpools (0-127, 129–132, 244, 251, and 252) related to the failing task.

SUBTASKS
Problem data (PDATA) options requested for the designated task will also be in effect for its
subtasks.

IEADMP00

Chapter 36. IEADMP00 (ABDUMP written to a SYSUDUMP data set) 279

|

IEADMP00

280 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 37. IEADMR00 (ABDUMP written to a SYSMDUMP
data set)

IEADMR00 contains IBM defaults and/or installation parameters for ABDUMP, for use when an ABEND
dump is written to a SYSMDUMP data set.

ABDUMP parameters for a SYSMDUMP data set may be specified as follows:

v The dump request parameter list pointed to by the DUMPOPT keyword of an ABEND macro.6 The list
can be built by using the list form of the SNAP macro. (For details, see the descriptions of the ABEND
and SNAP macros in z/OS MVS Programming: Assembler Services Reference ABE-HSP.)

v The initial system dump options specified in IEADMR00. These options are added to the options on the
dump request parameter list.

v The system dump options as altered by the CHNGDUMP command. With the CHNGDUMP command,
options can be added to or deleted from the system dump options list. The CHNGDUMP command can
also cause the dump request parameters to be ignored. (For a description of the CHNGDUMP
command, see z/OS MVS System Commands.)

During IPL, an informational message will notify the operator if IEADMR00 is invalid or can’t be found. No
prompting of the operator will occur. If the member contains both valid and invalid parameters, an
informational message will indicate the valid options that were accepted before the error occurred.

Recommendation for IEADMR00 with z/OS UNIX
The system writes a SYSMDUMP as the core dump of a forked address space that runs a z/OS UNIX
process. A core dump is written to an HFS file on behalf of the user experiencing the error. To obtain
sufficient diagnostic data without consuming excessive storage in the file system, request the following
options in IEADMR00:
SDATA=(RGN,TRT,SUM)

Parameter in IEASYSxx (or specified by the operator):
None.

Syntax rules for IEADMR00
The following rule applies to the replacement of IEADMR00:

v There is one keyword, SDATA. The keyword is followed by a string of operands separated by commas
and enclosed in parentheses. A single operand does not need parentheses.

Example:
SDATA=(SQA,TRT) or SDATA=ALLSDATA

v To include a comment, place the comment on the same line as the data. Use at least one blank to
separate the data from the comment. The following example shows a continuation and the related
comments.

Example:
SDATA=(SQA,LSQA, SQA and LSQA data
SWA,TRT) SWA and trace data

6. An ABEND dump can also be requested through the CALLRTM and SETRP macros. (For details, see z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN or z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO.)

© Copyright IBM Corp. 1991, 2002 281

IBM-supplied default for IEADMR00
None.

Statements/parameters for IEADMR00
SDATA=

ALLSDATA
Except ALLNUC and NOSYM, all the following options are automatically specified.

The following parameters request dump of specific SDATA areas, as indicated:

NUC
Read/write portion of the control program nucleus. The PSA is included.

SQA
The system queue area.

LSQA
Local system queue area for the address space. If storage is allocated for subpools 229, 230 and
249, they will also be dumped.

SWA
Scheduler work area used for the failing task.

TRT
System trace table and GTF trace, as available.

LPA
Contents of the LPA related to the failing task. These include module names and contents. Also
includes SVCs related to the failing task.

CSA
Common service area subpools that are not fetch protected.

RGN
Private area for the address space region.

GRSQ
All global resource serialization control blocks and other global resource serialization storage.

ALLNUC
Entire control program nucleus. The PSA is included.

NOSYM
No symptom dump is to be produced.

SUM
Summary dump information as provided in the SVC dump. (See the description of the SUM
parameter for the SDUMP macro in z/OS MVS Programming: Assembler Services Reference
ABE-HSP.)

IEADMR00

282 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 38. IEAFIXxx (fixed LPA list)

Use the IEAFIXxx member to specify the names of modules that are to be fixed in central storage for the
duration of an IPL. (The libraries are cataloged in the system master catalog.) You can use IEAFIXxx to
temporarily add or replace SVC or ERP routines that already exist in the pageable LPA (PLPA), or to page
fix such routines to improve system performance.

Like the temporary modules chosen through the MLPA option, fixed link pack area (FLPA) modules are not
automatically reactivated by a quick start or a warm start IPL. That is, the FLPA can be reestablished only
by re-specification of the FIX parameter at the quick start or warm start IPL.

Notes:

1. Any library that includes modules for the FLPA must be a PDS. You cannot use PDSEs in the LPALST
concatenation.

2. As of MVS Version 4.3, it is no longer necessary for the data sets in the LPALST to be
APF-authorized.

Because fixed modules are not paged, you can save I/O time and paging overhead by placing moderately
used modules into the FLPA. This can shorten the LPALST concatenation. When a module is requested,
the program manager searches the list of fixed routines before it examines the pageable LPA directory.
The price for this performance improvement is the reduction in central storage available for paging old jobs
and starting new jobs. Remember that pages referenced frequently tend to remain in central storage even
when they are not fixed.

You can use the FLPA to reduce page-fault overhead at the expense of some central storage. This
trade-off is desirable with a system that tends to be CPU-bound but has sufficient central storage.

You carry out the trade-off by placing moderately used modules into the FLPA (through IEAFIXxx). High
usage PLPA modules probably need not be fixed because they are referenced frequently enough to
remain in central storage. Because less central storage will be available for pageable programs, the
system will swap out address spaces that would otherwise occupy central storage, awaiting CPU
availability.

Modules specified in IEAFIXxx are loaded and fixed in the order in which they are specified in the member
(to keep search time within reasonable limits, do not allow the FLPA to become excessively large). If the
first load module of a type 3 or 4 SVC routine is specified, the SVC table is updated as required.

Modules specified in IEAFIXxx are placed in the FLPA or in the extended FLPA, depending on the
RMODE of the modules. Modules with an RMODE of 24 are placed in the FLPA, while those with an
RMODE of ANY are placed in the extended FLPA.

The FLPA and the extended FLPA are page-protected by default. A protection exception occurs if there is
an attempt to store data into either area.

To override page protection, use the NOPROT option on the FIX system parameter.

Note: The FLPA and the extended FLPA are not mapped V=R. Modules in either area cannot be assumed
to be backed by contiguous real frames.

Parameter in IEASYSxx (or specified by the operator):

FIX= {aa }
{(aa[,L][,NOPROT]) }
{(aa,bb,...[,L][,NOPROT])}

© Copyright IBM Corp. 1991, 2002 283

The two characters (A-Z, 0-9, @, #, or $) represented by aa (or bb, etc.), are appended to IEAFIX to form
the name of one or more IEAFIXxx members of SYS1.PARMLIB. The system defaults to no FLPA, if you
fail to specify the option in one of the following ways:
v FIX keyword included in the IEASYSxx member.
v FIX keyword entered by the operator at IPL.

The LPA modules that are fixed in storage are also page protected, by default. If an attempt is made to
store into a page-protected module, a protection exception occurs. However, an installation can use the
NOPROT option to override the page protection default. When NOPROT is specified, the LPA modules in
the IEAFIXxx parmlib member(s) are not page protected in storage.

If the L option is specified, the system displays the contents of the IEAFIXxx parmlib member(s) at the
operator’s console as the system processes the member(s).

Syntax rules for IEAFIXxx
The following rules apply to the creation of IEAFIXxx:

v Each statement must begin with the INCLUDE keyword.

v The library name follows the LIBRARY keyword and is enclosed in parentheses.

v The list of modules follows the MODULES keyword and is enclosed in parentheses. Any number of
module names can be specified.

Use major names or alias names, or both. Any alias names by which a module is to be accessed must
be included. If an alias name is included and the associated major name is omitted, the system will
locate the major name.

v The statement is assumed to be all information from one INCLUDE keyword to the next INCLUDE
keyword or until end-of-file.

v Use all columns except 72 through 80.

v Blanks or commas can be used as delimiters. Multiple occurrences of a delimiter are interpreted as a
single delimiter.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″. They are allowed
anywhere a delimiter is allowed.

Syntax format of IEAFIXxx

Syntax example of IEAFIXxx
INCLUDE LIBRARY(SYS1.LINKLIB) MODULES(IKJPARS IKJPARS2 IKJSCAN

IKJEFD00 IKJDAIR)

INCLUDE LIBRARY(SYS1.SVCLIB) MODULES(IGC000RC,IGC09302,IGC09303)

INCLUDE LIBRARY(SYS1.AUTHLIB) MODULES(IEAV0021,IEAV0032,IEAV0033,
IEAV0041,IEAV0042,IEAV0043,
IEAV0053,IEAV0054)

IBM-supplied default for IEAFIXxx
None.

INCLUDE LIBRARY(data-set-name)

MODULES(module-name, module-name,...)

IEAFIXxx

284 z/OS V1R4.0 MVS Initialization and Tuning Reference

Statements/parameters for IEAFIXxx
INCLUDE

Specifies modules to be loaded as a temporary extension to the existing pageable link pack area
(PLPA).

LIBRARY
Specifies a qualified data set name. The specified library must be cataloged in the system master
catalog.

Note: If SYS1.LINKLIB or SYS1.LPALIB are specified, only those libraries, and not their
concatenations, are used.

MODULES
Specifies a list of 1 to 8 character module names.

IEAFIXxx

Chapter 38. IEAFIXxx (fixed LPA list) 285

IEAFIXxx

286 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 39. IEAICSxx (installation control specifications)

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can no
longer use the IEAICSxx member to set installation control specifications. The information has been
left here for reference purposes, and for use on backlevel systems.

See z/OS MVS Planning: Workload Management for more information on WLM goal mode.

The following section describes the format of the installation control specification and its parameters. The
installation control specification consists of multiple subsystem sections. Each subsystem, for which the
installation control specification is to assign performance groups, has the following format:

Syntax rules for IEASICSxx
Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

Statements/parameters for IEAICSxx
ACCTINFO=substr(p)

Specifies a string of contiguous characters in the accounting information within a subsystem.
Transactions using this accounting information are assigned specified performance group(s). Only the
job level account number is used. For z/OS UNIX , the account number of a forked child process is
inherited from the parent process. By using masks, substrings and ACCTINFO, you can identify the
jobs to be assigned a particular performance group.

For example, MASK=% and ACCTINFO=D58%%(8) tells the system that starting with the 8th position
in the accounting fields on the JCL JOB statement, any statement with ‘D58’ followed by 2 characters
is a match. Commas and blanks are also counted.

Therefore, the following accounting information would be a match:
//JOBNAME JOB ’P4512C,D58WAYNE,B9212T15,S=U’

Note: SRM will ignore the ACCTINFO parameter if the JES2 JOBDEF initialization statement specifies
ACCTFLD=OPTIONAL.

Value Range: 1-8 characters

Default Value: None

MASK=character
Specifies a character to match any character, including blank, in a TRXNAME, USERID, TRXCLASS,
ACCTINFO, or SRVCLASS. This makes possible non-contiguous entry name patterns in the ICS. If
MASK is specified, it must be the first ICS keyword. Specify only one MASK keyword for an IEAICSxx
member. When the mask is defined, it is defined for the entire ICS. character must be an
alphanumeric. character cannot be either of the following:

[MASK=n]
SUBSYS=name, [,PGN=n [,OPGN=n] [,RPGN=n]]

[[,OPGN=(n[,n]...)]]

[{ACCTINFO} {=name } {,PGN=n [,OPGN=n] [,RPGN=n]}]
[{TRXNAME } {=substr(p)} { [,OPGN=(n[,n]...)] }].
[{USERID }]
[{TRXCLASS}]
{ {SRVCLASS,RPGN=,PGN=} }

© Copyright IBM Corp. 1991, 2002 287

left parenthesis
(

comma
,

Value Range: 1 character

Default Value: None

OPGN
Specifies one or more optional control performance groups that the user can request by means of the
PERFORM parameter. The control performance group must also be defined in the IPS.

Note: If you specify the OPGN keyword, you must also specify the PGN keyword. You might also
want to specify the RPGN keyword, although it is not necessary.

Value Range: 1-999

Default Value: None

PGN
Specifies a control performance group number. If OPGN is not also specified or if the user-specified
performance group is not one of the OPGNs, the performance group specified by the PGN keyword is
assigned. A control performance group must also be defined in the IPS.

Value Range: 1-999

Default Value: For TSO/E, 2. For non-TSO/E, 1.

RPGN=n
Specifies a performance group that is used only for reporting. A report performance group must not be
defined in the IPS.

Note: The same RPGN value cannot be used for more than one entry type within a single subsystem
section. The entry types are SUBSYS, TRXNAME, USERID, SRVCLASS, and TRXCLASS.

n is a number 1-9999.

Value Range: 1-9999

Default Value: None

substr(p)
A 1 to 8 character string and a column position number. A match will be made with any name
containing this string starting in the indicated position (p).

Example: D09GES1 matches USERID=GES(4)

For more information, see “Searching Order for Substrings and Masking” in z/OS MVS Initialization
and Tuning Guide.

p for ACCTINFO only is a decimal value from 1 to 141.

p for other entries is a decimal value from 1 to 8.

Value Range: Substr is a 1 to 8 character string. The length of the string plus the column position
cannot exceed 9. The string cannot contain the following characters:
left parenthesis

(
comment beginning

/*

IEAICSxx (invalid in z/OS V1R3)

288 z/OS V1R4.0 MVS Initialization and Tuning Reference

comma
,

p is a decimal value from 1 to 141.

Default Value: None

SUBSYS=name
Specifies the name of a subsystem or component. Following this are the performance group or report
performance group specifications for transactions associated with this subsystem or component. The
names are:

v ASCH, which is a system-defined subsystem. ASCH includes all work initiated by the IBM-supplied
APPC/MVS transaction scheduler.

v CICS, which includes all messages processed by CICS.

v DB2®, which includes the queries that DB2 has created by splitting a single, larger query and
distributed to remote systems in a sysplex.

v DDF, which includes all work requests processed by the DB2 distributed data facility (DDF).

v IMS™, which includes all messages processed by IMS.

v IWEB, which includes all requests from the world-wide web being serviced by the Internet
Connection Server (ICS).

v JES2 or JES3, for the job entry subsystem defined in the IEFSSNxx member.

v LSFM, which includes all work requests from LAN Server for MVS.

v OMVS, which includes work initiated by the z/OS UNIX fork callable service.

v SOM™, which includes all SOM client object class binding requests.

v STC, which is a system-defined subsystem STC includes all work initiated by the START or
MOUNT operator command.

v TSO, which includes all work initiated by LOGON.

The SUBSYS keyword delimits each subsystem section. All ACCTINFO, TRXNAME, USERID,
SRVCLASS, and TRXCLASS specifications belong to the subsystem defined by the preceding
SUBSYS specification.

Value Range: 1-4 character string. The first character must be alphabetic or special (#, @, or $); the
remaining characters alphabetic, special, or numeric.

Default Value: None

SRVCLASS=name
Specifies the name of a service class as defined in the active workload management service policy.
You use this keyword together with one or both of the RPGN= or PGN= keywords.

Use SRVCLASS= with the RPGN= keyword to get reporting information on a service class while
running in workload management compatibility mode with an active service policy. You can do this for
only those subsystems that support workload management, for example, CICS, DB2, DDF, IMS,
IWEB, and SOM.

Use SRVCLASS= with the PGN= keyword to assign a performance group to enclaves. You can do this
for only those subsystem types that currently use enclave services, for example, DB2, DDF, IWEB,
and SOM.

An enclave is a transaction that can be spread across multiple dispatchable units and multiple address
spaces. The transaction can be one dispatchable unit in a single address space or multiple
dispatchable units running in one or more address spaces.

For information on the subsystem levels required for SRVCLASS support, see “Transaction Entries” in
z/OS MVS Initialization and Tuning Guide. Refer to the appropriate subsystem reference

IEAICSxx (invalid in z/OS V1R3)

Chapter 39. IEAICSxx (installation control specifications) 289

documentation to determine if a subsystem uses the workload management services that enable the
use of SRVCLASS= with the RPGN= or PGN= keyword.

Value Range: 1-8 characters

Default Value: None

TRXCLASS=name
Specifies a class name within a subsystem. Transactions belonging to this class are assigned to the
specified performance group or groups.

Value Range: 1-8 characters

Default Value: None

TRXNAME=name
Specifies a transaction name within a subsystem. Transactions having this name are assigned the
specified performance group or groups.

Value Range: 1-8 characters

Note: Although APPC transaction names can be up to 64 characters long, SRM only processes the
first 8 characters as the TRXNAME.

Default Value: None

USERID=name
Specifies a user within a subsystem. Transactions for this user id are assigned the specified
performance group or groups.

Value Range: 1-8 characters

Default Value: None

IEAICSxx (invalid in z/OS V1R3)

290 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 40. IEAIPSxx (installation performance specifications)

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can no
longer use the IEAIPSxx member to set installation performance specifications. The information has
been left here for reference purposes, and for use on backlevel systems.

See z/OS MVS Planning: Workload Management for more information on WLM goal mode.

The IPS contains four categories of information. They should be specified in the order shown.

1. Service definition coefficients which can be specified in any order:
[CPU=xx.x] [IOC=xx.x] [MSO=xx.xxxx] [SRB=xx.x]

2. General Control Keywords.
[PVLDP= {Mx }]
[{Fx }]
[{Fxy}]
[TUNIT=xx]
[TSPTRN=(xx,xx,xx,...)]
[IOQ={FIFO}]

{PRTY}]
[CPGRT=(a,b)]
[CWSS=(a,b)]
[IOSRVC={TIME }]

{COUNT}

3. Domains.

The maximum number of domains that can be specified per IPS is 128. This set of keywords is coded
once for each domain.

[{[,DSRV=(dsrvlo,dsrvhi)]}
[DMN=xxx{[,ASRV=(asrvlo,asrvhi)]}[,ESCRTABX=nn][,CNSTR=(xxx,xxx)]
[{[,FIXCIDX=nnn]}

4. Performance groups.

The keywords within the parentheses (from DMN= through PWSS=) represent a performance group
period, and are repeated for each period in the performance group. The keywords can appear in any
order. A maximum of eight periods can be specified for each performance group.

© Copyright IBM Corp. 1991, 2002 291

The PGN keyword must appear once for each performance group. The maximum number of
performance groups that can be specified in an IPS is 999.

PGN=xxx,([DMN=xxx] [,RTO=xxx.x]
,DUR=xxxxxxxx[,UNT= {S}]

[{R}]
[[,DP={Mx } [,TSDP={Mx } [,TSGRP=xx]]] [,IOP={Mx }]]
[[{Fx } [{Fx } []]] [{Fxy}]]
[[{Fxy} [{Fxy} []]] []]
[,PPGRT=(a,b)]
[,PPGRTR=(a,b)]
[,PWSS=(a,b)])
[(...)]

Syntax rules for IEAIPSxx
Comments may appear in columns 1-71 and must begin with ″/*’ and end with ″*/″.

Statements/parameters for IEAIPSxx
ASRV

Specifies the low and high average service rates per address space for the ready users in the domain.
The syntax is as follows:

ASRV=(asrvlo,asrvhi)

where asrvlo ≤ asrvhi and asrvlo and asrvhi are integers from 0 to 999999999.

Example: ASRV=(1000,2000)

Value Range: 0 to 999999999

Default Value: If you do not specify ASRV, DSRV, or FIXCIDX, the system defaults to
DSRV=(0,999999999).

CNSTR
Specifies the constraints of a domain, that is, the minimum MPL and the maximum MPL.

CNSTR=(a,b)

where:

Constraint Value Value Range Default Value
a = minimum MPL 0-999 None
b = maximum MPL 0-999 None

If the CNSTR keyword is omitted from the definition of a domain, the following default values are used:

v Domain 0 is the default domain for privileged jobs (indicated by the privileged bit in the program
properties table), and should not be specified in the IPS. It has constraints of (999,999).

v If domain 1 is not specified in the IPS, it will be defined automatically with constraints of (1,999).
Any other domain defined without the CNSTR keyword is given the same defaults.

Example: DMN=2, CNSTR=(7,10). This indicates for domain number 2, a minimum MPL of 7 and a
maximum MPL of 10.

CPGRT
Specifies the limits for the common area (common service area and the pageable link pack area)
page-in rate. The syntax is as follows:

CPGRT=(a,b)

IEAIPSxx (invalid in z/OS V1R3)

292 z/OS V1R4.0 MVS Initialization and Tuning Reference

where a and b are one to five decimal digits between 0 to 32767 and specify the minimum and
maximum acceptable page-ins per elapsed second. The minimum must be less than or equal to the
maximum. If the page-in rate is less than the minimum, the target working set size for the common
area is decreased. Similarly, if the page-in rate exceeds the maximum, the working set size for the
common area is increased.

Note: Specify 0 for the minimum if you do not want the target working set size to be decreased.

Example: CPGRT=(10,30)

In this example, if the common area’s page-in rate falls below 10 pages per second, the target working
set size is decreased thus making additional common area frames eligible to be stolen. If the page-in
rate exceeds 30, the target working set size is increased thus making fewer common area frames
eligible to be stolen.

Value Range:
a=0-32767
b=0-32767

Default Value: None

CPU
Indicates the number by which accumulated CPU service units will be multiplied (weighted).

Example: CPU=1.0

Value Range: 0.0-99.9

Default Value: 1.0

CWSS
Specifies the range for the target working set size for the common area (common service area, the
system queue area, and the pageable link pack area). The syntax is as follows:

CWSS=(a,b)

where a and b are one to ten decimal digits between 0 to 2147483647 ((2**31)-1) and specify the
minimum and maximum target working set size for the common area. The working set is the set of
frames allocated to the common area. The minimum must be less than or equal to the maximum.
Specifying an asterisk (*) in either the minimum or the maximum field causes the system to use the
system default for the value. The system default for the minimum value is 0; the system default for the
maximum value is the maximum amount of processor storage available.

Therefore, either specify an asterisk (*), which will allow you the maximum available storage, or
specify a maximum working set size larger than the number of allocated frames. If you want to limit
the working set, specify a maximum working set smaller than the number of allocated frames. For
example, CWSS=(1000,*) does not exempt the address space from page migration and page stealing
when the address space has at least 1000 frames.

If the CPGRT keyword is specified, target working set size varies within these limits based on the
common area’s page-in rate. If CPGRT is not specified, the target is set equal to the minimum
specification.

Example 1: CWSS=(100,200)

If the CPGRT keyword is also specified, the common area’s target working set size varies between
100 and 200 frames depending on its page-in rate.

Example 2: CWSS=(50,100)

IEAIPSxx (invalid in z/OS V1R3)

Chapter 40. IEAIPSxx (installation performance specifications) 293

If the CPGRT keyword is not specified, the common area’s target working set size is fixed at 50
frames. If there is a shortage of central storage, any frames more than the specified 100 frames are
stolen ahead of frames that are stolen according to the page stealing algorithm. Page stealing does
not reduce the working set size below 50.

Value Range Default Value

a=0-2147483647
0

b=0-2147483647
the amount of processor storage available

DMN
Specifies a unique number that is used to associate a domain with a transaction.

This keyword is used to associate a performance group period with a previously defined domain. If not
included in the period definition, the default value is the domain number of the previous period or, if it
is the first period, 1.

Example: PGN=5,DMN=3

In addition, this keyword is used to define a domain, that is, to associate the MPL limits and contention
index control (specified with the CNSTR keyword) with a unique number.

Example: DMN=3,CNSTR=(5,10)

Note: Only domains 0 and 1 are defined by default.

Domain 0 is the default domain for privileged jobs (indicated by the privileged bit in the program
properties table), and should not be specified in the IPS. It has constraints of (999,999).

If domain 1 is not specified in the IPS, it will be defined automatically with constraints of (1,999). Any
other domain defined without the CNSTR keyword is given the same defaults.

Value Range: 1-128

Default Value: 0 or 1, as described in the preceding paragraphs.

DP
Specifies the dispatching control algorithm and dispatching priority for address spaces associated with
a performance group period. The syntax is as follows:
DP={Mx }

{Fx }
{Fxy}

where:

M or F defines the dispatching control algorithm, that is, either mean-time-to-wait (M) or fixed (F).

x is an integer from 0 to 9.

y is an integer with the range 0-4 as follows:

v the values 0, 1, 2, 3, and 4 of y correspond to the fixed priorities (in hex) B, C, D, E, and F.

v when the Fx syntax is used, it represents a fixed priority (in hex) of A.

Example 1: DP=F23

This indicates the fixed dispatching control algorithm, and a dispatching priority of 2E (hex).

Example 2: DP=F4

IEAIPSxx (invalid in z/OS V1R3)

294 z/OS V1R4.0 MVS Initialization and Tuning Reference

This indicates the fixed dispatching control algorithm, and a dispatching priority of 4A (hex).

Example 3: DP=M0

This indicates the mean-time-to-wait dispatching control algorithm, and a dispatching priority
determined by SRM within the mean-time-to-wait range 00-09 (hex).

Note: The actual dispatching priority in these examples is not important. It is calculated to explain the
syntax descriptions of several IPS keywords. It is only necessary to know the relative hierarchy
of dispatching control information.

Default Value: M0

DSRV
Specifies the low and high total service rates for the domain. The syntax is as follows:

DSRV=(dsrvlo,dsrvhi)

where dsrvlo ≤ dsrvhi and dsrvlo and dsrvhi are integers from 0 to 999999999.

Example: DSRV=(1200,999999999)

Value Range: 0 to 999999999

Default Value: If you do not specify ASRV, DSRV, or FIXCIDX, the system defaults to
DSRV=(0,999999999).

DUR
Specifies the length of the performance group period in units indicated by the UNT keyword.

DUR should not be specified (1) for the last performance period in a performance group, or (2) when
there is only one performance period.

Example: DUR=400

Value Range:
0-999999999
or 0-999999K

If UNT=R is specified for a performance group period and a DUR value greater than 1,000,000 is
assigned, 1,000,000 is used in place of the assigned value.

Default Value: None

ESCRTABX
Specifies the expanded storage criteria table entry (specified in your IEAOPTxx parmlib member) to be
used for work in a domain. If a criteria index is specified for a domain, but the IEAOPTxx parmlib
member in use does not have a corresponding entry for that type of page, then the default value as
determined by the type of transaction will be used.

Value Range: 3-99

Default Value:
0 - for nonswappable, common, or privileged users
1 - all others not 0 or 2, or 3-99
2 - TSO/E users.

FIXCIDX
Specifies a fixed contention index for the domain. Unlike the ASRV and DSRV keywords, FIXCIDX
sets a domain’s importance to a constant value that is not influenced by the amount of service
accumulated for the domain. For more information about contention indexes, see z/OS MVS
Initialization and Tuning Guide.

IEAIPSxx (invalid in z/OS V1R3)

Chapter 40. IEAIPSxx (installation performance specifications) 295

Example: DMN=3,FIXCIDX=120

This indicates that domain 3 will have a fixed contention index of 120.

Restriction: This keyword cannot be specified for a domain that already has a an ASRV or DSRV
value specified.

Value Range: 0-655

Default Value: If you do not specify ASRV, DSRV, or FIXCIDX, the system defaults to
DSRV=(0,999999999).

IOC
Indicates the number by which accumulated I/O service units will be multiplied (weighted).

Example: IOC=1.0

Value Range: 0.0-99.9

Default Value: 1.0

IOP
Specifies the I/O priority of an address space performance group period. The syntax is as follows:
IOP={Mx }

{Fxy}

where the value range for Mx and Fxy is the same as in the DP keyword. (See the DP keyword for
more detail). An Mx I/O priority is a fixed priority that is not adjusted within a range as is an Mx
dispatching priority.

An Fx syntax, specifying the lowest fixed priority, cannot be used with the IOP keyword.

Restrictions: IOP is significant only if IOQ=PRTY is specified in the IPS.

Note: The default value is the address space dispatching priority. For an address space that is
time-sliced, the IOP default is the time-slicing dispatching priority (the TSDP value). If an I/O
priority is specified in a mean-time-to-wait range, it is treated as a fixed priority and assigned
the lowest value in the specified mean-time-to-wait range. For example, in a mean-time-to-wait
range of 70 to 79, the I/O priority is 70. For an example, see the topic “I/O Priorities” in the
“Advanced SRM Parameter Concepts” section of z/OS MVS Initialization and Tuning Guide.

Default Value: See the preceding note.

IOQ
Specifies the algorithm to use whenever I/O requests on a device must be queued.

Example: IOQ=PRTY

This indicates that I/O requests are to be queued based on each address space’s dispatching priority.

Value Range:
FIFO
PRTY

Default Value: FIFO

IOSRVC
Specifies whether I/O service is to be computed using block counts or device connect time.

Example: IOSRVC=TIME

Note: If there is a malfunction of the channel measurement facility, device connect time cannot be
measured. Instead, block counts are used to compute I/O service.

IEAIPSxx (invalid in z/OS V1R3)

296 z/OS V1R4.0 MVS Initialization and Tuning Reference

Value Range:
COUNT
TIME

Default Value: COUNT

MSO
Indicates the number by which accumulated storage service units will be multiplied (weighted).

Example: MSO=1.0

Value Range: 0.0000-99.9999

Default Value: 1.0

PGN
Specifies a unique identifier for a performance group definition. This number is used to associate a
job, job step, or time-sharing session with the respective performance group.

Example: PGN=3

Note: Each IEAIPSxx member must have performance groups 1 and 2 specified. SRM can assign
these default performance groups to address spaces during address space termination. PGN 1
and 2 should be specified in a way so that the work assigned to the PGN is able to execute.

Value Range: 1-999

Default Value: None

PPGRT
Specifies that execution time is used to calculate the page-in rate for an address space within a
performance group period. The syntax is as follows:

PPGRT=(a,b)

where a and b are one to five decimal digits between 0 to 32767 and specify the minimum and
maximum private area page-in rate (non-swap, hiperspaces, data space, ESO hiperspace reads not
satisfied, and non-VIO page-ins per accumulated second of execution time). The minimum must be
less than or equal to the maximum. If the page-in rate is less than the minimum, the target working set
size is decreased thus making additional frames eligible for stealing. Similarly, if the page-in rate
exceeds the maximum, the target working set size is increased thus making fewer frames eligible for
stealing.

Notes:

1. If you do not want the target working set size to be decreased, specify 0 for the minimum.

2. The private area page-in rate for a cross memory address space is always based on elapsed time.

3. This keyword is not compatible with the PPGRTR keyword. That is, in a performance group, you
can specify either PPGRT or PPGRTR, but not both.

Example: PPGRT=(5,10)

If the address space’s private area page-in rate falls below 5 pages per second, the target working set
size is lowered. If the page-in rate exceeds 10, the target working set size is raised. The PWSS
keyword is used to limit the range of the target working set size.

Value Range Default Value
a=0-32767 None
b=0-32767 None

IEAIPSxx (invalid in z/OS V1R3)

Chapter 40. IEAIPSxx (installation performance specifications) 297

PPGRTR
Specifies that residency time is used to calculate the page-in rate for an address space within a
performance group period. The syntax is as follows:

PPGRTR=(a,b)

where a and b are one to five decimal digits between 0 to 32767 and specify the minimum and
maximum private area page-in rate (non-swap, hiperspaces, data space, ESO hiperspace reads not
satisfied, and non-VIO page-ins per accumulated second of residency time). The minimum must be
less than or equal to the maximum. If the page-in rate is less than the minimum, the target working set
size is decreased to make additional frames eligible for stealing. Similarly, if the page-in rate exceeds
the maximum, the target working set size is increased to make fewer frames eligible for stealing.

Notes:

1. If you do not want the target working set size to be decreased, specify 0 for the minimum.

2. The private area page-in rate for a cross memory address space is always based on elapsed time.

3. This keyword is not compatible with the PPGRT keyword. That is, in a performance group, you can
specify either PPGRT or PPGRTR, but not both.

Example: PPGRTR=(5,10)

If the address space’s private area page-in rate falls below 5 pages per second, the target working set
size is lowered. If the page-in rate exceeds 10, the target working set size is raised. The PWSS
keyword is used to limit the range of the target working set size.

Value Range Default Value
a=0-32767 None
b=0-32767 None

PVLDP
Defines the dispatching algorithm and priority to be assigned to initiators and all other privileged jobs
(specified in the program properties table and associated with performance group 0). The syntax is as
follows:
PVLDP= {Mx } - Mean-time-to-wait

{Fx } - Fixed (lowest priority)
{Fxy} - Fixed

For more information, see the DP parameter description.

Notes:

1. If PVLDP is not coded, initiators and privileged jobs are put in the lowest mean-time-to-wait group.

2. In goal mode, WLM dynamically calculates a PVLDP value to ensure that the promoted address
space/enclave is guaranteed access to the CPU. The promoted address space/enclave returns to
the original dispatch priority when it releases the resource that caused the enqueue promotion. An
address space/enclave is promoted only once for an enclave request.

Example: PVLDP=F3

Restrictions: If you have explicitly assigned privileged started tasks to a performance group in your
ICS, the PVLDP priority does not apply to that started task. The DP from the assigned performance
group is used.

Value Range: See the DP parameter description.

Default Value: M0

IEAIPSxx (invalid in z/OS V1R3)

298 z/OS V1R4.0 MVS Initialization and Tuning Reference

PWSS
Specifies the range for the target working set size for an address space within a performance group
period. The syntax is as follows:

PWSS=(a,b)

where a and b are one to 10 decimal digits between 0 to 2147483647 and specify the minimum and
maximum target working set size for an address space. The working set is the set of frames allocated
to an address space for its private area pages, its LSQA pages, and its VIO pages. The minimum
must be less than or equal to the maximum. Specifying an asterisk (*) in either the minimum or the
maximum field causes the system to use the system default for the value. The system default for the
minimum value is 0; the system default for the maximum value is the maximum amount of processor
storage available.

Therefore, either specify an asterisk (*), which will allow you the maximum available storage, or
specify a maximum working set size larger than the number of allocated frames. If you want to limit
the working set, specify a maximum working set smaller than the number of allocated frames. For
example, PWSS=(1000,*) does not exempt the address space from page migration and page stealing
when the address space has at least 1000 frames. The target working set size varies within these
limits based on the private area page-in rate if the PPGRT or PPGRTR keyword is specified. If you do
not specify PPGRT or PPGRTR, the target working set size is equal to the minimum. The minimum
value is also used as the minimum swap-in working set size.

Example 1: PWSS=(10,50)

If PPGRT=(5,10) is specified, the address space’s target working set size varies between 10 and 50
frames depending on the private area page-in rate. If the rate falls below 5 frames per second of
execution time, the target working set size is lowered.

If the page-in rate exceeds 10, the target is raised.

Example 2: PWSS=(15,30)

If there is no PPGRT or PPGRTR specification, the address space’s target working set size is fixed at
15.

If there is a shortage of central storage, any frames more than the specified 30 frames are preferred
steal candidates.

Page stealing does not reduce the working set size below 15.

Value Range Default Value

a=0-2147483647 0

b=0-2147483647 the amount of processor storage available

RTO
Specifies the response time (in seconds) for the average first period TSO/E transaction.

Example: PGN=2,(RTO=2.2)

The average TSO/E transaction that ends during this period receives 2.2 second response time,
assuming the system has sufficient capacity. Transactions larger or smaller than the average first
period transaction receive a correspondingly longer or shorter response time.

Restrictions: RTO can be specified only on the first period and is only applicable to TSO/E
transactions.

However, the resulting RTO delay increases the response time for all TSO/E transactions in the
performance group, not just those that complete in the first period.

Value Range: 0.0-999.9

Default Value: 0

IEAIPSxx (invalid in z/OS V1R3)

Chapter 40. IEAIPSxx (installation performance specifications) 299

SRB
Specifies the number by which accumulated SRB service units will be multiplied (weighted).

Example: SRB=1.0

Note: If SRB is not coded, the default is 0.0. The default IPS sets the SRB equal to the CPU
coefficient (10.0).

Value Range: 0.0-99.9

Default Value: (see note)

TSDP
Defines the time slice dispatching control algorithm and dispatching priority for address spaces
associated with the performance group period.

The syntax is as follows:
TSDP= {Mx } - Mean-time-to-wait algorithm

{Fx } - Fixed (lowest priority)
{Fxy} - Fixed

For more information, see DP.

Example: TSDP=F6

Restrictions: The dispatching priorities that can be specified for DP and TSDP are subject to the
following restrictions:

v Within the same performance group period, TSDP must specify the same dispatching algorithm
(mean-time-to-wait or fixed) as DP and TSDP must be higher than DP.

Example: DP=F24, TSDP=F64

v It is recommended that for performance concerns the dispatching priority assignments for DP and
TSDP be made so that, when a time slice group is raised or lowered, the address spaces within the
time slice group maintain the same positions relative to one another.

Value Range: See DP Example

Default Value: None

TSGRP
Specifies a time slice group number. The specification of TSGRP in the performance group period
definition associates a performance group period with a time slice group. The time slice group must
appear at least once in the time slice pattern.

Note: If TSGRP is not specified, the time slice group number is the same as the domain number for
the performance group period if the domain number is less than 17. If the domain number is
greater than 16 you must specify a value for TSGRP.

Example: TSGRP=2

This indicates that the time slice group number is 2.

Value Range: 1-16

Default Value: Domain Number (see the preceding note)

TSPTRN
Defines the pattern to be followed in distributing time slices to the time slice groups and the

IEAIPSxx (invalid in z/OS V1R3)

300 z/OS V1R4.0 MVS Initialization and Tuning Reference

percentage of time each group receives preferred dispatching priority. The length of each time slice is
1 SRM time unit. The syntax for TSPTRN is as follows:

TSPTRN=(i,j,k,j,...)

Where i,j, and k are replaced with time slice group numbers. There may be up to 64 entries in the
pattern. The pattern is repeated after the last time slice group specified in the pattern has received its
time slice. Each time slice group (TSGRP parameter) in the pattern must be specified in at least one
performance group period definition.

An asterisk can replace a time slice group number in TSPTRN to define an interval of time during
which no time slice group is given a time slice.

Example: TSPTRN=(*,1,3,2,3)

This indicates that SRM should let one SRM time unit elapse before giving time slice group 1 its time
slice. This break occurs each time the time slice pattern is repeated. Also, time slice group 3 receives
its high priority 40% of the time (2 of 5 entries in the pattern).

Example: TSPTRN=(1,2,2,3)

This indicates that SRM should distribute time slices in the following order by time slice group number:
1,2,2,3,1,2,2,3,1,2,...

Restrictions: The following patterns are invalid:
TSPTRN=(1)
TSPTRN=(1,1,1)

(where only one group is specified).

Value Range: 1-16

Default Value: None

TUNIT
Specifies the number of SRM time units per second. An SRM time unit equals 1 divided by the value
specified for TUNIT. The quotient is adjusted by CPU model to allow the IPS to be model independent
The duration of one time slice equals one SRM time unit.

Example: TUNIT=2

This indicates that the number of SRM time units per second is 2. The “SRM Time Unit” thus defined,
0.5 second, is adjusted by CPU mode.

Value Range: 1-10

Default Value: 1

UNT
Specifies the units for the DUR parameter. “S” indicates service units; “R” indicates real time in
seconds. In the following example, the duration for period 1 is 4 seconds; for period 2, the duration is
4000 service units.

PGN=2,(DMN=1,DUR=4,UNT=R) (DMN=2,DUR=4000) (...)

Value Range: S,R

Default Value: S

IEAIPSxx (invalid in z/OS V1R3)

Chapter 40. IEAIPSxx (installation performance specifications) 301

IEAIPSxx (invalid in z/OS V1R3)

302 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 41. IEALPAxx (modified LPA list)

Use the IEALPAxx member to specify the reenterable modules that are to be added as a temporary
extension to the pageable link pack area (PLPA). (The modules are cataloged in the system master
catalog.)

This extension is temporary; the modules will remain in paging data sets and will be listed on the active
LPA queue only for the duration of the IPL.

The system will not automatically quick-start or warm-start these modules (that is, reinstate the modules
without re-specification of the MLPA parameter). Both the modified LPA (MLPA) and the fixed LPA (FLPA)
modules (those named in IEAFIXxx) do not require the system to search the LPA directory when one of
the modules is requested. The modified LPA, unlike the fixed LPA, however, contains pageable modules
that behave in most respects like PLPA modules.

Notes:

1. A library that includes modules for the MLPA must be a PDS. You cannot use PDSEs in the LPALST
concatenation.

2. The data sets in the LPALST can be a mixture of APF-authorized and non-APF-authorized data sets.

You may use IEALPAxx to temporarily add or replace SVC or ERP routines. Another possible application
would be the testing of replacement LPA modules that have been altered by PTFs.

LPA modules specified in IEALPAxx are placed in the MLPA or in the extended MLPA, depending on the
RMODE of the modules. Modules with an RMODE of 24 are placed in the MLPA, while those with an
RMODE of ANY are placed in the extended MLPA. By default, the MLPA and the extended MLPA are page
protected, which means that a protection exception will occur if there is an attempt to store data into either
area. To override page protection, use the NOPROT option on the MLPA system parameter.

LPA modules that have been replaced through IEALPAxx are not physically removed from the PLPA or
from the LPA directory. They are, however, logically replaced because, when one of them is requested,
MLPA is searched first and the system does not examine the LPA directory which contains the name of the
replaced module.

The system searches the fixed LPA before the modified LPA for a particular module and selects the
module from the modified LPA only if the module is not also in the fixed LPA.

If the first load module of a type 3 or 4 SVC routine is added or replaced, the SVC table is updated as
required.

Parameter in IEASYSxx (or supplied by the operator):

The two characters (A-Z, 0-9, @, #, or $) represented by aa (or bb, and so forth), are appended to
IEALPA to form the name of the IEALPAxx parmlib members. If the L option is specified, the system
displays the contents of the IEALPAxx parmlib members at the operator’s console as the system
processes the members.

Because the modified LPA is not a permanent addition to the LPA, you should specify MLPA in an
alternate system parameter list (IEASYSxx) and not in IEASYS00. Or, you can have the operator enter the
parameter from the console.

MLPA= {aa }
{(aa[,L][,NOPROT]) }
{(aa,bb,...[,L][,NOPROT])}

© Copyright IBM Corp. 1991, 2002 303

The LPA modules in the IEALPAxx parmlib members are page-protected in storage, by default. If an
attempt is made to store into a page-protected module, a protection exception occurs. However, the
NOPROT option allows an installation to override the page protection default. When NOPROT is specified,
the LPA modules in the IEALPAxx parmlib members are not page-protected.

Syntax rules for IEALPAxx
The following rules apply to the creation of IEALPAxx:

v Each statement must begin with the INCLUDE keyword.

v The library name follows the LIBRARY keyword and is enclosed in parentheses.

v The list of modules follows the MODULES keyword and is enclosed in parentheses. Any number of
module names can be specified.

Use major names or alias names, or both. Any alias names by which a module is to be accessed must
be included. If an alias name is included and the associated major name is omitted, the system will
locate the major name.

v The statement is assumed to be all information from one INCLUDE keyword to the next INCLUDE
keyword or until end-of-file.

v Use all columns except 72 through 80.

v Blanks or commas can be used as delimiters. Multiple occurrences of a delimiter are interpreted as a
single delimiter.

v On a line, data entered after the last data set name and the optional comma continuation character is
treated as a comment and ignored.

v Data records entered after the last data line are treated as comments and ignored. Comments are
allowed anywhere a delimiter is allowed.

Syntax format of IEALPAxx

Syntax example of IEALPAxx

IBM-supplied default for IEALPAxx
None.

Statements/parameters for IEALPAxx
INCLUDE

Specifies modules to be loaded as a temporary extension to the existing PLPA.

Both LIBRARY and MODULES must be specified.

INCLUDE LIBRARY(data-set-name)
MODULES(module-name, module-name,...)

INCLUDE LIBRARY(SYS1.LINKLIB) MODULES(IKJPARS IKJPARS2 IKJSCAN
IKJEFD00 IKJDAIR)

INCLUDE LIBRARY(SYS1.SVCLIB) MODULES(IGC000RC,IGC09302,IGC09303)

INCLUDE LIBRARY(SYS1.U30LIB) MODULES(IEAU0021,IEAU3002,IEAU3003)

INCLUDE LIBRARY(SYS1.AUTHLIB) MODULES(IEAV0021,IEAV0032,IEAV0033,
IEAV0041,IEAV0042,IEAV0043,
IEAV0053,IEAV0054)

IEALPAxx

304 z/OS V1R4.0 MVS Initialization and Tuning Reference

LIBRARY
Specifies a qualified data set name. The specified library, which must be a PDS, must be
cataloged in the system master catalog. (If you specify SYS1.LINKLIB or SYS1.LPALIB, the
system uses only those libraries, and not their concatenations.)

MODULES
Specifies a list of 1 to 8 character module names.

IEALPAxx

Chapter 41. IEALPAxx (modified LPA list) 305

IEALPAxx

306 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 42. IEAOPTxx (OPT parameters)

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can no
longer use any of the IEAOPTxx options that were valid in compatibility mode only. The information
has been left here for reference purposes, and for use on backlevel systems.

See z/OS MVS Planning: Workload Management for more information on WLM goal mode.

The OPT parameters allow the installation to change many SRM constants.

The OPT contains several categories of information. The keywords need not be grouped by category and
can appear in any order. The system ignores both repetition of a keyword and the use of keywords that
were used in prior releases and are no longer supported. Parameters that are not valid in workload
management goal mode are ignored.

1. Special options:
[,CNTCLIST=option]
[,DVIO=option]
[,VARYCPU=option]
[,CPMF=option]

2. Adjusting constants options:

v Enqueue residence constants
[,ERV=xxxxxx]

v SRM invocation interval constant
[,RMPTTOM=xxxxxx]

v MPL adjustment constants
[,RCCCPUT=(xxx.x,yyy.y)]
[,RCCPTRT=(xxxxx,yyyyy)]
[,RCCUICT=(xxxxx,yyyyy)]
[,RCCFXTT=(xxxx,yyyy)]
[,RCCFXET=(xxxx,yyyy)]

v Logical swapping options
[,LSCTMTE=(xxxxxxx,yyyyyyy)]
[,LSCTUCT=(xxxxx,yyyyy)]
[,LSCTFTT=(xxx,yyy)]
[,LSCTFET=(xxx,yyy)]

v CPU management constants
[,CCCAWMT=xxxxxxx]
[,CCCSIGUR=xxxxx]

v Pageable storage shortage constants
[,MCCFXEPR=xxx]
[,MCCFXTPR=xxx]

v Central and expanded storage threshold constants
[,MCCAFCTH=xxxxx,yyyyy]
[,MCCAECTH=xxxxx,yyyyy]

v Maximum swap set size
[,MCCMAXSW=xxxxxxxxxx]

v Expanded storage constants
[,ESCTPOC(n)=xxxxx]
[,ESCTSTC(n)=xxxxx]

© Copyright IBM Corp. 1991, 2002 307

|

[,ESCTSWTC(n)=xxxxx]
[,ESCTSWWS(n)=xxxxx]
[,ESCTVIO[(n)]=xxxxx]
[,ESCTVF=xxxxx]
[,ESCTBDS[(n)]=xxxxx]

Note: Only ESCTVIO and ESCTBDS apply in z/Architecture mode.

v Selective enablement for I/O constants
[,CPENABLE=(xxx,yyy)]

v Swap rate scaling factor
[SWAPRSF=xxx.x]

Syntax rules for IEAOPTxx
Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

Statements/parameters for IEAOPTxx
CCCAWMT

Specifies whether to activate or deactivate Alternate Wait Management (AWM). If AWM is activated,
SRM and LPAR cooperate to reduce low utilization effects and overhead.

In an LPAR, some n-way environments with little work may appear to have little capacity remaining
because of the time spent waking up idle CPs to compete for individual pieces of work. If AWM is on,
SRM and LPAR will reduce this so that capacity planning is more accurate and CPU overhead is
reduced, even though arriving work may wait a longer time before being dispatched.

Value Range: 1-1000000 microseconds (up to 1 second)

A value of 500000 to 1000000 (one-half second to one second) deactivates AWM.

Default Value: 12000 (12 milliseconds) – AWM is active. Any value from 1 to 499999 makes AWM
active.

CCCSIGUR
Specifies the minimum mean-time-to-wait threshold value for heavy CPU users. This constant is used
to determine the range of mean-time-to-wait values which are assigned to each of the ten
mean-time-to-wait dispatching priorities.

The specified real time value is adjusted by relative processor speed to become SRM time in order to
insure consistent SRM control across various processors.

Restrictions: CCCSIGUR is not valid in workload management goal mode.

Value Range: 0-32767 milliseconds

Default Value: 45

CNTCLIST
Specifies if the individual commands in a TSO/E CLIST are treated as separate commands for
transaction control. The syntax is:

CNTCLIST=option

where option is either YES or NO. CNTCLIST=NO specifies that the CLIST is treated as a single
transaction. CNTCLIST=YES specifies that each command is to be treated as an individual
transaction. By specifying CNTCLIST=YES, SRM control of a TSO/E command becomes the same
whether the command is executed explicitly or as part of a CLIST. The RTO parameter (in IEAIPSxx),
however, does not affect commands within a CLIST, even if they are treated as individual transactions.

Value Range:
NO

IEAOPTxx (most options invalid in z/OS V1R3)

308 z/OS V1R4.0 MVS Initialization and Tuning Reference

YES

Default Value: NO

CPENABLE
Specifies the low (ICCTPILO) and high (ICCTPIHI) threshold values for the percentage of I/O
interruptions to be processed through the test pending interrupt (TPI) instruction path in IOS.

SRM uses these thresholds to control the number of processors enabled for I/O interruptions. The
syntax is:

CPENABLE=(a,b)

Value Range Basic Mode Default LPAR Mode Default

a=0-100% 10 0

b=0-100% 30 0

Note: For MVS running in LPAR mode with dedicated CPUs, specify the basic mode default values
for CPENABLE.

DVIO
Specifies whether directed VIO is to be active in the system or not. The syntax is:

DVIO=option

where option is either YES or NO. DVIO=YES, the default, specifies that directed VIO is to be active in
the system; that is, the NONVIO keyword of the IEASYSxx parmlib member is honored. DVIO=NO
specifies that directed VIO is not to be active in the system; the NONVIO parameter of the IEASYSxx
parmlib member is ignored.

Value Range:
YES
NO

Default Value: YES

CPMF
Specifies whether the Channel Path Measurement Facility (CPMF) should use extended or
compatibility modes for channel measurement. The syntax is

CPMF=COMPAT|EXTENDED

In compatibility mode, FICON™ channels are still reported upon, but only to the same level of detail as
other channel types.

In extended mode, not only is the channel utilization given for FICON channels, but also the MB/SEC
transfer rate for READ and WRITE in total and in LPAR (if in LPAR mode).

Default Value: COMPAT

ERV
Specifies the number of CPU service units that an address space or enclave is allowed to absorb
when it is possibly causing enqueue contention. During this “enqueue residency” time, the address
space or enclave runs with the privileged dispatching priority (coded on the PVLDP keyword of the
IEAIPSxx member). Also during this interval, the address space (including the address space
associated with an enclave) is not considered for swap-out based on recommendation value analysis.
If you are running in workload manager goal mode, the address space or enclave runs with a high
enough priority to guarantee the needed CPU time.

ERV is in effect for an address space or enclave that meets one of the following criteria:

IEAOPTxx (most options invalid in z/OS V1R3)

Chapter 42. IEAOPTxx (OPT parameters) 309

|
|
|
|
|
|
|

|

v The address space or enclave is enqueued on a system resource needed by another address
space.

v An authorized program in the address space or enclave obtains control of the resource (even if
another address space does not need that resource) as a result of issuing a reserve for a DASD
device which is SHARED.

Example: ERV=2

Note: SRM determines the execution time equivalent to the specified ERV by multiplying the ERV by
the model-dependent time needed to accumulate 1 CPU service unit.

In the example above, if an address space consumes 1 service unit in 10 milliseconds, it will be
allowed to execute for 20 milliseconds before it will be eligible for swap-out while enqueued on a
resource requested by other address spaces,.

Value Range: 0-999999

Default Value: 500

ESCTBDS[(n)]
Specifies the criteria age (in seconds) at which a hiperspace page will be sent to expanded storage. In
z/Architecture mode, ESCTBDS controls when hiperspace pages are kept in real storage based on the
system high UIC. Optionally, specify a value for n to indicate the criteria age table value to use for
hiperspace pages where n can be:

3-99 - a user-specified value that is associated with a domain by using the ESCRTABX parameter
of the IEAIPSxx member of SYS1.PARMLIB.

Restrictions: ESCTBDS is not valid in workload management goal mode.

Example: ESCTBDS(5)=500

The hiperspace that exceeds this time is added to the processor’s reserve capacity. The formula is:

ma > ca

Value Range: 0-32767

If you specify 32767, the page will not be sent to expanded storage even when there is enough
available.

Default Value: 1500

If you do not specify a criteria age index value (n), all BDS pages will use the same criteria age.

Note: There are a few special cases where SRM doesn’t use the criteria age table to determine when
to send pages to expanded or auxiliary storage. See the section on expanded storage control in
the z/OS MVS Initialization and Tuning Guide for more information.

ESCTPOC(n)
Specifies the criteria age (in seconds) at which a page that is to be paged out will be sent to
expanded storage. Specify a value for n to indicate the type of user owning the page, where n can be:

0 - nonswappable users, common pages, or privileged users
1 - all others not 0 or 2
2 - TSO/E users

Optionally, you can specify a value that will associate the criteria age with a specific domain.

IEAOPTxx (most options invalid in z/OS V1R3)

310 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

|
|
|

|

|
|

|
|
|

|

|

3-99 - a user-specified value that is associated with a domain by using the ESCRTABX parameter
of the IEAIPSxx member of SYS1.PARMLIB.

Restrictions: ESCTPOC is not valid in workload management goal mode.

Example: ESCTPOC(0)=100

Changed paged-out pages are sent to expanded storage when the migration age (ma) is greater than
the criteria age (ca). The formula is:

ma > ca

Value Range: 0-32767

If you specify 32767, the page will not be sent to expanded storage even when there is enough
available.

Default Value:
0=1200
1=1200
2=1200

If you specify an index of 3-99 but do not specify any ESCRTABX parameter in IEAIPSxx, the system
uses the defaults depending on the type of user (0, 1, or 2).

ESCTSTC(n)
Specifies the criteria age (in seconds) at which a page that is to be stolen will be sent to expanded
storage. Specify a value for n to indicate the type of user owning the page, where n can be

0 - nonswappable users, common pages, or privileged users
1 - all others not 0 or 2
2 - TSO/E users

Optionally, you can specify a value that will associate the criteria age with a specific domain.
3-99 - a user-specified value that is associated with a domain by using the ESCRTABX parameter
of the IEAIPSxx member of SYS1.PARMLIB.

Restrictions: ESCTSTC is not valid in workload management goal mode.

Example: ESCTSTC(2)=15

Changed stolen pages are sent to expanded storage when the migration age (ma) is greater than the
criteria age (ca). The formula is:

ma > ca

Value Range: 0-32767

If you specify 32767, the page will not be sent to expanded storage even when there is enough
available.

Default Value:
0=100
1=250
2=250

IEAOPTxx (most options invalid in z/OS V1R3)

Chapter 42. IEAOPTxx (OPT parameters) 311

If you specify an index of 3-99 but do not specify any ESCRTABX parameter in IEAIPSxx, the system
uses the defaults depending on the type of user (0, 1, or 2).

Note: There are a few special cases where SRM doesn’t use the criteria age table to determine when
to send pages to expanded or auxiliary storage. See the section on expanded storage control in
the z/OS MVS Initialization and Tuning Guide for more information.

ESCTSWTC(n)
Specifies the criteria age (in seconds) at which a page that has been trimmed for a swap out will be
sent to expanded storage. Specify a value for n to indicate the type of user owning the page, where n
can be

0 - privileged users,
1 - all others not 0 or 2
2 - long, detected and terminal wait swap users

Optionally, you can specify a value that will associate the criteria age with a specific domain.
3-99 - a user-specified value that is associated with a domain by using the ESCRTABX parameter
of the IEAIPSxx member of SYS1.PARMLIB.

Restrictions: ESCTSWTC is not valid in workload management goal mode.

Example: ESCTSWTC(1)=100

Changed swap-out pages are sent to expanded storage when the sum of the system-high
unreferenced interval count (uic) and the migration age (ma) is greater than the criteria age (ca). The
formula is:

mc + ma > ca

Value Range: 0-32767

If you specify 32767, the page will not be sent to expanded storage even when there is enough
available.

Default Value:
0=450
1=450
2=350

If you specify an index of 3-99 but do not specify any ESCRTABX parameter in IEAIPSxx, the system
uses the defaults depending on the type of user (0, 1, or 2). (0, 1, or 2).

ESCTSWWS(n)
Specifies the criteria age (in seconds) at which a working set page that is ready for a swap out will be
sent to expanded storage. Specify a value for n to indicate the type of user owning the page, where n
can be

0 - privileged users,
1 - all others not 0 or 2
2 - long, detected, and terminal wait swap users

Optionally, you can specify a value that will associate the criteria age with a specific domain.
3-99 - a user-specified value that is associated with a domain by using the ESCRTABX parameter
of the IEAIPSxx member of SYS1.PARMLIB.

Working set swap out pages are sent to expanded storage when the sum of the system-high
unreferenced interval count (uic) and the migration age (ma) minus the think time (tt) is greater than
the criteria age (ca). The formula is:

IEAOPTxx (most options invalid in z/OS V1R3)

312 z/OS V1R4.0 MVS Initialization and Tuning Reference

(uic + ma) - tt > ca

Note: For non-wait state swaps, the think time will be zero.

Restrictions: ESCTSWWS is not valid in workload management goal mode.

Value Range: 0-32767

If you specify 32767, the page will not be sent to expanded storage even when there is enough
available.

Default Value:
0=450
1=450
2=350

If you specify an index of 3-99 but do not specify any ESCRTABX parameter in IEAIPSxx, the system
uses the defaults depending on the type of user (0, 1, or 2).

ESCTVF
Specifies the criteria age (in seconds) at which a virtual fetch page will be sent to expanded storage.

Example: ESCTVF=15

Virtual fetch pages are sent to expanded storage when the migration age (ma) is greater than the
criteria age (ca). The formula is:

ma > ca

Restrictions: ESCTVF is not valid in workload management goal mode.

Value Range: 0-32767

If you specify 32767, the page will not be sent to expanded storage even when there is enough
available.

Default Value: 100

ESCTVIO[(n)]
Specifies the criteria age (in seconds) at which a virtual I/O page will be sent to expanded storage. In
z/Architecture mode, ESCTVIO controls when VIO pages are kept in real storage based on the system
high UIC. Specify a value for n to indicate the type of user owning the page, where n can be

3-99 - a user-specified value that is associated with a domain by using the ESCRTABX parameter
of the IEAIPSxx member of SYS1.PARMLIB.

Restrictions: ESCTVIO is not valid in workload management goal mode.

Example: ESCTVIO=900

Virtual I/O pages are sent to expanded storage when the migration age (ma) is greater than the
criteria age (ca). The formula is:

ma > ca

Value Range: 0-32767

If you specify 32767, the page will not be sent to expanded storage even when there is enough
available.

Default Value: 1500

IEAOPTxx (most options invalid in z/OS V1R3)

Chapter 42. IEAOPTxx (OPT parameters) 313

If you do not specify a criteria age index value (n), all VIO pages will use the same criteria age.

Note: There are a few special cases where SRM doesn’t use the criteria age table to determine when
to send pages to expanded or auxiliary storage. See the section on expanded storage control in
the z/OS MVS Initialization and Tuning Guide for more information.

LSCTFET
Specifies the low (LSCTFETL) and the high (LSCTFETH) percentages of storage that is fixed within
the first 16 megabytes; these thresholds cause the logical swap system think time to increase or
decrease.

The system think time determines if an address space in a long, detected, or terminal wait is logically
or physically swapped.

The syntax is:

LSCTFET=(a,b)

Restrictions: LSCTFET is not valid in workload management goal mode.

Value Range Default Value
a=0-100 % 76 %
b=0-100 % 82 %

LSCTFTT
Specifies the low (LSCTFTTL) and the high (LSCTFTTH) percentages of online storage that is fixed.

These thresholds cause the logical swap system think time to increase or decrease.

The system think time determines if an address space in a long, detected, or terminal wait is logically
or physically swapped.

The syntax is:

LSCTFTT=(a,b)

Restrictions: LSCTFTT is not valid in workload management goal mode.

Value Range Default Value
a=0-100 % 58 %
b=0-100 % 66 %

LSCTMTE
Specifies the low (LSCTMTEL) and the high (LSCTMTEH) think time threshold values. A nonzero low
threshold forces logical swapping for all waits with think times less than the threshold even when
storage is overutilized. A low and high threshold of zero causes all wait state swaps to be targeted for
physical swaps. Whether the address space will actually be physically swapped or will only be logically
swapped depends on the amount of central storage available.

The syntax is:

LSCTMTE=(a,b)

Restrictions: LSCTMTE is not valid in workload management goal mode.

Value Range Default Value
a=0-2147483 seconds

0
b=0-2147483 seconds

5

LSCTUCT
Specifies the low (LSCTUCTL) and the high (LSCTUCTH) UIC threshold values that cause the system
think time to increase or decrease. The difference between the low and high threshold should be at
least 10.

IEAOPTxx (most options invalid in z/OS V1R3)

314 z/OS V1R4.0 MVS Initialization and Tuning Reference

The system think time helps to determine if an address space in long, detected, or terminal wait is
physically or logically swapped.

The syntax is:

LSCTUCT=(a,b)

Restrictions: LSCTUCT is not valid in workload management goal mode.

Value Range Default Value

a=0-32767 seconds 20

b=0-32767 seconds 30

MCCAECTH
Specifies the low and the OK threshold values for expanded storage. The lowvalue indicates the
number of frames on the available frame queue when stealing begins. The okvalue indicates the
number of frames on the available frame queue when stealing ends. You can monitor actual conditions
on the RMF Paging Activity Report (RMF Monitor 1) or equivalent performance monitoring product and
adjust accordingly.

The syntax is:

MCCAECTH=(lowvalue,okvalue)

Value Range Default Value
lowvalue=1-32767 frames 150
okvalue=1-32767 frames 300

MCCAFCTH
Specifies the low and the OK threshold values for central storage. The lowvalue indicates the number
of frames on the available frame queue when stealing begins. The okvalue indicates the number of
frames on the available frame queue when stealing ends. You can monitor actual conditions on the
RMF Paging Activity Report (RMF Monitor 1) or equivalent performance monitoring product and adjust
accordingly.

The syntax is:

MCCAFCTH=(lowvalue,okvalue)

Value Range Default Value
lowvalue=1-32767 frames 50
okvalue=1-32767 frames 100

MCCFXEPR
Specifies the percentage of storage that is fixed within the first 16 megabytes. SRM uses this
threshold to determine when a shortage of pageable storage exists because there are too many fixed
pages.

The syntax is:

MCCFXEPR=xxx

Value Range: 0-100 percent

Default Value: 92 percent

MCCFXTPR
Specifies the percentage of online storage that is fixed. SRM uses this threshold to determine when a
shortage of pageable storage exists.

The syntax is:

MCCFXTPR=xxx

IEAOPTxx (most options invalid in z/OS V1R3)

Chapter 42. IEAOPTxx (OPT parameters) 315

Note: SRM uses the lesser of the values, (MCCFXTPR x amount of online storage) and (MCCFXEPR
x amount of storage that is fixed within the first 16 megabytes) to set the threshold frame count
so that it can detect a shortage of pageable storage caused by too much page fixing. In this
way, SRM can detect a shortage of pageable storage caused by too much page fixing before or
at the same time as a shortage caused by too much paging.

Value Range: 0-100 percent

Default Value: 80 percent

MCCMAXSW
Specifies, in frames, the maximum swap set size.

Note: A storage isolated address space with a protected minimum working set size larger than the
maximum swap set size is allowed to keep a swap set that honors the minimum protected
working set size.

MCCMAXSW=number of frames

Restrictions: MCCMAXSW is ignored in workload management goal mode.

Value Range: 0 - 2147483647

Default Value: 512 frames

RCCCPUT
Specifies the low (RCCCPUTL) and high (RCCCPUTH) CPU utilization threshold values that cause
the MPL to be increased or decreased.

The syntax is:

RCCCPUT=(a,b)

Restrictions: RCCCPUT is ignored in workload management goal mode.

Value Range Default Value
a=0.0-128.0 % 128.0
b=0.0-128.0 %

128.0

Notes:

1. Using the default values may reduce SRM overhead on CPU-constrained systems.

2. When the default values are used in compatibility mode or when the system is running in goal
mode, CPU utilization is not used for MPL adjustment.

3. When the default values are used in compatibility mode or when the system is running in goal
mode, CPU utilization reported will not exceed 100% because the number of ready address
spaces not receiving service is not included.

4. If the CPU utilization is greater than 100%, then the number above 100 indicates the number of
ready address spaces not receiving service. For example, a RCCCPUT value of 107 indicates
there are 7 address spaces in the domain that currently are waiting to receive service. If the value
is 128, then there are at least 28 address spaces waiting to receive service.

RCCFXET
Specifies the low (RCCFXETL) and the high (RCCFXETH) percentages of central storage that is fixed
within the first 16 megabytes. SRM uses these thresholds to determine if the system MPL needs to be
increased or decreased.

The syntax is:

RCCFXET=(a,b)

IEAOPTxx (most options invalid in z/OS V1R3)

316 z/OS V1R4.0 MVS Initialization and Tuning Reference

Value Range Default Value
a=0-100 % 82 %
b=0-100 % 88 %

RCCFXTT
Specifies the low (RCCFXTTL) and the high (RCCFXTTH) percentages of online storage that is fixed.
SRM uses these thresholds to determine if the system MPL needs to be increased or decreased.

The syntax is:

RCCFXTT=(a,b)

Value Range Default Value
a=0-100 % 66 %
b=0-100 % 72 %

RCCPTRT
Specifies the low (RCCPTRTL) and high (RCCPTRTH) page fault rate threshold values that cause the
MPL to be increased or decreased. The page fault rate is an indication of page-ins being done from
auxiliary storage. The MPL will be increased when the page fault rate is less than the low threshold
value. The MPL will be managed to reduce the pageouts when the page fault rate is more than the
high threshold value.

The default values are both 1000 and should cause this parameter to have no effect on MPL
adjustment.

The syntax is:

RCCPTRT=(a,b)

Restrictions: RCCPTRT is not valid in workload management goal mode.

Value Range Default Value
a=0-32767 1000
b=0-32767 1000

RCCUICT
Specifies the low (RCCUICTL) and high (RCCUICTH) UIC threshold values that cause the MPL to be
increased or decreased. The difference between the low and high threshold should be at least 10.

The MPL may be increased when the system UIC is greater than the high UIC threshold. In this case,
pages are becoming old without being used and raising the MPL would allow additional system
activity. The MPL will be decreased when the system UIC is less than the low UIC threshold.

The syntax is:

RCCUICT=(a,b)

Restrictions: RCCUICT is not valid in workload management goal mode.

Value Range Default Value
a=0-32767 seconds

10
b=0-32767 seconds

20

RMPTTOM
Specifies the SRM invocation interval. The specified real-time interval is adjusted by relative processor
speed to become SRM time in order to ensure consistent SRM control across various processors. The
relationship of real time to SRM time for each processor is described in “Time Slice Functions” in the
“Advanced SRM Parameter Concepts” section of z/OS MVS Initialization and Tuning Guide.

Value Range: 1000-999999 msec

Default Value: 1000

IEAOPTxx (most options invalid in z/OS V1R3)

Chapter 42. IEAOPTxx (OPT parameters) 317

SWAPRSF
Specifies how heavily to weight the cost of doing an exchange swap. The smaller the number, the
more readily SRM will perform a swap.

Restrictions: SWAPRSF is not valid in workload management goal mode.

Value Range: 0.0 - 100.0

Default Value: 10.0

VARYCPU
Specifies whether LPAR Vary CPU management is available or not available. (Note that Vary CPU
management is available only in a partition that is enabled for LPAR weight management.) The syntax
is:

VARYCPU=option

where option is either YES or NO. VARYCPU=YES, the default, specifies that LPAR Vary CPU
Management is available for this system. VARYCPU=NO specifies that LPAR Vary CPU Management
is not available.

Value Range:
YES
NO

Default Value: YES

IEAOPTxx (most options invalid in z/OS V1R3)

318 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 43. IEAPAKxx (LPA pack list)

IEAPAKxx is an installation-supplied member that contains groups of names of modules in the LPALST
concatenation that are executed together or in sequence. (As an example, the load modules of a type-4
SVC routine are called sequentially and executed as a group.) The member is used only during a “cold”
start (CLPA specified), when the PLPA is loaded from the LPALST concatenation.

The system uses the specified IEAPAKxx member(s) to determine the order in which modules are to be
loaded from the LPALST concatenation into the pageable LPA. These modules are packed together, if
possible, on a single page. The purpose is to reduce page faults. The LPA can greatly contribute to page
faults because it is highly used. The IEAPAKxx list can significantly reduce page faults.

Each group ideally should not exceed 4K bytes in size. If a group exceeds 4K, the module in the group
that causes 4K to be exceeded, and all later modules in the same group, will be loaded at the next page
boundary in the LPA. In contrast, the system loads other modules (those not listed in IEAPAKxx) in size
order, the largest modules first, then the smaller modules. Unused spaces within page boundaries are
filled, if possible, with modules smaller than 4K.

You should select link pack area programs for inclusion in the system pack list to reduce the number of
page faults from the pageable link pack area and thereby enhance system performance. The affinity of
programs for each other and the size of the programs determine which should be selected for a pack list
entry. Program affinity means that one program will usually refer to another program when the first
program is invoked. By putting programs that refer to each other into the same pack list entry, and thereby
on the same page, extra page faults are avoided, because the programs are always in central storage
together.

Very large programs that are to be put into the link pack area should be link edited so that CSECTs that
have affinity or other CSECTs are placed within the same page. The linkedit ORDER statement can be
used to group CSECTs into pages. This process will accomplish the same goal as the pack list entries,
because page faults during execution will be reduced.7

Note: An installation can create one or more IEAPAKxx parmlib members, as needed. The system uses
the IEAPAK00 member (if it exists) if PAK=xx is not included in the IEASYSxx parmlib member or is
not specified by the operator. However, initialization continues whether or not there is an IEAPAK00
or IEAPAKxx member.

Parameter in IEASYSxx (or supplied by the operator):

PAK={aa }
{(aa,bb,...[,L])}
{(,L) }

The two characters (A-Z, 0-9, @, #, or $), represented by aa (or bb, etc.), are appended to IEAPAK to
form the name of the IEAPAKxx parmlib member(s). If the ‘L’ option is specified, the system displays the
contents of the IEAPAKxx member(s) at the operator’s console when the system processes the
member(s).

Syntax rules for IEAPAKxx
The following rules apply to the creation of IEAPAKxx:

7. The modules either execute concurrently or call each other.

© Copyright IBM Corp. 1991, 2002 319

v The member consists of “groups” or entries containing load module names. Each group is enclosed in
parentheses. For example: (IGG019CM,IGG019CN,IGG019CO,IGG019CP,IGG019CR).

v All modules in a group must have the same residence mode (RMODE).

v Separate modules within each group by commas.

v Separate each group from the next by a comma after the closing parenthesis.

v Do not use alias module names. The system processes only major names.

v All named modules must be refreshable because LPA modules must have this attribute.

v On a line, data entered after the last group or load module name and after the optional comma
continuation character is treated as a comment and ignored.

v Data records entered after the last data line are treated as comments and ignored.

IBM-supplied default for IEAPAKxx
None.

Statements/parameters for IEAPAKxx
Not applicable.

IEAPAKxx

320 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 44. IEASLPxx (SLIP commands)

Use IEASLPxx to contain SLIP commands. The commands can span multiple lines, and the system
processes the commands in order.

It is recommended that you move any SLIP commands in the COMMNDxx and IEACMDxx parmlib
members into a IEASLPxx parmlib member. By using IEASLPxx to contain your SLIP commands, you
avoid restrictions found in other parmlib members. For example:
v IEASLPxx supports multiple-line commands; IEACMD00 does not.
v IEASLPxx does not require any special command syntax; IEACMD00 does.

If you move SLIP commands from COMMNDxx and IEACMDxx to IEASLPxx, you must replace the
commands in COMMNDxx and IEACMDxx with the following line:

COM=’SET SLIP=xx’

where xx is the ID of the IEASLPxx member to be used.

See the descriptions of the COMMNDxx and IEACMDxx parmlib members for related information.

Notes:

1. For an SVC dump suppressed by a SLIP command with the action of NODUMP or NOSVCD, a
LOGREC data set entry will contain a code indicating the reason for the suppression. For an ABEND
dump suppressed by a SLIP command with the action of NODUMP, NOSYSU, NOSYSA, or NOSYSM,
message IEA848I will indicate the reason for the suppression.

2. If a program loop causes an “out-of-space” abnormal termination (as in abend code B37) and you want
a dump, specify a SYSABEND DD statement or a SYSMDUMP DD statement.

3. If you enter multiple non-ignore SLIP PER traps in IEASLPxx, only the first non-ignore SLIP PER trap
will be enabled (if there were no enabled SLIP PER traps set prior to setting the traps out of
IEASLPxx). The remaining non-ignore SLIP PER traps will be set, but will be disabled. The first
non-ignore SLIP PER trap will be set but disabled if there was an enabled SLIP PER trap set prior to
setting the traps out of IEASLPxx.

4. For a description of the SLIP command, see z/OS MVS System Commands.

Parameter in IEASYSxx (or supplied by the operator):
SET SLIP=xx

The two alphanumeric characters (xx) indicate the IEASLPxx member that contains the command SLIP
processing to use.

Syntax rules for IEASLPxx
The following rules apply to the creation of IEASLPxx:

v Begin each command on a new line.

v Data, including comments, must be contained in columns 1-71; the system ignores columns 72-80.

v Comments must begin with an asterisk “*” in column one.

v Enter the SLIP commands as you would enter them on the operator’s console.

v Do not enclose the SLIP commands with double or single quotes or extra keywords.

v You may code multiple lines to specify a SLIP command.

v After the SET, MOD, or DEL keyword, the first blank ends the SLIP processing for that line. The system
ignores all subsequent characters on that line.

© Copyright IBM Corp. 1991, 2002 321

The following is an example of a SLIP command within an IEASLPxx member:
SLIP SET,C=C06,

A=WAIT,END

IBM-supplied default for IEASLPxx
IBM supplies member IEASLP00 in SYS1.PARMLIB. IEASLP00 contains IBM-supplied SLIP commands to
suppress dumps that are considered unneeded because the system provides information (such as a
message) that is normally sufficient for problem determination. For selected abend codes, the SLIP
commands in IEASLP00 suppress either all dumps or specific types of dumps.

IEASLP00 contains the following commands:
SLIP SET,C=013,ID=X013,A=NOSVCD,J=JES2,END
SLIP SET,C=028,ID=X028,A=NOSVCD,END
SLIP SET,C=052,A=NODUMP,J=CATALOG,END
SLIP SET,C=058,ID=X058,A=NODUMP,DATA=(15R,EQ,4,OR,15R,EQ,8,OR,15R,EQ,C,OR,15R,

EQ,10,OR,15R,EQ,2C,OR,15R,EQ,30,OR,15R,EQ,3C),END
SLIP SET,C=066,ID=X066,A=NODUMP,J=CATALOG,END
SLIP SET,C=070,A=NODUMP,J=CATALOG,END
SLIP SET,C=071,SDATA=(ALLNUC,SQA,CSA,LPA,LSQA,ALLPSA,RGN,SUM,TRT),REASON=30,ID=S071,
A=SVCD,END
SLIP SET,C=071,SDATA=(ALLNUC,SQA,CSA,LPA,LSQA,ALLPSA,RGN,SUM,TRT),REASON=20,ID=SS71,
A=SVCD,END
SLIP SET,C=073,ID=X073,A=NODUMP,J=CATALOG,END
SLIP SET,C=0DX,ID=X0DX,A=NODUMP,J=CATALOG,END
SLIP SET,C=0E7,ID=X0E7,A=NOSVCD,END
SLIP SET,C=0F3,ID=X0F3,A=NODUMP,END
SLIP SET,C=13E,ID=X13E,A=NODUMP,END
SLIP SET,C=1C5,RE=00090004,ID=X1C5,A=NODUMP,END
SLIP SET,C=222,ID=X222,A=NODUMP,END
SLIP SET,C=322,ID=X322,A=NODUMP,END
SLIP SET,C=33E,ID=X33E,A=NODUMP,END
SLIP SET,C=3C4,REASON=1A,ID=S3C4,A=SVCD,END
SLIP SET,C=422,ID=X422,A=NODUMP,END
SLIP SET,C=47B,DATA=(15R,EQ,0,OR,15R,EQ,8),ID=X47B,A=NODUMP,END
SLIP SET,C=622,ID=X622,A=NODUMP,END
SLIP SET,C=71A,ID=X71A,A=NODUMP,END
SLIP SET,C=804,ID=X804,A=(NOSVCD,NOSYSU),END
SLIP SET,C=806,ID=X806,A=(NOSVCD,NOSYSU),END
SLIP SET,C=80A,ID=X80A,A=(NOSVCD,NOSYSU),END
SLIP SET,C=81A,ID=X81A,A=NODUMP,END
SLIP SET,C=91A,ID=X91A,A=NODUMP,END
SLIP SET,C=9FB,ID=X9FB,A=NOSVCD,J=JES3,END
SLIP SET,C=B37,ID=XB37,A=(NOSVCD,NOSYSU),END
SLIP SET,C=C1A,ID=XC1A,A=NODUMP,END
SLIP SET,C=D1A,ID=XD1A,A=NODUMP,END
SLIP SET,C=D37,ID=XD37,A=(NOSVCD,NOSYSU),END
Slip SET,C=E37,ID=XE37,A=(NOSVCD,NOSYSU),END
SLIP SET,C=EC6,RE=0000FFXX,ID=XEC6,A=NODUMP,END
SLIP SET,C=EC6,RE=0000FDXX,ID=XXC6,A=NOSVCD,END

Notes:

1. IEASLP00 is read during system initialization because the IEACMD00 parmlib member contains the
command SET SLIP=00. As a result, the SLIP traps specified in IEASLP00 member are in effect at
IPL-time.

2. An installation that does not currently use SLIP commands should understand that the execution of
IEASLP00 causes the system to allocate fixed storage for the SLIP processing modules and for the
control blocks that define the SLIP traps supplied by IBM in IEASLP00. Approximately 30K bytes of
storage will be fixed in the extended LPA for the SLIP processing modules and approximately 1K bytes
of storage will be fixed in the extended SQA for the control blocks needed by the SLIP traps.

3. If you use a name other than JES2 or JES3 to start the job entry subsystem, the SLIP commands for
abend codes X'013' and X'9FB' have no effect. Therefore, to suppress SVC dumps for these abend

IEASLPxx

322 z/OS V1R4.0 MVS Initialization and Tuning Reference

codes when you are not using JES2 or JES3 as the name of your job entry subsystem, place your
own SLIP command in IEASLPxx. Specify NOSVCD on the ACTION=keyword (A=) and the name of
your job entry subsystem on the JOBNAME=keyword (J=).

Using system commands
When you issue SET SLIP=xx, the system processes all of the commands in IEASLPxx.

To view the status of the SLIP traps, use the DISPLAY SLIP command. For more information on the SET
and DISPLAY commands, see z/OS MVS System Commands.

IEASLPxx

Chapter 44. IEASLPxx (SLIP commands) 323

324 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 45. IEASVCxx (installation-defined SVCs)

Use IEASVCxx to define your installation’s own SVCs, which can be numbered from 200 through 255.

During system initialization, the system reads the IEASVCxx members, and places any SVCs you
specified in the SVC table.

To dynamically replace or delete SVC table entries use the SVCUPDTE macro. For more information, see
z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

Parameter in IEASYSxx (or entered by the operator):

The two alphanumeric characters (aa, bb, and so forth) are appended to IEASVC to form the name of the
parmlib member.

The contents of IEASVCxx appears on the operator’s console if the (,L) option is specified with either the
SVC= keyword or in response to the ‘SPECIFY SYSTEM PARAMETERS’ prompt.

Syntax rules for IEASVCxx
The following rules apply to the creation of IEASVCxx.

v Data, including comments, must appear in columns 1 through 71. Do not use columns 72-80 for data;
these columns are ignored.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v One or more blanks may precede the SVCPARM statement.

v One or more blanks may follow the SVCPARM statement.

v The system processes each statement in a member sequentially.

v If you use multiple SVCPARM statements for the same SVC number, the first valid statement is
processed. The rest are ignored.

v SVCNUM, REPLACE, and TYPE are required parameters for every statement.

v SVCNUM, REPLACE, and TYPE are positional parameters. SVCNUM must be coded as the first
parameter with REPLACE following as the second parameter, and TYPE as the third parameter.

Syntax examples of IEASVCxx
The following example shows the coding for a type 1 and type 3 SVC:
SVCPARM 245,REPLACE,TYPE(1),EPNAME(SVC245),LOCKS(CMS),APF(YES)
SVCPARM 244,REPLACE,TYPE(3),EPNAME(IGC0024D),LOCKS(LOCAL)

IBM-supplied default for IEASVCxx
None.

SVC= {aa }
{(aa,bb,...[,L])}

© Copyright IBM Corp. 1991, 2002 325

Statements/parameters for IEASVCxx
SVCPARM(svcnum)

Specifies the number of the installation-supplied SVC routine (a decimal number from 200 to 255).
When a program issues an SVC instruction that contains this number, the system invokes the
corresponding SVC routine.
,REPLACE

Specifies that an SVC table entry is to be updated.
,TYPE(typenum)

Specifies the SVC type (1, 2, 3, 4, or 6) being defined.
,EPNAME(epname)

Specifies the entry point name of the SVC routine.

EPNAME, if specified, must be one of the following, depending on the SVC type:

v For SVC types 3 and 4, EPNAME must be the load module name (or alias) of a load module in
the LPA.

v For SVC types 1, 2, and 6, EPNAME must be the entry point name (not the load module name,
unless it is the same name) of a module in the nucleus region. The module must have been
link-edited directly into the nucleus region, or added to the nucleus region through the NMLDEF
macro or NUCLSTx x parmlib member.

For information about the NMLDEF macro, see z/OS MVS Programming: Authorized Assembler
Services Guide. For information about the NUCLSTxx parmlib member, see Chapter 63,
“NUCLSTxx (Customizing the nucleus region)” on page 497.

The EPNAME parameter is optional, unless you want to specify an EPNAME value other than the
IBM default SVC naming convention.

The default naming convention for routines for SVC types 1, 2, and 6 is IGCnnn, where nnn is the
decimal number of the SVC routine.

The default naming convention for SVC routines for SVC types 3 and 4 is IGC00nnn, where nnn is
the signed decimal number of the SVC routine. Here, a signed decimal is a number that ends in
either of the following ways:

v When the last digit of the SVC routine’s load module name is a number from 1 - 9, specify an
epname that ends with the EBCDIC character (A-I) that corresponds with the last digit. For
example, the epname for a type 4 SVC 255 is IGC0025E.

v When the last digit of the SVC routine’s load module name is zero, specify for the last character
of epname, the display representation of hexadecimal C0; in EBCDIC, this is the left brace ({)
character. For example, the EPNAME for a type 4 SVC 250 is IGC0025{.

,LOCKS(lockname,lockname,...)

Specifies the name of the system locks this SVC requires. lockname can be either LOCAL or
CMS.

Observe the following conventions for the LOCKS parameter:

v You do not need to specify the LOCAL lock for SVC type 1; the LOCAL lock is automatically
obtained for SVC type 1.

IEASVCxx

326 z/OS V1R4.0 MVS Initialization and Tuning Reference

v If you specify the CMS lock for SVC types 2, 3, or 4, you must also specify the LOCAL lock.

v You cannot specify a global spin lock for SVC types 3 or 4.

v You cannot specify locks for SVC type 6.
,APF{YES}

{NO }

Specifies whether the program invoking the SVC must be authorized.

A program is considered to be authorized if it meets at least one of the following conditions:
v Runs in supervisor state
v Holds PSW key 0-7
v Resides in an APF-authorized library.

When you specify YES, the program issuing the SVC must be authorized. When you specify NO,
the program issuing the SVC can be unauthorized.

Default Value: NO
,NPRPMRT{YES}

{NO }

Specifies whether the SVC is non-preemptable (YES) or can be preempted (NO).

Default Value: NO
,AR{YES}

{NO }

Specifies whether the SVC can be issued in access register ASC mode.

Default Value: NO

IEASVCxx

Chapter 45. IEASVCxx (installation-defined SVCs) 327

IEASVCxx

328 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 46. IEASYMxx (symbol definitions and IEASYSxx
members)

IEASYMxx contains statements that:

v Define static system symbols

v Specify the IEASYSxx parmlib members that the system is to use.

You can use the HWNAME, LPARNAME, and VMUSERID parameters to limit the scope of statements in
IEASYMxx. When you specify one or more of those parameters, the parameters on that statement apply
only to the system that HWNAME, LPARNAME, or VMUSERID identify.

When the system finishes processing IEASYMxx, the system displays the system symbols that are defined
in IEASYMxx and their associated substitution texts in message IEA009I.

Before you code IEASYMxx
Read Chapter 2, “Sharing parmlib definitions” on page 25.

Parameter in LOADxx:
To use IEASYMxx, append the 2-character identifier (aa, bb, and so forth) to the IEASYM parameter in the
LOADxx parmlib member. Multiple members can be specified. If you specify a parameter in more than one
IEASYMxx member, the system uses the value in the last member to be processed and ignores the values
in preceding members.

See Chapter 58, “LOADxx (system configuration data sets)” on page 451 for information about specifying
the IEASYM parameter in LOADxx.

Performance implications
None.

Syntax rules for IEASYMxx
The following syntax rules apply to IEASYMxx:

v Use columns 1 through 71. Do not use columns 72 - 80 for data; these columns are ignored.

v Blank lines are permitted.

v Delimiters are not required; the end of a physical record is considered to be a valid delimiter. However,
you may optionally place a delimiter (space or comma) between a statement and a parameter.

v Multiple occurrences of a delimiter are accepted but treated as one.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

v A statement can be continued even though there is no explicit continuation character.

v Do not use nested comments in this parmlib member.

v A statement type consists of 1-10 characters.

v A statement type must be the first data item on a record.

v A statement must begin with a valid statement type followed by at least one blank.

v Each parameter must consist of 1-10 characters (parameters cannot span more than one record).

v A logical record (a record that has the statement type and comments removed) cannot exceed 4
kilobytes (which is 56 - 72 character physical records).

© Copyright IBM Corp. 1991, 2002 329

v You can use substrings of previously defined system symbols in definitions for other system symbols.
See “Step 1. Know the rules for using system symbols in parmlib” on page 42 for more information
about substringing system symbols.

Syntax format of IEASYMxx

IBM-supplied default for IEASYMxx
None.

Statements/parameters for IEASYMxx
SYSDEF

Defines the following for one or more MVS systems in a multisystem environment:
v System symbols and their associated substitution texts
v The suffixes of the IEASYSxx parmlib members to be used.

Each SYSDEF statement can contain:

Filter Parameters
The HWNAME, LPARNAME, and VMUSERID parameters specify the system to which one or
more value parameters (see description below) apply:

v A local SYSDEF statement contains at least one filter parameter; in other words, HWNAME,
LPARNAME, or VMUSERID are present on the statement. The value parameters on a local
SYSDEF statement apply only to the system that HWNAME, LPARNAME, or VMUSERID
identifies.

v A global SYSDEF statement contains no filter parameters; in other words, HWNAME,
LPARNAME, or VMUSERID are not present on the statement. The value parameters on a
global SYSDEF statement apply to all systems that use IEASYMxx.

Value Parameters
The SYSPARM, SYSNAME, SYSCLONE, and SYMDEF parameters specify the static system
symbols and IEASYSxx members that a system is to use. If one or more filter parameters
precedes a value parameter, value defined on that parameter applies only to the system identified
by the filter parameters. If a filter parameter does not precede a value parameter, the value
parameter applies to all systems that use IEASYMxx.

If two SYSDEF statements define the same symbol for the same system, the last statement processed
overrides any previous definitions of that symbol. For example, suppose you code a SYSDEF
statement at the beginning of IEASYMxx that defines a system symbol for all systems. Later in
IEASYMxx, you code another SYSDEF statement that defines the same system symbol for a specific
system identified on the HWNAME parameter. The second definition, identified by HWNAME, overrides
the first.

HWNAME(processor-name)
The name (identifier) of a central processor complex (CPC), as defined to hardware configuration
definition (HCD).

SYSDEF [HWNAME(processor-name)]
[LPARNAME(lpar-name)]
[VMUSERID(vm-userid)]

[SYSPARM(aa[,bb...][,L])]
[SYSNAME(system-name)]
[SYSCLONE(system-clone)]
[SYMDEF(&symbol=’sub-text’)]

IEASYMxx

330 z/OS V1R4.0 MVS Initialization and Tuning Reference

If a processor does not have a hardware name, and you define the processor in the same
IEASYMxx member that you define other processors with hardware names, specify HWNAME() to
indicate that a set of definitions is to apply only to the processor with no hardware name.

Value Range: The processor-name is the 1- through 8-character name of the processor on which
the system is running. Valid characters are alphanumeric (A-Z and 0-9) and national (@,#,$). The
first character must be alphabetic (A-Z) or national (@,#,$).

Default: Match on any hardware name.

Example:
HWNAME(C1) /* First test processor */

HWNAME() /* Definitions apply only to processors */
/* to which no hardware name is defined */

Note: To use this parameter, or accept its default value, ensure that the processor on which MVS
is running supports dynamic I/O configuration, and that the I/O configuration data set
(IOCDS) was built using hardware configuration definition (HCD). See the section on
dynamic I/O configuration in z/OS and z/OS.e Planning for Installation for a list of
processors that support dynamic I/O configuration.

LPARNAME(lpar-name)
The name of a logical partition that is defined to a processor, which is one of the following:

v The partition name specified on the “Add Partition” panel in HCD (see z/OS HCD User’s Guide
for more information).

v The partition name specified on the RESOURCE or CHPID statement that is input to the I/O
configuration program (IOCP).

A value of LPARNAME() indicates that a set of definitions applies to a processor that is not
initialized in LPAR mode. For example, if you run a processor sometimes in LPAR mode and
sometimes in basic mode, and you define separate symbols for each mode in the same
IEASYMxx parmlib member, specify LPARNAME() to indicate that the system is to process a set
of definitions only when running in basic mode.

Value Range: The lpar-name is the 1- through 8-character name of a valid logical partition. Valid
characters are alphanumeric (A-Z and 0-9) and national (@,#,$). The first character must be
alphabetic (A-Z) or national (@,#,$). Do not specify an lpar-name of all blanks.

Default: Match on any LPAR name.

Examples:
LPARNAME(TEST1) /* First test system */

LPARNAME() /* Processor is running */
/* in non-LPAR (basic) mode */

VMUSERID(vm-userid)
The userid of a Virtual Machine/Enterprise Systems Architecture (VM/ESA) system under which an
MVS image is running as a guest. For information on running MVS as a VM guest, see VM/ESA
Running Guest Operating Systems.

If you run a processor sometimes as a guest under VM and sometimes not, and you define both
instances in the same IEASYMxx parmlib member, specify VMUSERID() to indicate that the system is
to process a set of definitions only when it is not running as a guest under VM.

Note: If a system is identified by a VM userid that is not a valid system name, the system prompts the
operator to specify a valid name for the system.

IEASYMxx

Chapter 46. IEASYMxx (symbol definitions and IEASYSxx members) 331

Value Range: The vm-userid is a 1- through 8-character name of a valid VM system. Valid characters
are alphanumeric (A-Z and 0-9) and national (@,#,$).

Default: Match on any VM userid.

Example:
VMUSERID(AUTOLOG1) /* VM system of which MVS is a guest */

VMUSERID() /* Process a set a definitions only when */
/* not running as a guest under VM */

SYSPARM(aa[,bb...][,L])
The suffixes of the IEASYSxx parmlib members to be used when this SYSDEF statement is selected.

To display the contents of IEASYSxx at the operator console when the system processes each
member, specify ,L anywhere after the first suffix and enclose the values in parentheses. For example,
specify (01,L) on SYSPARM to tell the system to process IEASYS01 and display the contents of that
member at the operator console.

Note: If IEASYSxx members are specified in other locations (such as the LOADxx parmlib member),
the system either concatenates or overrides the members based on an established method.
See “Step 2. Determine where to specify system parameters” on page 33 for more information.

Value Range: aa and bb are 1- through 2-character suffixes of a valid IEASYSxx parmlib members.
Valid characters are alphanumeric (A-Z and 0-9) and national (@,#,$). Note: Neither static nor
dynamic system symbols are accepted.

Default: None. If you omit the SYSPARM parameter, the system uses the default member IEASYS00,
the suffixes specified on the SYSPARM parameter in the LOADxx parmlib member, or the suffixes
specified by the operator in response to the SPECIFY SYSTEM PARAMETERS prompt.

Example:
SYSPARM(00,01) /* IEASYSxx parmlib members 00 and 01 */

SYSNAME(system-name)
The name to be assigned to this MVS system. The system name is also the substitution text for the
&SYSNAME system symbol. The value on this parameter can be overridden by alternate parameters
specified by the operator in response to the SPECIFY SYSTEMS PARAMETERS prompt.

Value Range: The system-name is a 1- through 8-character name for an MVS system. Valid
characters are alphanumeric (A-Z and 0-9) and national (@,#,$). Static system symbols can be used
as long as the values substituted for the symbols are in the value range.

Default: For information about where to specify the system name, how the system determines which
name to use, and how the default value is chosen, see “Step 3. Determine where to specify the
system name” on page 34.

Note: MVS does not prevent two systems from having the same &SYSNAME value. If system
resources on multiple systems are defined using &SYSNAME (such as page data sets), the
results are unpredictable.

SYSCLONE(system-clone)
The value to be assigned to MVS static system system symbol &SYSCLONE; SYSCLONE is a 1 to 2
character shorthand notation for the system name.

Each system in a sysplex must specify a unique SYSCLONE value. Message IXC217I is issued if the
substitution text for the &SYSCLONE symbol is not unique in a sysplex.

See the description of the LOADxx parmlib member in this book for more information.

IEASYMxx

332 z/OS V1R4.0 MVS Initialization and Tuning Reference

Value Range: Valid characters are alphanumeric (A-Z and 0-9) and national (@,#,$). Static system
symbols can be used as long as the values substituted for the symbols are in the value range.

Default: The last two characters of the value specified on the SYSNAME parameter. This default is
equivalent to &SYSNAME(-2:2).

Examples: Using a hard-coded value:
SYSCLONE(01) /* First test system */

Using another static system symbol:
SYSNAME(S1MVS) /* Specify name for first test system */
SYSCLONE(&SYSNAME(1:2)) /* Resolves to first 2 chars in SYSNAME */

SYMDEF(&symbol=‘sub-text’)
Defines a static system symbol and its substitution text. Your installation can define at least 800 static
system symbols in addition to the system symbols that MVS provides.

Value Range: &symbol is the 1-8 character name of a system symbol that your installation defines to
the system. You can optionally specify an ending period on &symbol.

‘sub-text’ is the substitution text for the system symbol to be defined. The rules for specifying sub-text
are:

v Enclose the text in single quotation marks (as shown in the syntax diagram).

v For &symbol, names must start with an ampersand (&). The ampersand must be followed by an
alphabetic character (A-Z). Subsequent characters of the symbol name can be any valid
alphanumeric (A-Z, 0-9) or national (@,#,$) characters. The trailing period is optional, but
recommended.

For ‘sub-text’, there are no restrictions on the types of characters that can be used.

v The substitution text can contain other static system symbols (or substrings of another static system
symbols); do not specify dynamic system symbols in the substitution text.

v The substitution text can be a null value (for example, SYMDEF(&VAR1=’’) and
SYMDEF(&VAR2=’&VAR1’) are both valid.)

v The length of the resolved substitution text cannot exceed the length of &symbol, including the
ampersand on &symbol and excluding the single quotation marks on ‘sub-text’. For example,
although the length of sub-text exceeds the length of the symbol &FRANKIE in the following
example, the symbols contained in sub-text resolve to 1268ABC, which is a valid substitution text:

SYMDEF(&MARYJOE.=’1234568’)
SYMDEF(&FRANKIE.=’&MARYJOE(1:2).&MARYJOE(-2:2).ABC’)

However, the definition &JOHN=‘JOHNDOE’ is not valid because the resolved substitution text
JOHNDOE contains more characters than the system symbol &JOHN.

Note: Do not specify blanks in SYMDEF statements, except in sub-text. For example,
SYMDEF(&AB=‘AB’) and SYMDEF(&A. =’A’) are not valid. SYMDEF(&AB=‘A B’) is valid.

Default: None. If you omit the SYMDEF parameter, the specified MVS image does not use
installation-defined static system symbols.

The following are examples of IEASYMxx usage:

Example 1: Define a global system symbol, called &LOGSYM, to be used on all systems. The value for
the symbol will be different on different systems. First the IEASYMxx member is shown, then the value for
&LOGSYM on various systems is listed.
SYSDEF

SYMDEF(&LOGSYM=’LOG1’) /* Define &LOGSYM for all systems */
SYMDEF(&ABCDEF=’OWL’) /* Define &ABCDEF for all systems */
SYSPARM(BB) /* Define SYSPARM for all systems */

IEASYMxx

Chapter 46. IEASYMxx (symbol definitions and IEASYSxx members) 333

|
|

SYSDEF
HWNAME(T0) /* Identify a test processor */
SYMDEF(&LOGSYM=’LOGT’) /* Override global &LOGSYM only */

/* for processor T0 */
SYSDEF

LPARNAME(R1) /* Identify a runtime processor */
SYMDEF(&LOGSYM=’LOGR’) /* Override global &LOGSYM only */

/* for LPAR R1 */

SYSDEF
HWNAME(T0) LPARNAME() /* Identify a non-LPAR processor */
SYMDEF(&LOGSYM=’LOGN’) /* Override global &LOGSYM only */

/* for T0 in non-LPAR mode */

For this system: &LOGSYM will have this value:
HWNAME LPARNAME
D0 not LPAR mode LOG1 (only first SYSDEF matched)
T0 R1 LOGR (1st, 2nd and 3rd SYSDEF matched)
T0 R2 LOGT (1st and 2nd SYSDEF matched)
T0 not LPAR mode LOGN (1st and 4th SYSDEF matched)
none R1 LOGR (1st and 3rd SYSDEF matched)

Example 2: Define a symbol using a previously defined symbol and substringing.
SYMDEF(&SYMBOL2=’((’) /* &SYMBOL2 is assigned ((*/
SYMDEF(&SYMBOL3=’3,3,3 ’) /* &SYMBOL3 is assigned 3,3,3 */

.
SYMDEF(&SYMBOL1=’&SYMBOL2(1:2).&SYMBOL3(1:1).))’)

/* &SYMBOL1 resolves to the first two characters in */
/* &SYMBOL2, the first character in &SYMBOL3, and the */
/* two hard-coded right parentheses. &SYMBOL1=((3)) */

Example 3: Use the system-provided symbol to set the initial IPL VOLSER and also use substrings to
define additional IPL volumes. For this example, &SYSR1 = RESA01.
SYSDEF
SYMDEF(&SYSR2=’&SYSR1(1:4).02’) /*SYSR2 resolves to the first */

/*four characters in SYSR1 and */
/*the hard-coded 02. SYSR2=RESA02 */

SYMDEF(&SYSR3=’&SYSR1(1:4).03’) /*SYSR3 resolves to the first */
/*four characters in SYSR1 and */
/*the hard-coded 03. SYSR3=RESA03 */

IEASYMxx

334 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 47. IEASYSxx (system parameter list)

You can specify system parameters using a combination of IEASYSxx parmlib members and operator
responses to the SPECIFY SYSTEM PARAMETERS message. You can place system parameters in the
IEASYS00 member or in one or more alternate system parameter lists (IEASYSxx) to provide a fast
initialization that requires little or no operator intervention.

IEASYS00 is the most likely place to put installation defaults or parameters that will not change from IPL
to IPL. The system programmer can add to or modify parameters in IEASYS00. The alternate IEASYSxx
members, in contrast, should contain parameters that are subject to change, possibly from one work shift
to another.

Use of the IEASYS00 or IEASYSxx members can minimize operator intervention at IPL. Because
IEASYS00 is read automatically, the operator can respond to SPECIFY SYSTEM PARAMETERS with
ENTER or “U” and need not enter parameters unless an error occurs and prompting ensues.

The use of system parameter lists in parmlib offers two main advantages:

v The parameter lists shorten and simplify the IPL process by allowing the installation to preselect system
parameters.

v The parameter lists provide flexibility in the choice of system parameters.

You can do one of the following to specify a parameter list other than IEASYS00 for an IPL:

v Have the operator specify the suffix of an alternate IEASYSxx member by replying SYSP=xx in
response to the SPECIFY SYSTEM PARAMETERS message (see “SYSP” on page 338 for more
information).

v Specify one or more suffixes of alternate IEASYSxx members on the SYSPARM parameter in the
LOADxx or IEASYMxx parmlib member.

For further information about IEASYSxx parmlib members and system initialization, see “Step 2. Determine
where to specify system parameters” on page 33.

Overview of IEASYSxx parameters
The following list briefly defines all system parameters that can be placed in an IEASYSxx or IEASYS00
member (or specified by the operator). Detailed discussions of these parameters are provided in later
sections of the IEASYSxx topic.

Note: PAGE and GRS are the only mandatory parameters that have no default. They must be specified.

The GRSRNL parameter is mandatory when the GRS= parameter is specified as JOIN, TRYJOIN, START,
or STAR. The GRSRNL parameter is ignored when GRS=NONE.

Table 15. Overview of IEASYSxx Parameters
Parameter Use of the Parameter
ALLOC Completes the names of one or more parmlib members (ALLOCxx) that describe installation

defaults for allocation parameters.
APF Names the parmlib member (IEAAPFxx) that contains authorized library names. IEAAPFxx can

specify only a static APF list, which can only be updated at IPL and contain a maximum of 255
entries.

CLOCK Completes the name of the parmlib member (CLOCKxx) that prompts the operator to initialize
the TOD clock during NIP, and specifies the difference between the local time and Greenwich
Mean Time (GMT).

© Copyright IBM Corp. 1991, 2002 335

Table 15. Overview of IEASYSxx Parameters (continued)
Parameter Use of the Parameter
CLPA Causes NIP to load the link pack area with the modules contained in the LPALST concatenation.

Also, CLPA purges VIO data set pages that were used in the previously initialized system. Thus,
CLPA implies CVIO.

CMB Specifies the I/O device classes for which measurement data is to be collected, in addition to the
DASD and tape device classes.

CMD Completes the name of the parmlib member (COMMNDxx) that contains commands to be issued
internally during master scheduler initialization.

CON Completes the name of the parmlib member (CONSOLxx) that centralizes control of the console
configuration for your installation. CONSOLxx also contains the initialization values for
communication tasks, the characteristics for the hard-copy log, and default routing codes for
messages that do not have routing information. The CON parameter is also used to allow a
system with both JES2 and any level of JES3 installed to run with JES2. This allows function that
is incompatible with JES3 to operate successfully.

COUPLE Completes the name of the parmlib member (COUPLExx) that describes the sysplex
environment for the initializing system.

CSA Specifies the sizes of the virtual common service area and extended common service area.
CSCBLOC Determines the location of the CSCB control block chain.
CVIO Deletes previously used VIO data set pages from the paging space. This parameter is

automatically included when CLPA is specified.
DEVSUP Completes the name if the parmlib member (DEVSUPxx) that specifies installation defaults for

device support options.
DIAG Completes the names of one or more parmlib members (DIAGxx) that specify whether the

CSA/ECSA or SQA/ESQA tracking functions are turned on or off, whether
GETMAIN/FREEMAIN/STORAGE (GFS) trace is turned on or off, and the trace records to be
included in GFS trace output.

DUMP Specifies whether SYS1.DUMP data sets for SVC dump are to be on direct access device(s).
This parameter can also indicate that no SYS1.DUMP data sets are to be made available for
SVC dumps.

EXIT Completes the name of one or more parmlib members (EXITxx) that contains the entry points
and names of allocation installation exits.

FIX Completes the name of one or more parmlib members (IEAFIXxx) that contain names of
modules that are to be placed in a fixed LPA that lasts for the duration of the IPL.

GRS Specifies whether the system is to participate in a global resource serialization complex.
GRSCNF Completes the name of the parmlib member (GRSCNFxx) that contains the information needed

to initialize a system that is to be part of a global resource serialization complex.
GRSRNL Completes the name of one or more parmlib members (GRSRNLxx) that contain resource name

lists (RNLs) or specifies that no RNLs are to be used in the complex.
ICS Completes the name of the parmlib member (IEAICSxx) that contains the installation control

specification. The installation control specification is used by the system resources manager
(SRM) to assign performance groups.

IKJTSO Completes the name of the parmlib member (IKJTSOxx) that contains the TSO/E settings for the
system.

IOS Completes the name of the parmlib member (IECIOSxx) that contains missing interrupt handler
(MIH) statements used to modify MIH intervals and HOTIO statements used to modify recovery
actions specified in the hot I/O detection table (HIDT).

IPS Completes the name of the parmlib member (IEAIPSxx) from which the system resources
manager (SRM) will obtain the installation performance specification. The absence of an IPS=
indicates that the system is to be IPLed in workload management goal mode.

LNK Completes the name of one or more parmlib members (LNKLSTxx) that contain names of data
sets that are to be concatenated to SYS1.LINKLIB to form the LNKLST concatenation. You can
also use PROG to specify the PROGxx member that defines the LNKLST concatenation.

LICENSE Specifies whether this is a z/OS or a z/OS.e system.
LNKAUTH Specifies whether all data sets in the LNKLST concatenation are to be treated as APF authorized

or whether only those that are named in the APF table are to be treated as APF authorized.
LOGCLS Specifies the JES output class for the log data sets.

IEASYSxx

336 z/OS V1R4.0 MVS Initialization and Tuning Reference

||

Table 15. Overview of IEASYSxx Parameters (continued)
Parameter Use of the Parameter
LOGLMT Specifies the maximum number of WTLs (messages) for a log data set. When the limit is

reached, the data set is scheduled for sysout processing.
LOGREC Specifies the logrec recording medium for error recording.
LPA Completes the name of one or more parmlib members (LPALSTxx) that contain names of data

sets that are to be concatenated to SYS1.LPALIB for building the pageable LPA (PLPA and
extended PLPA).

MAXCAD Specifies the maximum number of SCOPE=COMMON data spaces to be allowed during an IPL.
MAXUSER Specifies a value that the system uses (along with the RSVSTRT and RSVNONR parameter

values) to limit the number of jobs and started tasks that the system can run concurrently during
a given IPL.

MLPA Completes the name of one or more parmlib members (IEALPAxx) that names modules that are
to be placed in a modified LPA that lasts for the duration of the IPL.

MSTRJCL Completes the name of the MSTJCLxx data set that contains the JCL used to start the master
scheduler address space.

NONVIO Designates one or more local page data sets that are not to be used for VIO paging.
NSYSLX Specifies the number of linkage indexes (LXs), in addition to those in the system function table,

to be reserved for system linkage indexes (LXs).
OMVS Specifies the parmlib member or members (BPXPRMxx) to use to locate the parmlib statements

to configure the z/OS UNIX kernel.
OPI Indicates whether the operator is to be allowed to override particular parameters, or all

parameters, contained in IEASYSxx.
OPT Completes the name of a parmlib member (IEAOPTxx) that contains parameters to be used by

various algorithms of the system resources manager.
PAGE Gives the names of new page data sets to be used as additions to or replacements for existing

page data sets. The first-named data set is used for the PLPA and extended PLPA pages. The
second-named data set is used for MLPA and CSA. The third and all subsequently named data
sets are used as local page data sets. Replacement is possible only if the parameter is placed in
IEASYSxx, and the operator selects this member by entering SYSP=xx. The PAGE parameter,
when specified by the operator, can only add temporarily (until the next cold or quick start) to a
parmlib page data set list.

PAGTOTL Specifies the total number of page data sets that can be allocated for the life of the IPL.
PAK Completes the name of one or more parmlib members (IEAPAKxx) that contain groups of names

of modules in the LPALST concatenation that are processed together or in sequence.
PLEXCFG Specifies the sysplex configuration into which the system is allowed to IPL.
PROD Completes the name of one or more parmlib members (IFAPRDxx) that define the enablement

policy for products or product features that can be dynamically enabled under OS/390.
PROG Completes the name of one or more parmlib members (PROGxx) that specify the format and

contents of the APF-authorized library list. PROGxx can specify either a static or dynamic APF
list. A dynamic format allows users to update the APF list at any time during normal processing
or at IPL. You can specify as many APF-authorized libraries as you need in a dynamic APF list;
there is no system-imposed maximum number. PROGxx also contains statements that control
the use of installation exits and installation exit routines.

You can also use PROGxx instead of LNKLSTxx to define the LNKLST concatenation and
activate it at IPL.

RDE Specifies that the reliability data extractor feature is included. For information on RDE, see z/OS
MVS Diagnosis: Tools and Service Aids.

REAL Specifies the maximum amount of central storage, in 1K blocks, that can be allocated for
concurrent ADDRSPC=REAL jobs.

RER Specifies that the reduced error recovery procedures for magnetic tapes are in effect if they are
included on the OPTCD parameter of a data definition (DD) statement or on the DCB macro
instruction. If the DD statement or the DCB macro does not specify the reduced error recovery
procedures, all requests for them are ignored.

RSU Specifies the number of central storage units to be made available for storage reconfiguration
(dividing storage into logical partitions under PR/SM).

RSVNONR Specifies the number of ASVT entries to be reserved for replacing those entries marked
non-reusable for the duration of an IPL.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 337

Table 15. Overview of IEASYSxx Parameters (continued)
Parameter Use of the Parameter
RSVSTRT Specifies the number of address space vector table (ASVT) entries to be reserved for address

spaces created in response to a START command.
RTLS Specifies the parmlib member (CSVRTLxx) from which the Runtime Library Service is configured.
SCH Specifies a parmlib member (SCHEDxx) from which the master scheduler will obtain its

parameters. This member centralizes control over the size of the master trace table, the program
properties table (PPT), and the completion codes that are eligible for automatic restart.

SMF Specifies a parmlib member (SMFPRMxx) from which SMF will obtain its parameters.
SMS Specifies a parmlib member (IGDSMSxx) from which SMS will obtain its parameters when the

system is initialized with partitioned data set extended (PDSE) support.
SQA Specifies the size of the virtual system queue area to be created at IPL (in addition to the

system’s minimum virtual SQA and extended SQA).
SSN Completes the name of the parmlib member IEFSSNxx, which contains the information to be

used in identifying subsystems that are to be initialized.
SVC Completes the name of the parmlib member IEASVCxx, which contains the information an

installation supplies to define its own SVCs. NIP processing places these SVCs in the SVC table.
SYSNAME Specifies the name of the system being initialized. The name specified here is used by the

system in various ways. For example,

v In a multi-system global resource serialization complex, SYSNAME identifies each system in
the complex.

v The system also uses this value to uniquely identify the originating system in messages in the
multiple console support (MCS) hard-copy log and in the display created by the DISPLAY R
command.

v The value specified can be used in the IGDDFPKG member, to identify a system for which a
particular DFSMS/MVS offering level is licensed.

SYSP Specifies one or more alternate system parameter lists (IEASYSxx) that are to be read by NIP in
addition to IEASYS00. SYSP may be specified only by the operator.

UNI Completes the name of the parmlib member (CUNUNIxx) that contains the Unicode image name
and real storage information required to enable Unicode Conversion Services.

VAL Names one or more parmlib members (VATLSTxx) that contain “mount” and “use” attributes of
direct access devices.

VIODSN Specifies the VSAM data set name for storing information about journaled VIO data sets.
VRREGN Gives the default real-storage region size for an ADDRSPC=REAL job step that does not have a

REGION parameter in its JCL.

Changes to initialization parameters
For a list of parameters that have changed or that are no longer supported by the current level of MVS,
refer to z/OS MVS Migration.

Support for system symbols
You can specify system symbols in all parameter values in IEASYSxx except in the values for the SYSP
and OPI parameters and in specifying CLPA and OPI.

If you intend to use system symbols to represent parmlib member suffixes in IEASYSxx, be careful when
defining, in the IEASYMxx parmlib member, parentheses (such as in the case of list notation) or commas
as part of the substitution text:

v Specify system symbols only to the right of the equals sign and before the comma in the IEASYSxx
notation.

v Specify only “balanced” parentheses in either the defined substitution text or the hard-coded values.

For example, the following notation for IEASYMxx and IEASYSxx is valid, because the left and right
parentheses both appear in the system symbol definition:

IEASYSxx

338 z/OS V1R4.0 MVS Initialization and Tuning Reference

IEASYMxx IEASYSxx
-------- --------

SYMDEF(&PAGTOTL=’(10)’) PAGTOTL=&PAGTOTL.,

The following notation is not valid, because the parentheses are split between the system symbol definition
and the hard-coded definition in IEASYSxx:

IEASYMxx IEASYSxx
-------- --------

SYMDEF(&PAGTOTL=’10)’) PAGTOTL=(&PAGTOTL.,

For more information about defining system symbols in IEASYMxx, see “Step 5. Create an IEASYMxx
parmlib member” on page 36.

Example of using system symbols in IEASYSxx: Suppose the following system symbols have the
values:

&SYSNAME = SYSA
&SYSCLONE = SA
&SYSPLEX = PX01

Then assume that you want to do the following in IEASYSxx:

1. Specify the LNKLSTxx member identified by the last two letters in the sysplex name and also
LNKLSTxx members 03 and 00.

2. Specify the CLOCKxx member identified by &SYSCLONE.

3. Specify the PROGxx member identified by the first two letters in the system name.

4. Specify a data set name for error recording that has the system name as a high-level qualifier.

Code IEASYSxx as follows:
LNK=(&SYSPLEX(-2:2).,03,00,L),
CLOCK=&SYSCLONE.,
PROG=&SYSNAME(1:2),
LOGREC=&SYSNAME..LOGREC

The values of the parameters resolve to:
LNK=(01,03,00,L),
CLOCK=SA,
PROG=SY,
LOGREC=SYSA.LOGREC

For details about how to use system symbols in parmlib, see Chapter 2, “Sharing parmlib definitions” on
page 25.

Parameter specified by the operator:

The operator specifies this parameter to specify an alternate system parameter list in addition to
IEASYS00. (See SYSP in “Statements/parameters for IEASYSxx” on page 340.)

Syntax rules for IEASYSxx
The following rules apply to the creation of IEASYSxx:

v Use columns 1 through 71 to specify parameters. The system ignores columns 72 through 80.

v A minimum IEASYSxx member can be created by specifying a blank line as the only record. Blank lines
can also be used in comments, after the last statement in the record. Otherwise, do not use blank lines
within record specifications.

SYSP=xx

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 339

v Leading blanks in records are acceptable. Therefore, a parameter need not start at column 1.

v The system considers the first record that does not end in a comma to be the end of the member and
ignores subsequent lines. You can use the remainder of the record, which contains the last parameter,
for comments, providing there is at least one blank between the last parameter and the comments. You
can also use additional lines after the last parameter for comments. Comments can only be specified in
IEASYSxx as described above.

v Enter data in uppercase characters only; the system does not recognize lowercase characters.

v Use commas to separate multiple parameters in a record, but do not leave blanks between commas
and subsequent parameters.

v Enclose multiple subparameters in parentheses. The number of subparameters is not limited.

v Indicate record continuation with a comma followed by at least one blank.

v The system ignores anything after a comma followed by one or more blanks. You can use the
remainder of the line for comments.

Syntax Example:
CON=01,MLPA=(00,01,02,03,L), USE CONSOL01, IEALPA00-03
COUPLE=&SYSCLONE, XCF SERIAL CTCS ARE DEFINED
PLEXCFG=MULTISYSTEM, TURN SYSPLEX ON
LICENSE=Z/OS, THIS IS A Z/OS SYSTEM
DIAG=01 USE DIAG01. LAST STMT; LIST ENDS HERE

/*
/*
/*

IBM-supplied default for IEASYSxx
None.

Specifying the list option for IEASYSxx parameters
Certain parameters in IEASYSxx (such as CLOCK, CON, and MLPA) allow you to specify the list option
(L). If you specify the L option, and message suppression is not active, the system writes all of the
statements read from the associated parmlib member to the operator’s console during system initialization.
If message suppression is active (the default), the system writes the list to the console log only.

To ensure that messages are not suppressed, specify an appropriate initialization message suppression
indicator (IMSI character) on the LOAD parameter. The IMSI characters that do not suppress messages
are A, C, D, M, and T.

For more information on the LOAD parameter, see the section on loading the system software in z/OS
MVS System Commands.

Statements/parameters for IEASYSxx
The IEASYSxx parameters are listed alphabetically and are individually described. These parameters may
optionally be issued by the operator, although such manual issuance would slow the IPL.

Note: “Value range”, if applicable, means the syntactically acceptable range of values, not necessarily a
range of values reasonable for function or performance. The “associated parmlib member” refers to
the parmlib member that is named by the parameter. For example, IEAAPF01 is named by the
APF=01 parameter in IEASYSxx, or entered by the operator.

ALLOC={aa }
{(aa,bb,...)}

IEASYSxx

340 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|
|
|
|
|
|

This parameter specifies the ALLOCxx members of parmlib. The two alphanumeric characters,
represented by aa (or bb, and so forth), are appended to ALLOC to form the names of the ALLOCxx
members.

The ALLOCxx parmlib members specify allocation values for the initializing system.

Value Range: Any two alphanumeric characters.

Default Value: None.

Associated Parmlib Member: ALLOCxx
APF=xx

The two characters (A-Z, 0-9, @, #, or $), represented by xx, are appended to IEAAPF to form the
name of parmlib member IEAAPFxx. This member lists the data set names and volume serial numbers
of authorized data sets. SYS1.LINKLIB and SYS1.SVCLIB are automatically included as authorized
data sets. SYS1.LPALIB is automatically authorized only for the period during system initialization.

The installation creates the default parmlib member IEAAPF00.

Note: The PROGxx parmlib member is an alternative to IEAAPFxx. If your installation decides to use
PROGxx, IBM recommends that you add the PROG=xx system parameter (see “PROG” on page 367),
remove the APF=xx system parameter from IEASYSxx, and remove APF=xx from IEASYS00. If you
specify both the PROG=xx and the APF=xx parameters, the system places into the APF list the
libraries listed in IEAAPFxx, followed by the libraries listed in the PROGxx members.

For information about the PROGxx parmlib member, see Chapter 65, “PROGxx (Authorized program
list, exits, LNKLST sets and LPA)” on page 503.

Value Range: Any two characters (A-Z, 0-9, @, #, or $).

Default Value: The system always places SYS1.LINKLIB and SYS1.SVCLIB in the APF list. If the
default for the LNKAUTH system parameter is taken (LNKAUTH=LNKLST), or specified in IEASYSxx
or by the operator, libraries in the LNKLST concatenation are also authorized when accessed as part
of the LNKLST concatenation. If a library is in the LNKLST concatenation, but is not APF authorized,
referencing this library through a JOBLIB or STEPLIB DD statement will cause the library to be
considered unauthorized for the duration of the job or step, respectively.

Associated Parmlib Member: IEAAPFxx
CLOCK={aa }

{(aa,bb...L)}

The two alphameric characters are appended to CLOCK to form the name of the CLOCKxx member
of SYS1.PARMLIB. If you specify the L option in the syntax of the CLOCKxx member, the system
writes all statements read from the CLOCKxx member to the operator’s console. The member
specifies whether to prompt the operator to set the TOD clock during system initialization or not,
provides the difference between the local time and GMT, and controls ETR usage.

Value Range: Any two alphameric characters.

Default Value: CLOCK=00

Associated Parmlib Member: CLOCKxx
CLPA (Create Link Pack Area)

(See also the MLPA parameter for temporary additions to the LPA, and the CVIO parameter for the
deletion of VIO data sets.)

This parameter causes NIP to load the LPA with all modules contained in the LPALST concatenation.
Modules listed in the specified LPA pack list member (IEAPAKxx) are packed together, preferably in

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 341

one-page groups. (See description of IEAPAKxx.) Modules not in the pack list are loaded in size order,
large modules first, then smaller modules to fill unused space.

PLPA pages are written to auxiliary storage. Only one set of PLPA pages can exist in paging space.
Modules in the LPALST concatenation must be reenterable and refreshable because the system uses
the processor’s page protection facility, which enforces read-only access to each PLPA page.

CLPA should be specified after the installation has modified a data set in the LPALST concatenation
and wants to reload the PLPA with new or changed modules.

Note: CLPA also implies CVIO, so that VIO data set pages on local page data sets are automatically
purged. (See the description of CVIO for further information.)

The CLPA parameter is not needed at the first IPL. NIP detects the cold start condition internally,
noting that the PLPA has not been loaded.

If CLPA is not specified, NIP tries to find a usable PLPA in the existing page data sets. If NIP is
successful, a quick start or a warm start occurs, and the auxiliary storage manager (ASM) obtains the
records that specify where the PLPA pages reside on auxiliary storage. It then reestablishes the
previous set of PLPA pages. The old PLPA may be reused for any number of system initializations, if
CLPA is not specified. However, page data sets that contain the last used set of PLPA pages must be
mounted. If they are not, the operator is asked to mount them. If the operator bypasses mounting,
ASM initialization requests a different page data set and forces a “cold” start. NIP then reestablishes
the PLPA as it does when CLPA is specified. In this cold start, both the previously established PLPA
and existing VIO data set pages are logically deleted from paging space.

The fixed LPA and the modified LPA, however, are not automatically reused in a quick start or a warm
start. They must be respecified. Existing VIO data set pages on local page data sets are retained in a
warm start, unless the CVIO or CLPA parameter is forced. Such pages are not retained in a quick start
or a cold start. (See the description of the CVIO parameter.)

If CLPA is specified and a set of PLPA pages already exists on a paging data set, NIP frees the
existing PLPA and updates the appropriate records to reflect the new PLPA pages on auxiliary storage.
NIP loads the LPA from the LPALST concatenation, as previously described.

IBM recommends that you have an IEASYSxx member that does not specify CLPA. This permits you
to IPL without rebuilding the PLPA if it is not possible to access your LPA data sets.

Value Range: Not applicable

Default Value: Not applicable

Associated Parmlib Member: None
CMB={option }

{(option,option[,option] . . .)}

This parameter allows the installation to specify I/O device classes for which measurement data is to
be collected, in addition to the DASD and tape device classes. (Measurement data is always collected
for DASD and tape devices.) For each I/O device to be monitored, the system needs 32 bytes of
central storage.

The channel stores measurement data in the CMB on a device basis. SRM uses the measurement
data to perform its device selection and I/O load balancing functions.

The operator is notified if the CMB parameter contains a syntax error (message IEA926I) or if there is
insufficient storage to accommodate measurement of the specified I/O device classes (message
IEA340I). In both cases, SRM will prompt for respecification of the CMB parameter. If, after

IEASYSxx

342 z/OS V1R4.0 MVS Initialization and Tuning Reference

respecification, storage is still unavailable for measurement of the optional device classes,
measurement will be done only for DASD and tape devices. Should storage also be unavailable for
measurement of DASD and tape devices, SRM marks the measurement facilities as inoperative and
informs the operator that device selection and I/O load balancing will be performed without I/O
measurement data (messages IEA966I and IEA340I).

Operand Descriptions: One or more of the following options can be specified:

UNITR
specifies unit record devices

COMM
specifies communications equipment, including the channel-to-channel adapter (CTC)

GRAPH
specifies graphics devices

CHRDR
specifies character reader devices

n specifies the sum of the number of devices that you need to measure that are not DASD or tape
or other types of devices specified using the options plus the number of devices that you plan to
dynamically add and measure. See z/OS HCD Planning for more information about specifying the
CMB parameter.

Examples of Valid CMB Statements:
CMB=UNITR
CMB=(COMM,100)
CMB=(UNITR,CHRDR,COMM,150)
CMB=50

Value Range: n is a decimal integer from 0 through 65535.

Default Value: None

Associated Parmlib Member: None
CMD={aa }

{(aa,bb...)}

The two alphanumeric characters, represented by aa (or bb, and so forth), specify one or more
COMMNDxx members of parmlib. The installation can specify multiple members. Each member can
contain automatic operator commands that the installation wants processed during master scheduler
initialization. Examples of such commands are those that start GTF and TCAM. Job entry subsystem
commands are not accepted because automatic commands are processed before the job entry
subsystem (JES2 or JES3) is started.

If the CMD parameter is not specified, the COMMND00 member is used if it exists. If COMMND00
does not exist or cannot be read, initialization continues without any internally issued commands.

Value Range: Any two alphanumeric characters.

Default Value: CMD=00

Associated Parmlib Member: COMMNDxx
CON={aa }

{(aa[,L][,NOJES3]) }
{NONE }
{(NONE[,L][,NOJES3])}
{NOJES3 }

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 343

The two alphanumeric characters (aa) are appended to CONSOL to form the name of the
installation-created CONSOLxx member of SYS1.PARMLIB.

If you specify the L option, the system lists all of the statements read from the CONSOLxx member on
the operator’s console.

If you specify NONE, the system will use all the IBM defaults for the CONSOLxx parmlib member to
bring up the system. For information about when you would want to specify CON=NONE, see z/OS
MVS Planning: Operations.

For releases before JES3 5.2.1, specify the NOJES3 option if JES3 is installed on your system, but is
not to be used. For systems that have both JES2 and JES3 installed, but run only JES2, the NOJES3
option saves you from having to remove JES3 from your system to use functions that would otherwise
be inhibited because of the presence of JES3. The NOJES3 option allows you to omit the comma
separating the REPLY id from the command text when using short form replies to responding to
system requests.

You should not use JES3 on a system for which NOJES3 has been specified. Attempts to start JES3
will result in abnormal ends.

When operating JES2 on a system with JES3 5.2.1 installed, IBM recommends the use of the
NOJES3 option to allow the comma to be omitted between the REPLY id and the command text when
using short form reply.

The NOJES3 option has no effect when specified on a system that does not have JES3 installed.

The aa or NONE specification, if used, must precede the NOJES3 option. The L option, if used, can
precede or follow the NOJES3 option. If you specify only NOJES3 on CON=, the system assumes you
wanted (NONE,NOJES3).

The NOJES3 option, if specified, remains in effect for the duration of the IPL. If you specify NOJES3
with an error, (such as CON=(aa,NOJES3) for a CONSOLxx member that does not exist, or
CON=(NONE,NOJES3) when a CONSOLxx member is required), the NOJES3 value remains in effect,
regardless of how you respond to the system’s prompt for CON=. To remove the NOJES3
specification, you must reIPL and omit the NOJES3 option when you respecify the CON= parameter.

Value Range: NONE or any two characters (A-Z, 0-9, @, #, or $) and, optionally, NOJES3.

Default Value: CON=NONE

Associated Parmlib Member: CONSOLxx
COUPLE=xx

This parameter identifies the COUPLExx parmlib member that describes the sysplex environment for
the initializing system. The two alphanumeric characters, xx, are appended to COUPLE to form the
name of the parmlib member, COUPLExx. Only one suffix can be supplied.

COUPLE=** may be specified to cause XCF to initialize the system in XCF-local mode. COUPLE=**
does not reference any actual parmlib member. Instead, it is an internal function within XCF that
allows the system to be IPLed in XCF-local mode. Specifying COUPLE=** also eliminates the need for
the sysplex name specified in LOADxx to match the sysplex name specified in COUPLExx because
COUPLE=** uses the sysplex name in LOADxx. If a sysplex name is not specified in LOADxx,
COUPLE=** substitutes a sysplex name of LOCAL.

Value Range: Any two alphanumeric characters, or two asterisks.

Default Value: COUPLE=00, causing selection of COUPLE00.

Associated Parmlib Member: COUPLExx
CSA=(a,b)

IEASYSxx

344 z/OS V1R4.0 MVS Initialization and Tuning Reference

This parameter specifies the sizes of the virtual common service area (CSA) and extended CSA. The
subparameter “a” specifies the size of the CSA, located below 16MB. The subparameter “b” specifies
the size of the extended CSA, located above 16MB.

The specified size of the CSA is subtracted from the bottom of PLPA, after the bottom PLPA address
is rounded down to the next 4KB (page) boundary. If the resulting virtual address for the bottom of the
CSA is not on a megabyte boundary, further rounding down occurs so that the bottom CSA address is
on the next megabyte boundary.

Similarly, the specified size of the extended CSA is added to the top of the extended PLPA, after the
top extended PLPA address is rounded up to the next 4K boundary. If the resulting virtual address for
the top of the extended CSA is not on a megabyte boundary, further rounding up occurs so that the
top extended CSA address is on the next megabyte boundary.

The CSA (including the extended CSA) is an address range in each address space that is used for
common system functions (functions not related to a particular address space). For example, the
system allocates buffers for LOG and SMF from the CSA.

In selecting values for the CSA parameter, understand that the system’s process of rounding to a 1MB
boundary can cause up to 1MB of storage from the private area to be allocated to the CSA. However,
consider the following:

v If the virtual storage manager runs out of SQA, it will try to obtain space from the CSA.

v A large CSA size will reserve space for future LPA growth. Such growth would be hampered if users
were allowed to obtain very large private areas. A large CSA specification effectively limits the
maximum private area that a user job can acquire.

If a shortage occurs in CSA, ECSA, SQA, or ESQA, you can use the storage tracking function to
collect information about jobs or address spaces that own storage in those areas. With that
information, you can identify jobs or address spaces that obtain an excessive amount of storage. If
those jobs or address spaces have code to free the storage when they are canceled, you might relieve
the shortage and avoid an IPL if you use an operator command to cancel those jobs or address
spaces.

When you turn the storage tracking function on, you might experience a small performance
degradation and an increase in ESQA usage. For more information about common storage tracking,
including how to turn the function on or off, see Chapter 24, “DIAGxx (Control common storage
tracking and GFS trace)” on page 233.

Note: If you allocate excessive amounts of CSA or SQA, the system generates a warning message,
and you must respecify the CSA parameter. The system also generates a warning message
when the size of the entire common area below 16MB exceeds 8MB.

Value Range: Each a value can be expressed as:

v A decimal number, n, indicating n 1KB (1024-byte) blocks. The number is 0 through 9999.

v A decimal number followed by K, nK, indicating n 1KB blocks. The number is 0 through 9999.

v A decimal number followed by M, nM, indicating n 1MB (1024*1024-byte) blocks. The number is 0
through 9.

Each b value can be expressed follows. Note that the maximum values are accepted, but not
recommended because they would result in a private region that is too small. Do not specify more
than you think you might ever need.

v A decimal number, n, indicating n 1KB blocks. The number is 0 through 2080767.

v A decimal number followed by K, nK, indicating n 1KB blocks. The number is 0 through 2080767.

v A decimal number followed by M, nM, indicating n 1MB blocks. The number is 0 through 2031.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 345

Default Range: For each subparameter, 100 through 1023KB (depending on the amount of storage
added because of rounding to a segment boundary).

Associated Parmlib Member: Not applicable.
CSCBLOC={ABOVE}

{BELOW}

This parameter determines whether the CSCB control block chain resides above or below 16
megabytes.

Value Range: Not applicable

Default Value: CSCBLOC=ABOVE

Associated Parmlib Member: None
CVIO (Clear VIO)

This parameter specifies that all VIO data set pages on auxiliary storage are to be deleted from page
space. A typical application would be the purging of VIO data set pages when the system is reIPLed
after a previous end-of-day (EOD).

Note: If you want the auxiliary storage manager (ASM) to purge and reinitialize both the VIO data set
pages and the PLPA pages, specify CLPA. CLPA always implies CVIO.

If you do not specify CVIO, a warm start IPL occurs and VIO data set pages are retained for restart
processing. (Such restart would be possible for some data sets after a temporary system failure.) ASM
reestablishes the VIO data set pages that had checkpoints set before the system failure. This action,
of course, does not ensure that the job entry subsystem will reuse these data sets.

If one or more volumes that contain VIO pages are not mounted on a warm start IPL, ASM requests
the operator to mount the missing volume(s). If the operator doesn’t mount all the requested volumes
that contain VIO pages, ASM deletes all VIO data set pages, just as if CVIO or CLPA had been
specified. The operator receives a message that indicates that CVIO has been forced.

Value Range: Not applicable

Default Value: None

Associated Parmlib Member: None
DEVSUP={aa }

{(aa,bb...)}

This parameter specifies one or more DEVSUPxx parmlib members. The two alphanumeric characters,
represented by aa (or bb, and so forth), are appended to DEVSUP to form the name of the
DEVSUPxx member(s).

The DEVSUPxx member specifies the installation default for whether data will be stored in a
compacted format on a 3480 or 3490 tape subsystem with the Improved Data Recording Capability
feature.

Value Range: Any two alphanumeric characters.

Default Value: None

Associated Parmlib Member: DEVSUPxx

IEASYSxx

346 z/OS V1R4.0 MVS Initialization and Tuning Reference

DIAG={aa }
{(aa,bb,...)}

This parameter specifies the DIAGxx member(s) of parmlib. The two alphanumeric characters,
represented by aa (or bb, and so forth), are appended to DIAG to form the names of the DIAGxx
members.

The DIAGxx parmlib member:
v Turns the common storage tracking function on or off
v Controls GFS tracing.

Value Range: Any two alphanumeric characters.

Default Value: DIAG00

Associated Parmlib Member: DIAGxx
DUMP={NO }

{DASD }
{(DASD,xx-yy)}

This parameter specifies whether SYS1.DUMP data sets on direct access device(s) are to be made
available at IPL time. SVC dump options are not included in IEASYSxx. The installation can specify
the options, if it so desires, through the CHNGDUMP operator command, either in the COMMNDxx
parmlib member or from the console.

When planning for dump data sets the installation should be aware the dump data sets can sometimes
contain privileged data. By using protected data sets (through passwords or other security methods),
the installation can limit access.

Note: You can also allow the system to create dump data sets dynamically. For details, see z/OS
MVS Diagnosis: Tools and Service Aids.

Operand Descriptions:

NO
specifies that no dump data sets will be made available for SVC dump at IPL time.

Note: Dump data sets can be specified after IPL by using the DUMPDS command or by adding
the DUMPDS command to COMMNDxx.

DASD
specifies that the all currently cataloged SYS1.DUMPnn data sets (if any), on permanently resident
direct access volumes, are to be used. The catalog will be scanned for SYS1.DUMP00 through
SYS1.DUMP99. DASD is the default if the DUMP parameter is omitted.

Note: Specifying DASD is equivalent to specifying
DUMPDS ADD,DSN=ALL

in the COMMNDxx parmlib member.

(DASD,xx-yy)
specifies that the currently cataloged SYS1.DUMPnn data sets (if any), on permanently resident
direct access volumes, are to be used. The catalog will be scanned for SYS1.DUMPxx through
SYS1.DUMPyy, where xx and yy are decimal digits in the range 00 through 99.

Note: Specifying DASD is equivalent to specifying
DUMPDS ADD,DSN=(xx-yy)

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 347

in the COMMNDxx parmlib member.

Indicating which dump data sets are to be used by a particular system avoids unnecessary
scanning of the possible 100 cataloged dump data sets and the possibility of more than one
system using the same data sets.

Examples of Valid DUMP Statements:
DUMP=NO
DUMP=DASD
DUMP=(DASD,00-05)

How Dump Data Sets Are Used: Dump data sets can only reside on direct access devices. Space
for direct access data sets must be pre-allocated, and the data sets must be cataloged. Eligible device
types consist of any direct access device supported by the system that has a track size of at least
4160 bytes (4160 bytes equals 1 SVC dump output record).

As many as 100 dump data sets may be allocated. They must be in the form SYS1.DUMPnn, in which
nn may be digits 00 to 99.

Note: Specify both primary and secondary allocations for SYS1.DUMPnn data sets. IBM recommends
using the DUMPDS ADD command in COMMNDxx and DUMP=NO in IEASYSxx to make the
allocated dump data sets available to SVC dump. If you do this, MVS provides better diagnostic
messages, which indicate which dump data sets were added, which were not added, and why.
For more information on allocating SYS1.DUMPnn, see z/OS MVS System Data Set Definition.

For more information on allocating SYS1.DUMPxx data sets, see z/OS MVS Diagnosis: Tools and
Service Aids .

Processing of Dump Data Sets: The status and type of each dump data set is maintained by the
system. The system records the data set status as empty or full. An empty data set is available for use
by the system. A full data set can be printed (and emptied), or made empty by the DUMPDS CLEAR
command.

A DASD data set is empty only if the first record is an end of data record. Otherwise, the data set is
considered full.

When an SVC dump is requested, an empty data set is selected and that data set is then marked as
being in use. When the DUMPDS CLEAR command is issued for a dump data set, that data set is
marked as being available.

When an SVC dump is requested and there are no data sets marked as being available, the system
reads the first record of each data set to see if it has been emptied (printed). If so, the first record is
an end of data record. When the system finds such a data set, it uses it for the requested SVC dump.

Note: Tape data sets are not supported.

Value Range: Not applicable

Default Value: DASD

Associated Parmlib Member: None
EXIT=aa

IEASYSxx

348 z/OS V1R4.0 MVS Initialization and Tuning Reference

This parameter specifies the EXITxx member(s) of parmlib that contains the entry points and names of
allocation installation exits. The two alphameric characters, represented by aa, are appended to EXIT
to form the name of the EXITxx member(s).

Note: With MVS/ESA SP 5.1, IBM provides the PROGxx member as an alternative to EXITxx. IBM
recommends that you convert the format of EXITxx to PROGxx and provides the IEFEXPR
REXX exec to do this. (See MVS/ESA SP V5 Conversion Notebook.) You should also add the
PROG=xx system parameter to IEASYSxx (see Chapter 65, “PROGxx (Authorized program list,
exits, LNKLST sets and LPA)” on page 503), remove the EXIT=xx system parameter from
IEASYSxx, and remove EXIT=xx from IEASYS00. For information on how to begin using
PROGxx, see Chapter 65, “PROGxx (Authorized program list, exits, LNKLST sets and LPA)” on
page 503.

Value Range: Any two alphameric characters.

Default Value: None

Associated Parmlib Member: EXITxx
FIX={aa }

{(aa[,L][,NOPROT]) }
{(aa,bb...[,L][,NOPROT])}

This parameter specifies one or more IEAFIXxx members of parmlib. The two characters (A-Z, 0-9, @,
#, or $), represented by aa (or bb, and so forth), are appended to IEAFIX to name the member(s). If
the L option is specified, the system displays the contents of the IEAFIXxx parmlib member(s) at the
operator’s console as the system processes the member(s).

The member(s) contain names of modules that are to be fixed in central storage as a fixed LPA. The
fixed LPA modules are active only for the duration of an IPL, and will not be automatically reinstated
by a quick start or a warm start IPL. You must respecify the FIX parameter in later IPLs if you want to
reinstate the fixed LPA.

The LPA modules that are fixed in storage are also page protected, by default. If an attempt is made
to store into a page-protected module, a protection exception occurs. However, an installation can use
the NOPROT option to override the page protection default. When NOPROT is specified, the LPA
modules in the IEAFIXxx parmlib member(s) are not page protected in storage. If you specify the
NOPROT option, you must also specify the L option.

Value Range: Any two characters (A-Z, 0-9, @, #, or $).

Default Value: None

Associated Parmlib Member: IEAFIXxx
GRS={JOIN }

{TRYJOIN}
{START }
{NONE }
{STAR }

This parameter specifies whether the system being initialized is to participate in a global resource
serialization complex. In a multisystem sysplex, every system in the sysplex must be in the same
global resource serialization complex. This allows global serialization of resources in the sysplex.

Specifying GRS=STAR indicates that the system being initialized is to participate in a global resource
serialization star complex.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 349

GRS=NONE indicates that the system is not to participate in a global resource serialization complex.
GRS=START, GRS=JOIN, and GRS=TRYJOIN indicate that the system is to coordinate global
resource requests with other systems in a global resource serialization ring complex.

Specifying GRS=START indicates that the system is to start a global resource serialization ring
complex and honor the requests of other systems (those systems that specify GRS=JOIN) to join the
complex. Specifying GRS=JOIN indicates that the system is to join an existing ring complex of active
global resource serialization systems and also honor the requests of other systems to join the
complex.

Specifying GRS=TRYJOIN allows the system to act on whether a ring complex already exists. If the
complex does exist, the system joins the existing complex. If the system does not find any active
global resource serialization systems, the system will start the complex.

Attention: When all the systems in a global resource serialization ring complex are not in a
multisystem sysplex, there is a possibility of a split ring and a data integrity exposure when
GRS=TRYJOIN is used. When all systems are in a multisystem sysplex, however, this
option is recommended. For more information about specifying the GRS system
parameters, see z/OS MVS Planning: Global Resource Serialization.

Note: If you have specified anything other than GRS=NONE, then you must specify the GRSRNL
parameter.

Value Range: Not applicable

Default Value: None

Associated Parmlib Member:
GRSCNF=xx.

This parameter identifies the GRSCNFxx parmlib member to be used to initialize a system in the
global resource serialization complex. The two alphanumeric characters, xx, are appended to
GRSCNF to form the name of the parmlib member, GRSCNFxx. Only one suffix can be supplied. The
installation creates the member and places it in parmlib.

If you are initializing a star complex, GRSCNFxx is not required. GRSCNF=xx is ignored if
GRS=NONE is specified for the system during its initialization.

Value Range: Any two alphanumeric characters.

Default Value: GRSCNF00 is the parmlib member selected if you do not specify GRSCNF=xx.

Associated Parmlib Member: GRSCNFxx
GRSRNL={aa }

{(aa,bb...)}
{EXCLUDE }

This parameter can specify one or more GRSRNLxx parmlib members. The two alphanumeric
characters, represented by aa (or bb, and so forth), are appended to GRSRNL to form the name of the
GRSRNLxx member(s).

The GRSRNLxx member(s) contain resource name lists (RNLs). The system (specifically, global
resource serialization) uses the RNLs to determine how to treat a resource that the installation defined
in an RNL.

IEASYSxx

350 z/OS V1R4.0 MVS Initialization and Tuning Reference

GRSRNL=EXCLUDE specifies that no resource name lists (RNLs) are to be used in the complex. All
ENQ, RESERVE, and DEQ macro requests with a scope of SYSTEMS are treated as though they had
been found in the SYSTEMS exclusion RNL. Their scope is changed to SYSTEM and they are
processed locally.

The RNL=NO parameter, if specified on the request, prevents this exclusion. It allows the request to
retain its scope of SYSTEMS and be serialized globally on all systems in the complex. See z/OS MVS
Planning: Global Resource Serialization when to use GRSRNL=EXCLUDE.

Note: If you specify anything other than GRS=NONE during system initialization, the GRSRNL
parameter is required.

Value Range: Any two alphanumeric characters.

Default Value: None

Associated Parmlib Member: GRSRNLxx
ICS={xx }

{(xx[,L])}
{(,L) }

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. Accordingly, you can
no longer use the ICS= parameter. The information has been left here for reference purposes,
and for use on backlevel systems.

This parameter specifies the parmlib member that contains the installation control specification. This
parameter applies only if the system is running in workload management compatibility mode. The
installation control specification associates units of work (transactions) with performance groups. The
two alphanumeric characters (xx) are appended to IEAICS to form the name of an IEAICSxx member
of parmlib. If the L option is specified, the system displays the contents of the IEAICSxx parmlib
member at the operator’s console as the system processes the member.

If a member contains incorrect specifications or cannot be found, SRM prompts the operator to specify
an alternate member by respecifying ICS=xx. If the operator cancels the parameter by replying with
the ENTER key, no installation control specification is used, and performance groups are assigned by
the JCL or LOGON PERFORM parameter.

The operator can select a new installation control specification (that is, indicate that the system is to
run under the control of an alternate IEAICSxx member) between IPLs by issuing the SET ICS
command.

Value Range: Any two alphanumeric characters.

Default Value: None If an installation control specification is not provided, performance groups are
assigned by the JCL or LOGON PERFORM parameter.

Associated Parmlib Member: IEAICSxx
IKJTSO=xx

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 351

This parameter specifies the parmlib member from which TSO/E settings are obtained. The two
alphanumeric characters (xx), specified in the parameter, are appended to IKJTSO to form the parmlib
member IKJTSOxx.

Value Range: Any two alphanumeric characters

Default Value: 00 (Specifies IKJTSO00)

Associated Parmlib Member: IKJTSOxx
IOS=xx

This parameter specifies the parmlib member that contains (1) intervals to be used by the missing
interrupt handler (MIH) when scanning for missing interrupt conditions and (2) device threshold values
and recovery actions to be used in the detection of, and recovery from, hot I/O conditions. The two
alphanumeric characters (xx), specified in the parameter, are appended to IECIOS to form the parmlib
member IECIOSxx.

Value Range: Any two alphanumeric characters

Default Value: None

Note: The I/O supervisor assumes default options. For a list of these defaults and their explanations
see the description of the IECIOSxx parmlib member.

Associated Parmlib Member: IECIOSxx
IPS={xx }

{(xx[,L])}
{(,L) }

This parameter specifies the particular installation performance specification (IPS) that will be used by
the system resources manager.

The two alphanumeric characters, represented by xx, are appended to IEAIPS to form the name of an
IEAIPSxx parmlib member. If the L option is specified, the system displays the contents of the
IEAIPSxx parmlib member at the operator’s console as the system processes the member.

If the IPS keyword is missing, the system is IPLed in workload management goal mode. To IPL a
system in workload management goal mode, you must remove the IPS= keyword from your IEASYSxx
parmlib member, and from your IEASYS00 parmlib member.

If the member contains incorrect specifications, the initialization routine of the system resources
manager prompts the operator to specify an alternate member. If the operator chooses to reply with
the ENTER key, the system resource manager tries to use the default member IEAIPS00. If IEAIPS00
is not valid or unavailable, the system resource manager uses an internal set of IPS values, called the
“skeleton IPS”. The skeleton IPS avoids service rate distinctions among any jobs. It is merely a
stopgap IPS intended to permit the completion of IPL.

The operator can select a new IPS (that is, indicate that the system is to run under the control of an
alternate IEAIPSxx member) between IPLs by issuing the SET IPS command.

Value Range: Any two-character alphanumeric combination.

Default Value: IPS=00. The IEAIPS00 default member, supplied by IBM, can be modified by the
installation. The use and contents of this default member are described in z/OS MVS Initialization and
Tuning Guide.

LICENSE={Z/OS}
{Z/OSE}

IEASYSxx

352 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|

||

This parameter specifies whether this is a z/OS or a z/OS.e system. To find out how z/OS.e differs
from z/OS and identify any migration actions needed for z/OS.e, see z/OS and z/OS.e Planning for
Installation.

Value Range: Not applicable

Default Value: LICENSE=Z/OS

Associated Parmlib Member: None
LNK={aa }

{(aa,bb,...[,L])}
{(,L) }

This parameter specifies one or more LNKLSTxx parmlib members that list program libraries to be
concatenated to SYS1.LINKLIB, thus forming the LNKLST concatenation.

The two characters (A-Z, 0-9, @, #, or $) represented by aa (or bb, and so forth), are appended to
LNKLST to identify one or more LNKLSTxx members of parmlib.

If the L option is specified, the names of the data sets that are concatenated to SYS1.LINKLIB are
displayed at the operator’s console as the data sets are opened.

For information about the LNKLSTxx member, see Chapter 57, “LNKLSTxx (LNKLST concatenation)”
on page 449. You can also use PROGxx to specify the concatenation.

Value Range: Any two characters (A-Z, 0-9, @, #, or $).

Default Value: LNK=00, causing selection of LNKLST00.

Associated Parmlib Member: LNKLSTxx
LNKAUTH={LNKLST}

{APFTAB}

This parameter specifies whether all libraries in the LNKLST concatenation are to be treated as
APF-authorized when accessed as part of the concatenation, or whether only those libraries that are
named in the APF table are to be treated as APF-authorized.

Value Range: Not applicable

Default Value: LNKLST, meaning that all libraries in the LNKLST concatenation are to be treated as
APF-authorized when accessed as part of the concatenation. If the default for the LNKAUTH system
parameter is taken, or is specified in IEASYSxx or by the operator, libraries in the LNKLST
concatenation are APF-authorized when accessed as part of the LNKLST concatenation.

If a LNKLST library is not listed in the APF table, referencing the library through a JOBLIB or STEPLIB
DD statement causes the library to be considered unauthorized for the duration of the job or step.

Associated Parmlib Member: None
LOGCLS=x

This parameter specifies the JES output class for the log data sets. A log data set is queued to this
class when its WTL limit has been reached. (The limit is specified by the LOGLMT initialization
parameter.)

Example: LOGCLS=L

In this example, the current log data set is queued to output class L when the limit on the number of
WTLs has been reached.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 353

|
|
|

|

|

|

If the specified LOGCLS value is not valid, or an I/O error occurs while the IEASYSxx member is
being read, master scheduler initialization prompts the operator for a replacement LOGCLS value. If
prompting is forbidden (the OPI operand was specified), the default value A is assigned.

For the other log parameter, see LOGLMT.

Value Range: A single alphabetic or numeric character: A-Z or 0-9.

Default Value: A, which represents output class A.

Associated Parmlib Member: None
LOGLMT=nnnnnn

This parameter specifies the maximum number of WTLs (messages) allowed for each log data set.
The value is used by log processing to determine when a log data set should be scheduled for sysout
processing by JES. When the value is reached, log processing issues a simulated WRITELOG
command to close and free the current log data set, and to allocate and open a new log data set.

Example: LOGLMT=004852

In this example, when 4,852 WTLs have been issued to a log data set, the data set is scheduled for
sysout processing on the output class specified by the LOGCLS parameter. Log processing then
allocates and opens a new log data set.

If the specified value is not valid or an I/O error occurs while the IEASYSxx member is being read,
master scheduler initialization prompts the operator for a replacement LOGLMT value. If prompting is
forbidden (the OPI operand was specified), the default value of 500 is assigned.

For the other log parameter, see LOGCLS.

Value Range: 000000-999999

Default Value: 500

Associated Parmlib Member: None
LOGREC={dsname | LOGSTREAM | IGNORE}

LOGREC specifies the logrec recording medium to be used for error and environmental recording. If
this parameter is omitted, then SYS1.LOGREC is the default data set name specification.

Before specifying LOGSTREAM to define a log stream as the logrec recording medium, IBM
recommends that you IPL with a logrec data set initialized by IFCDIP00. If you do not IPL with a
logrec data set, you will not be able to change the logrec recording medium from LOGSTREAM to
DATASET using the SETLOGRC command.

dsname
Specifies the name of the logrec data set to be used for error recording.

In a multisystem environment, if you specify a unique name for each of your logrec data sets, IBM
recommends that you not place these names in the SYSTEMS exclusion resource name list in
parmlib member GRSRNLxx.

Before an IPL, the logrec data set must have been allocated, cataloged (unless on the SYSRES)
in the system master catalog, and initialized using IFCDIP00. In a multisystem environment, take
care in running IFCDIP00 to insure, if using the SYS1.LOGREC data set name default, that the
correct logrec data set is initialized.

LOGSTREAM
Specifies that the logrec log stream (SYSPLEX.LOGREC.ALLRECS) is to be used for the error
and environmental recording. The log stream provides a single repository for all of the MVS

IEASYSxx

354 z/OS V1R4.0 MVS Initialization and Tuning Reference

images in a sysplex. The log stream eliminates the need to allocate, catalog, and initialize a logrec
data set on each system. When reporting programs, such as EREP, are run, the single log stream
can be used as input to the program.

IGNORE
Specifies that error and environmental recording are to be ignored. Logrec records will not be
recorded to the output medium; no records are written to a logrec data set or to the logrec log
stream. Also, the system does not issue the ENF event code 36 signal for records when IGNORE
is specified.

Attention: This specification is intended to be used only on test systems when a logrec data set
is not established and the logrec log stream is not defined.

Syntax Examples for the LOGREC Parameter:

Example 1:
LOGREC=SYSA.LOGREC

The data set ’SYSA.LOGREC’ will be used.

Example 2:
LOGREC=SYSTEMA.LOGREC

The data set ’SYSTEMA.LOGREC’ will be used.

Example 3:
LOGREC=&SYSNAME;.LOGREC

Assuming the value specified on the SYSNAME= parameter is SYSTEMA, the data set
’SYSTEMA.LOGREC’ will be used.

Example 4:
LOGREC=&SYSNAME;&SYSNAME;DATA.FILE

Assuming the value specified on the SYSNAME= parameter is S1, the data set ’S1S1DATA.FILE’ will
be used.

Example 5:
LOGREC=LOGSTREAM

The logrec log stream, SYSPLEX.LOGREC.ALLRECS, will be used by SVC 76 (LOGREC) to record
error and environmental records.

Example 6:
LOGREC=IGNORE

No error or environmental recording by SVC 76 will occur.

Value Range: One of the allowable specifications. The value for dsname can contain system symbols.
When the dsname option is used, only one data set can be specified.

Default Value: SYS1.LOGREC

Associated Parmlib Member: When LOGSTREAM is specified, see Chapter 18, “COUPLExx
(cross-system coupling facility (XCF) parameters)” on page 195.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 355

LPA={aa }
{(aa,bb,...[,L])}

This parameter specifies one or more LPALSTxx parmlib members. The two characters (A-Z, 0-9, @,
#, or $), represented by aa (or bb, and so forth), are appended to LPALST to form the name of the
LPALSTxx member(s). If the L option is specified, the system displays (at the operator’s console) the
names of the data sets successfully concatenated to SYS1.LPALIB.

The LPALSTxx member(s) list data sets that are to be concatenated to SYS1.LPALIB. (For information
on the use, contents, and syntax of LPALSTxx, see Chapter 59, “LPALSTxx (LPA library list)” on
page 467.)

Value Range: Any two characters (A-Z, 0-9, @, #, or $).

Default Value: None

Associated Parmlib Member: LPALSTxx

MAXCAD=nnn

Reserves the number of entries available for SCOPE=COMMON data spaces on all primary address
space access lists (PASN-ALs) in the system.

Reference
For a description of data spaces, see z/OS MVS Programming: Extended Addressability Guide.

A SCOPE=COMMON data space can be used by all programs in the system. It provides a commonly
addressable area similar to the common storage area (CSA). SCOPE=COMMON data spaces are
used by MVS and can also be used by subsystems and applications that need common storage.

Each SCOPE=COMMON data space uses one entry on all PASN-ALs in the system. Because the
maximum number of entries in a PASN-AL is 510, each SCOPE=COMMON data space your program
creates and adds to the PASN-AL, reduces the number of SCOPE=SINGLE and SCOPE=ALL data
spaces that a program can address through its PASN-AL. Therefore, it is recommended that
installations allow each subsystem or application only one SCOPE=COMMON data space.

When selecting a value for MAXCAD (that is selecting a maximum number of SCOPE=COMMON data
spaces), allow for the SCOPE=COMMON data spaces that MVS uses, then allow for the
SCOPE=COMMON data spaces that subsystems or applications use.

If you code an incorrect number (less than 10 or greater than 250) the system uses the default
number of 25 and issues an informational message.

Value Range: 10-250

Default Value: 25

Associated Parmlib Member: None
MAXUSER=nnnnnn

This parameter specifies a value that, under most conditions, the system uses to limit the number of
jobs and started tasks that can run concurrently during a given IPL. The number includes time sharing

IEASYSxx

356 z/OS V1R4.0 MVS Initialization and Tuning Reference

jobs, batch jobs, started system tasks, the master scheduler, JES2 or JES3, and ASIDs that have
been marked non-reusable. This parameter is also used to allocate console control block areas in CSA
that contain run-time job description data.

This value is extended for started tasks by the value specified for RSVSTRT and is extended by the
value specified for RSVNONR when non-reusable ASIDs exist.

It is recommended that you specify larger than necessary values for MAXUSER, RSVSTRT, and
RSVNONR. The MAXUSER value must be large enough to include all the active address spaces.
Therefore, the value you specify for MAXUSER must take into account the number of initiators, TSO/E
USERMAX, available VTAM APPLs and any other factors that contribute to the number of active
address spaces.

However, do not over-specify the MAXUSER value by too great an amount. The console control block
area allocates CSA storage based on the sum of MAXUSER and RSVSTRT, so if the system is not
configured to have a lot of storage below 16MB, a large combined value of these two fields can result
in a shortage of CSA storage. For each allowed user specified by the MAXUSER parameter, 50 bytes
of CSA storage is allocated below 16MB. For example, if you specify a value of 2000 for MAXUSER,
100,000 bytes of storage will be allocated below 16MB. This storage is retrieved after system
initialization, reducing the amount of available CSA storage below 16MB. This could result in an
ABEND 878 reason code 08 when applications are started after IPL. A large MAXUSER value could
also cause a wait state 040 to occur at IPL time.

When the system is heavily used, it can use the value specified on the RSVSTRT system parameter
to allow more concurrent jobs and started tasks than the number specified by MAXUSER.

When there are non-reusable ASIDs, it can use the value specified on the RSVNONR systems
parameter to allow the MAXUSER value to be honored until the number of non-reusable ASIDs
exceeds the value of RSVNONR. When this happens, the number of jobs and started tasks that can
run concurrently will be reduced by the difference between the number of non-reusable ASIDs and the
value of RSVNONR.

Assume, for example, that MAXUSER specifies 500 and RSVSTRT specifies 5. If there is an attempt
to start an address space (using the START command), and none of the 500 address space entries
defined by the MAXUSER parameter is available (meaning heavy system use), but an entry defined by
the RSVSTRT parameter is available, the system uses that entry. Thus, when the system is heavily
used, there can be more concurrent jobs and started tasks in the system than the number defined by
MAXUSER. The absolute limit to the number of concurrent jobs and started tasks is the sum of the
values specified for the MAXUSER and RSVSTRT system parameters. The maximum ASID value is
the sum of the values specified for the MAXUSER, RSVSTRT, and RSVNONR system parameters.

If started tasks or batch jobs that create non-reusable ASIDs end enough times, they will exhaust all
available ASIDs and an IPL will be required. When IPLing is not an acceptable option, determine
which programs caused the problems and fix them. For methods that prevent running out of ASIDs,
see z/OS MVS Programming: Extended Addressability Guide.

Value Range: 0-32767. Note that the sum of the values specified for the MAXUSER, RSVSTRT, and
RSVNONR system parameters cannot exceed 32767.

Default Value: 255

Associated Parmlib Member: None
MLPA={aa }

{(aa[,L][,NOPROT]) }
{(aa,bb...[,L][,NOPROT])}

This parameter specifies one or more IEALPAxx parmlib members, which list modules to be added to
the pageable LPA, as a temporary LPA extension.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 357

The two characters (A-Z, 0-9, @, #, or $) represented by aa (or bb, and so forth), are appended to
IEALPA to form the name of the IEALPAxx member(s). If the L option is specified, the system displays
the contents of the IEALPAxx parmlib member(s) at the operator’s console as the system processes
the member(s).

The LPA modules in the IEALPAxx parmlib member(s) are page protected in storage, by default. If an
attempt is made to store into a page-protected module, a protection exception occurs. However, the
NOPROT option allows an installation to override the page protection default. When NOPROT is
specified, the LPA modules in the IEALPAxx parmlib member(s) are not page protected.

The installation can use the MLPA parameter to temporarily modify an existing LPA at a quick start or
a warm start IPL (without creating a new LPA through the CLPA parameter). The added modules are
temporary in that they remain as an LPA extension only for the duration of the current IPL. The
temporary modules will not be automatically reinstated by a quick start or a warm start IPL. That is,
the MLPA parameter must be specified again in the next IPL to reinstate the modified LPA.

If the installation wants to retain the temporary modules as a permanent part of the LPA, it should use
the IEBCOPY utility or the linkage editor to place the modules in a data set that is part of the LPALST
concatenation, and specify the CLPA and LPA parameters at a future IPL to load the specified LPALST
concatenation into the LPA.

For additional information on the MLPA option, see IEALPAxx. For information on the fixed LPA option,
see “the FIX parameter” on page 349 and Chapter 38, “IEAFIXxx (fixed LPA list)” on page 283.

Value Range: Any two characters (A-Z, 0-9, @, #, or $), repeated if desired.

Default Value: None If MLPA is not specified, no modified LPA is created.

Associated Parmlib Member: IEALPAxx
MSTRJCL=(xx],L])

This parameter specifies the name of the data set that contains the JCL used to start the master
scheduler address space and allows you to request that JCL messages issued for master scheduler
processing be routed to the master console. Two alphanumeric characters, represented by xx, are
appended to MSTJCL to form the name MSTJCLxx. The system first looks for a MSTJCLxx parmlib
member that contains the master JCL. If one exists, the system uses that member. If the MSTJCLxx
parmlib member does not exist, the system looks for the MSTJCLxx module in SYS1.LINKLIB.

When MSTRJCL=(xx[,L]) is specified, JCL messages issued for master scheduler processing are
routed to the master console. Use MSTRJCL=(xx[,L]) only for debugging purposes.

Using the MSTRJCL system parameter allows an installation to test new master scheduler JCL. For
example, test JCL could be stored in MSTJCL01 and selected by using the MSTRJCL parameter
(MSTRJCL=01). For more information, see “Understanding the master scheduler job control language”
on page 9.

MSTRJCL can be specified in the default system parameter list (IEASYS00), IEASYSxx members, or
entered by the operator in response to the SPECIFY SYSTEM PARAMETERS message. The default
value of 00 selects MSTJCL00 when no value is specified for MSTRJCL or if the operator presses the
ENTER key in response to a prompt. If MSTJCL00 is not found, the operator is prompted until a
MSTJCLxx member can be found. The IPL cannot continue without the JCL needed to start the master
scheduler.

Value Range: Any two alphanumeric characters.

Default Value: MSTRJCL=00, causing selection of MSTJCL00.

Associated Parmlib Member: MSTJCLxx
NONVIO={dsname }

{(dsname1,dsname2,...,dsnameN)}

IEASYSxx

358 z/OS V1R4.0 MVS Initialization and Tuning Reference

This parameter allows an installation to direct VIO paging away from the specified local page data
sets. Specify one or more local page data sets that are not to be used for VIO paging when space is
available on other local page data sets. The page data sets that are designated as non-VIO will
contain only address space pages or free slots. However, if space is depleted on the page data sets
that allow VIO paging, the non-VIO page data sets will be used for VIO paging. (Using non-VIO page
data sets for VIO pages is called an overflow condition. The operator is notified if an overflow condition
occurs.)

Each dsname specified must be a valid name consisting of a maximum of 44 characters whose format
is the same as that required for the PAGE system parameter. Each dsname must specify a data set
that was specified as a local page data set on the PAGE parameter, either in the IEASYSxx parmlib
member or by the operator in response to the “SPECIFY SYSTEM PARAMETERS” prompt.

If you specify a name that the system cannot identify as the name of a local page data set, then the
system ignores that name and issues a message to inform the operator that the data set cannot be
recognized as a non-VIO page data set. If you omit the NONVIO parameter, then VIO pages are
allowed on all local page data sets.

The name of the NONVIO data sets you specify can include the &SYSNAME system symbol. Using
the same system symbol syntax with the NONVIO parameter that was used with the PAGE parameter
can simplify your system maintenance.

For cold or quick starts a data set’s NONVIO designation is not preserved; you must respecify the
NONVIO system parameter. If you do not designate a data set as non-VIO on a cold or quick start,
you can designate it in the NONVIO system parameter when you do a subsequent warm start; that
data set is marked as non-VIO then, and no more VIO pages will be sent to it (unless an overflow
condition occurs). If the non-VIO paging data set remains on the system long enough, all VIO pages
on it will eventually migrate, during the normal course of system operation, to other page data sets
used for VIO.

For warm starts, a data set’s NONVIO designation is preserved. A warm start preserves journaled VIO
data set pages. Therefore, all local page data sets that contain VIO pages are required for a warm
start. These required data sets would include non-VIO page data sets to which VIO paging was done
because of an overflow condition.

Note: During a warm start, a quick start will be forced if (1) a local page data set, not specified as
NONVIO, is unavailable or unusable, or (2) a non-VIO local page data set that contains VIO
pages was removed before all of its VIO pages had migrated to other page data sets used for
VIO.

If you specify all local page data sets on the NONVIO data set name list, a message is issued to
inform the operator of this condition. VIO pages can be written to all local page data sets. Similarly, if
the directed VIO function is turned off via the DVIO parameter in the IEAOPTxx parmlib member, all
local page data sets can receive VIO pages. If the directed VIO function is turned on again, then
auxiliary storage management directs VIO away from any local page data sets designated as
NONVIO. The VIO pages on these data sets will eventually migrate to VIO page data sets.

Value Range: Any number of data set names may be specified up to the same limit as exists for the
PAGE system parameter. The data set names can contain system symbols.

Default Value: None

Associated Parmlib Member: While there is no directly-associated parmlib member you must specify
DVIO=YES in the IEAOPTxx parmlib member to activate the directed VIO function; DVIO=NO allows
VIO pages to go to any local page data set.

Note: DVIO=YES is the default in the IEAOPTxx parmlib member allowing the use of the directed
VIO.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 359

NSYSLX=nnn

This parameter allows you to specify the number of linkage indexes (LXs) (in addition to those in the
system function table) to be reserved for system LXs. See z/OS MVS Programming: Extended
Addressability Guide for information on system LXs.

If you omit the NSYSLX parameter, the system reserves 165 system LXs. You might need to specify
NSYSLX if either of the following conditions is true:
1. Your installation runs applications that request (through the LXRES macro) more than 165 system

LXs.
2. An application that owns one or more system LXs fails and is restarted repeatedly. If the

application does not reuse its original LX value, the supply is eventually exhausted. This condition
requires a reIPL to reclaim the system LXs.

The total number of LXs cannot exceed 2048. This total is the sum of the non-system LXs, plus the
number of LXs in the system function table, plus the value specified (up to 512) in the NSYSLX
parameter.

If applications use more than 165 system LXs, specify the NSYSLX value a little higher than the
number of system LXs used. If an application that owns one or more system LXs continues to fail,
specify the NSYSLX value high enough so that, during processing, enough system LXs are available.
This technique means you can put off the reIPL to reclaim the system LXs, until a time when it is less
disruptive.

Value Range: 10-512

Default Value: 165

Associated Parmlib Member: None.
OMVS={nn }

{(nn) }
{(nn,mm)}
{DEFAULT}

This parameter specifies the parmlib member or members to use to locate the parmlib statements to
configure the kernel .

nn specifies the BPXPRMnn parmlib member and (nn,mm) specifies the set of parmlib members
BPXPRMnn and BPXPRMmm. If you specify more than one parmlib member, any redundant parmlib
statement data found in a later member in the list is ignored.

Specifying OMVS=DEFAULT indicates that the kernel is to be started in its minimum configuration
mode with all parmlib statements taking their default values.

Example:
OMVS=(XX,YY,ZZ)

This parameter provides the ability to easily reconfigure a large set of z/OS UNIX system
characteristics and to provide the ability to keep the reconfiguration settings in a permanent location
for subsequent reuse or reference. For more information on setting your parmlib values, see z/OS
UNIX System Services Planning.

Value Range: Any two characters (A-Z, 0-9, @, #, or $).

Default Value: DEFAULT

IEASYSxx

360 z/OS V1R4.0 MVS Initialization and Tuning Reference

Associated Parmlib Member: BPXPRMxx
OPI={YES}

{NO }

This parameter specifies whether the operator is to be allowed to override system parameters
contained in IEASYSxx members of parmlib. The YES operand allows operator overrides. The NO
operand causes overrides to be ignored. If, however, NIP detects an incorrect parameter in an
IEASYSxx member in which OPI=NO applies, NIP ignores the OPI specification and prompts the
operator.

OPI may be specified only in an IEASYSxx member; it may not be specified by the operator.

OPI may be specified either for individual system parameters or for the entire set of parameters.

Examples:
IEASYSAA: MLPA=(00,01),SQA=(10,OPI=NO)
IEASYSBB: MLPA=(00,01),SQA=10,OPI=NO

For IEASYSAA, the operator can override MLPA values but not the SQA value. For IEASYSBB,
however, the operator can override neither MLPA nor SQA values.

When you specify OPI for individual system parameters, you can use system symbols in the specified
value. When you specify OPI for the entire set of parameters, do not use system symbols in the
specified value.

Note: During system initialization, the system first uses the IEASYS00 parmlib member to establish
parameters, then uses parameters from the operator or any other IEASYSxx parmlib member
(identified by the SYSPARM parameter in the LOADxx parmlib member, the SYSPARM
parameter in the IEASYMxx parmlib member, or the SYSP=xx parameter) to replace
established parameters or add new ones. The OPI parameter in IEASYS00 carries over to any
other IEASYSxx parmlib member identified during the IPL. If you specify OPI=NO in IEASYS00
for an IPL, the parameters affected by the OPI=NO cannot be changed by operator command
during the IPL. Even if you use another IEASYSxx parmlib member and specify OPI=YES for
that SYSP=xx, the operator cannot change any parameters affected by OPI=NO in IEASYS00.

Examples:

In the following IEASYSxx parmlib members, the specification of CSA and SQA in IEASYS00 will
prevail for the life of the IPL even if the operator uses SYSP=01 to select IEASYS01 for the
initialization process:

IEASYS00: CSA=(100,OPI=NO),MLPA=(00,01),SQA=(10,OPI=NO)
IEASYS01: CSA=(100,OPI=YES),MLPA=(00,01),SQA=10

Value Range: Not applicable

Default Value: YES

Associated Parmlib Member: Not applicable
OPT={xx }

{(xx[,L])}
{(,L) }

This parameter specifies a parmlib member that contains the parameters that affect swapping and
other decisions made by the system resources manager (SRM). The two alphanumeric characters,
represented by xx, are appended to IEAOPT to form the name of the IEAOPTxx member. If the L

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 361

option is specified, the system displays the contents of the IEAOPTxx parmlib member at the
operator’s console as the system processes the member.

If the member cannot be found or contains incorrect specifications, SRM prompts the operator to
specify an alternate member by respecifying OPT=xx. If the operator cancels the parameter by
replying with the ENTER key, SRM uses default values.

The operator can select a new OPT (that is, indicate that the system is to run under the control of an
alternate IEAOPTxx member) between IPLs by issuing the SET OPT command.

Value Range: Any two alphanumeric characters

Default Value: None If OPT is not specified, SRM uses default values. (See z/OS MVS Initialization
and Tuning Guide for the default values.)

Associated Parmlib Member: IEAOPTxx
PAGE={dsname }

{(dsname1,dsname2,...[,L])}
{(,L) }

This parameter allows the installation to name page data sets as additions to existing page data sets.
The maximum number of page data sets is 256. The system determines which page data sets to use
by merging information from three sources: IEASYS00, IEASYSxx, and the PAGE parameter.

During system initialization, the system first uses the list of page data sets specified on the PAGE
parameter of the IEASYS00 parmlib member. It then uses any other IEASYSxx parmlib member
(identified via the SYSP=xx parameter). The IEASYSxx PAGE data set name list overrides the one in
IEASYS00.

PAGE=dsname and PAGE=(dsname1,dsname2,...[,L]) allow the operator to add page data sets to the
list of data sets already specified in IEASYSxx. If the PAGE data set name list in IEASYSxx is null, the
operator specification is used.

The system generates a list of all the page data sets that the initialization routines have opened. If the
“L” keyword is specified (either in parmlib or from the operator’s console) this list is then written to the
operator’s console and to syslog. If the “L” keyword is not specified, the list is written only to the
syslog.

The system interprets the final merged sequence of page data set names specified as follows:

v The first named data set on the list is used as the PLPA page data set. This data set contains
pageable link pack area (PLPA) pages.

v The second named data set in the list is used as the common page data set. This data set contains
all of the common area pages that are not PLPA pages.

v The third and all subsequently named data sets are used as local page data sets. These data sets
contain all the system pages (including VIO pages) that are considered neither PLPA nor common
data set pages.

Note: To replace local page data sets during an IPL, you must specify the CVIO parameter. (Note that
CLPA implies CVIO.)

When defining page data sets, you must ensure that the desired PLPA page data set is the first entry
in the data set list, in both IEASYS00 and IEASYSxx.

During initialization, there are no checks on the sizes of user-supplied data sets. However, there must
be at least three page data sets available for IPL: the PLPA page data set, the common page data set,
and at least one local page data set. When initialization completes, the PAGEADD command can be
used to add more local page data sets to the system. The most current page data set information is
preserved so that it can be used for subsequent quick start and warm start IPLs.

IEASYSxx

362 z/OS V1R4.0 MVS Initialization and Tuning Reference

The data set intended for PLPA should contain enough space for the entire PLPA, including the
extended PLPA. If the entire PLPA cannot fit on this data set, the system puts the excess on the
common page data set. And, if the common page data set gets full, its excess goes to the PLPA page
data set. In the interest of good performance, however, you should make the common page data set
big enough to prevent its “spilling over” to the PLPA page data set (except in cases forced by error
situations). For specific data set size and placement recommendations, see z/OS MVS Initialization
and Tuning Guide.

How Page Data Sets Are Specified: Page data sets are specified by a merging of information from
three sources: 1) IEASYSxx; 2) operator-issued PAGE parameter; and 3) the temporary page activity
reference table (TPARTBLE). The system merges this information as follows:

v From the PAGE parameter in IEASYSxx (an alternate system list):

v From the PAGE parameter specified by the operator in the current IPL: The system merges this
page specification with that in either IEASYS00 or IEASYSxx, but not both. The operator
specification of page data sets lasts until the next cold or quick start.

v The page data sets previously in use: The system uses information on quick starts and warm starts
(IPLs that do not specify the CLPA parameter). If a non-demountable device (such as a 3350) is
used for the IPL, the device must be online before the IPL.

Note: Two other conditions are prerequisite for certain warm start or quick start situations:

1. The local page data sets that contain VIO pages from the previous IPL must be mounted for
all warm starts, to make VIO slots available. Otherwise, ASM forces a quick start instead.

2. The common page data set from the previous IPL must be mounted for both quick starts
and warm starts if the system’s writing of the PLPA (and extended PLPA) to the PLPA page
data set during the previous cold start resulted in spilling some of the PLPA pages into the
common page data set.

Usually, page data sets specified by any means must have been allocated, cataloged in the system’s
master catalog, and preformatted in VSAM format before an IPL can start. You can format the data
sets by using the DEFINE PAGESPACE command of access method services (for information about
the formatting process, see z/OS DFSMS Access Method Services for Catalogs).

Attention: Do not change or swap the names of systems in the sysplex when using page data set
names containing system symbols. If name changes are required, each system in the
sysplex must have a cold start IPL.

Syntax Examples for the PAGE Parameter:

Example 1: The following statements each specify one page data set.
PAGE=dsname
PAGE=(dsname)

Example 2: The following statement specifies three page data sets.
PAGE=(dsname1,dsname2,dsname3)

Dsname1 holds the PLPA pages, dsname2 holds the common pages, and dsname3 holds the private
area pages.

Example 3: The following statement specifies n page data sets.
PAGE=(dsname1,dsname2,...,dsnamen)

Dsname1 holds the PLPA pages, dsname2 holds the common pages, and dsname3 through dsnamen
all hold private area pages.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 363

Notes:

1. If the operator specifies the PAGE parameter, ASM initialization adds (but does not replace) the
data sets as specified. The PAGE data set name list in IEASYS00 or IEASYSxx contains the first
named data sets. To ensure that the operator-specified data sets are used for the PLPA and
common page data sets, it is necessary to use an IEASYSxx member that contains a null PAGE
parameter; one that does not specify page data sets.

2. It is unnecessary to specify either UNIT or VOLSER because all page data sets must be cataloged
in the system’s master catalog. ASM initialization therefore does not need externally specified
volume serial numbers. The operator may either pre-mount volumes or await a mount message.

Minimum Paging Space: ASM enforces minimum requirements for paging space. If the requirements
are not satisfied, ASM is forced to end the IPL or, later, the system. Additionally, the use of minimum
paging space is inadvisable because it can result in poor performance.

Minimum requirements are as follows:

v There must be at least a PLPA, a common, and a local page data set to IPL the system.

v The PLPA and common page data sets must be able to hold the total combination of PLPA and
common pages (excluding the SQA). If no errors occur, the auxiliary storage space for the PLPA
and common page data sets is sufficient if the space equals the size of the PLPA and CSA divided
between the two data sets.

If the PLPA and common page data sets spill back and forth because the space is not properly
divided between the data sets, performance degradation can result. Severe performance
degradation can result if the common page data set is not large enough and, therefore, spills to the
PLPA page data set, which is normally read-only after IPL.

v Local page data sets are used to hold all private area and those VIO pages not backed by
ESTORE. The amount of storage necessary varies with each system and can be calculated using
the guidelines in z/OS MVS Initialization and Tuning Guide.

Page Space Shortage: Two warning messages appear when the system resources manager (SRM)
detects a shortage of page space, the first when 70% of the available local paging space has been
allocated, and the second when 85% has been allocated. SRM reacts to the situation by preventing
the creation of new address spaces. That is, new “start initiator” commands ($SInn), LOGONs,
MOUNT commands, and START commands for system tasks that run in their own address spaces do
not work. On receipt of these messages, it may be possible to add paging space to the system
dynamically by using the PAGEADD operator command. (For information about using PAGEADD, and
for related information about using the PAGTOTL parameter, see z/OS MVS System Commands.) For
these situations, the installation should keep some pre-formatted, cataloged VSAM paging data sets
available. The data sets can be formatted by using the DEFINE PAGESPACE processor of access
method services. (For more information, see z/OS DFSMS Access Method Services for Catalogs .)

When the page space usage has been decreased below 70% utilization, SRM informs the operator
that there is no longer a shortage.

Value Range: The total number of data sets specified must not exceed the combined limit for page
data sets on the PAGTOTL= parameter. The data sets can contain system symbols.

Default Value: None

Associated Parmlib Member: None

Note: During NIP processing, the system might exhaust SQA and extended SQA if many local paging
data sets were specified on the PAGE parameter. If this condition occurs, the value specified for
the SQA parameter might be set too low. You can increase the SQA value in IEASYSxx (see
“SQA” on page 373).

IEASYSxx

364 z/OS V1R4.0 MVS Initialization and Tuning Reference

PAGTOTL=(ppp)

This parameter allows you to specify the total number of page data sets available to the system. The
value you specify for ppp is valid for the life of the IPL. You must include the following in the ppp
value:

v a PLPA page data set

v a common page data set

v a permanently reserved slot

v a local page data set. You must have at least 1 local page data set to IPL or a WAIT03C will occur.

Therefore, the minimum ppp value required to IPL is 4. In addition, ppp should include any page data
sets that can be dynamically added after IPL.

You can add page data sets by using the PAGEADD operator command until the total number reaches
the value specified on the PAGTOTL parameter. However, if you try to exceed the limits set on the
PAGTOTL parameter, the system will truncate the excess specification.

The system supports a maximum of 256 page data sets (including 1 required page data set, a PLPA
page data set, a common page data set, a reserved slot, and up to 252 additional local page data
sets).

Use this parameter with caution. The system must reserve SQA space for each page data set that can
be dynamically allocated. See “SQA” on page 373.

How Page Number Values Are Obtained: The PAGTOTL parameter is specified in one of two
sources: 1) IEASYS00 or IEASYSxx, or 2) by the operator-issued PAGTOTL parameter. An outline of
these specifications is as follows:

v The PAGTOTL parameter in IEASYS00.

v The PAGTOTL parameter in IEASYSxx, an alternate system parameter list: If the operator selects
this list (by using the SYSP parameter), the PAGTOTL parameter in IEASYSxx overrides the
PAGTOTL parameter in IEASYS00.

v The PAGTOTL parameter specified by the operator in the current IPL: This PAGTOTL specification
overrides the specification in IEASYS00 or IEASYSxx. The operator specification lasts only for the
life of the IPL.

v If the number of page data sets specified on the PAGE parameter exceeds the PAGTOTL value, the
PAGTOTL value will be dynamically increased at IPL. A message is issued if this occurs.

Syntax Example for the PAGTOTL parameter:
PAGTOTL=(ppp)

This specification causes the system to allow for the total of page data sets (ppp).

Value Range: Valid ppp values are 0-256. This value is the maximum allowable number of page data
sets that may be in use in the paging configuration at a time. Three spaces are reserved for IBM use
(for the PLPA and common data sets, and one additional space). Therefore, the maximum number of
local page data sets is 253.

Default Value: 5

Associated Parmlib Member: None

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 365

Note: Swap data sets are no longer supported. If your PAGETOTL parameter is coded to include the
number of swap data sets (in other words, if you are using the syntax PAGTOTL=(ppp,sss)),
the system will generate informational message IEA051I during IPL to indicate that the swap
parameter will be ignored.

PAK={aa }
{(aa,bb,...[,L])}
{(,L) }

This parameter specifies one or more IEAPAKxx parmlib members that contain groups of names of
modules in the LPALST concatenation that are processed together or in sequence. The two characters
(A-Z, 0-9, @, #, or $), represented by aa (or bb, and so forth), are appended to IEAPAK to form the
name of the IEAPAKxx members. If the L option is specified, the system displays the contents of the
parmlib member(s) at the operator’s console when the system processes the member(s).

Value Range: Any two characters (A-Z, 0-9, @, #, or $).

Default Value: PAK=00, causing selection of IEAPAK00, if it exists.

Associated Parmlib Member: IEAPAKxx.
PLEXCFG={XCFLOCAL }

{MONOPLEX }
{MULTISYSTEM}
{ANY }

Specifies the type of configuration into which the system is allowed to IPL. You can specify one or
more of the following system configurations:

PLEXCFG=MULTISYSTEM
Specifies that the system is to be part of a sysplex consisting of one or more MVS systems that
reside on one or more processors. The same sysplex couple data sets must be used by all
systems.

You must specify a COUPLExx parmlib member that identifies the same sysplex couple data sets
for all systems in the sysplex (on the COUPLE statement) and signalling paths between systems
(on the PATHIN and PATHOUT statements).You must also specify in the CLOCKxx parmlib
member whether you are using a Sysplex Timer that is real (ETRMODE=YES) or simulated
(SIMETRID=YES).

Use MULTISYSTEM when you plan to IPL two or more MVS systems into a multi-system sysplex
and exploit full XCF coupling services. GRS=NONE is not valid with PLEXCFG=MULTISYSTEM.

PLEXCFG=XCFLOCAL
Specifies that the system is to be a single, standalone MVS system that is not a member of a
sysplex and cannot use couple data sets. The COUPLExx parmlib member cannot specify a
sysplex couple data set, and, therefore, other couple data sets cannot be used. Thus, functions
such as WLM, that require a couple data set, are not available.

In XCF-local mode, XCF does not provide signalling services between MVS systems. However,
multi-system applications can create groups and members, and messages can flow between group
members on this system. If signalling paths are specified, they are tested for their operational
ability, but they are not used.

Use XCF-local mode for a system that is independent of other systems. In XCF-local mode, XCF
services (except permanent status recording) are available on the system and you can do
maintenance, such as formatting a couple data set or changing the COUPLExx parmlib member.
The IBM-supplied default parmlib member COUPLE00 and the COUPLE=** system parameter are
intended to be used to bring up the system in XCF-local mode.

IEASYSxx

366 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|
|

PLEXCFG=MONOPLEX
Specifies that the system is to be a single-system sysplex that must use a sysplex couple data
set. Additional couple data sets, such as those that contain policy information, can also be used.
XCF coupling services are available on the system, and multi-system applications can create
groups and members. Messages can flow between members on this system (but not between this
system and other MVS systems) through XCF signalling services. If signalling paths are specified,
they are not used.

You must specify a COUPLExx parmlib member that gives the system access to a sysplex couple
data set to be used only by this system. When a system IPLs into a single-system sysplex, no
other system is allowed to join the sysplex.

Use MONOPLEX when you want only one system in the sysplex (for example, to test multi-system
applications on one system) or when you want to use a function, such as WLM, that requires a
couple data set.

PLEXCFG=ANY
Specifies that the system can be part of any valid system configuration. Specifying ANY is logically
equivalent to specifying XCFLOCAL, MONOPLEX, or MULTISYSTEM. ANY is the default.

Generally avoid specifying PLEXCFG=ANY and explicitly specify the sysplex environment that you
intend for the system to join. See z/OS MVS Setting Up a Sysplex for additional information about
the PLEXCFG parameter and planning for XCF-local mode.

To prevent the operator from overriding the PLEXCFG parameter, specify OPI=NO on the PLEXCFG
keyword in the IEASYSxx parmlib member. (For example, PLEXCFG=MULTISYSTEM,OPI=NO).

Default Value: PLEXCFG=ANY

Associated Parmlib Member: None
PROD={aa }

{(aa,bb...)}

The two characters (A-Z, 0-9, @, #, or $), represented by xx, are appended to IFAPRD to specify the
name of one or more IFAPRDxx members of parmlib. You can specify one or more members, which
define the product enablement policy for the system.

The specified IFAPRDxx parmlib member(s) must exist. The system processes the members in the
order in which you specify them, stopping if it encounters any parmlib member that does not exist.

Value Range: Any two alphanumeric characters

Default Value: None

Associated Parmlib Member: IFAPRDxx
PROG={aa }

{(aa,bb,...)}

This parameter specifies the PROGxx member(s) of parmlib. The two characters (A-Z, 0-9, @, #, or
$), represented by aa (or bb, and so forth), are appended to PROG to form the names of the PROGxx
members. The PROGxx parmlib member contains four statement types: APF, EXIT, SYSLIB, and
LNKLST.

v APF statements list the names and volume serial identifiers for APF-authorized libraries, and specify
the format of the APF list, which is dynamic or static.

v EXIT statements control the use of exits and exit routines.

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 367

v SYSLIB statements define alternate data sets for SYS1.LINKLIB, SYS1.MIGLIB, and SYS1.CSSLIB
at the beginning of the LNKLST concatenation and an alternate data set for SYS1.LPALIB at the
beginning of the LPALST concatenation.

v LNKLST statements control the definition and activation of the LNKLST set that forms the LNKLST
concatenation.

Use the PROG=xx rather than the APF=xx system parameter, which indicates the current IEAAPFxx
parmlib member. IEAAPFxx can also be used to define the APF list, but only in a static format. If you
specify both the PROG=xx and the APF=xx parameters, then the system places into the APF list the
libraries listed in IEAAPFxx, followed by the libraries listed in the PROGxx member or members. IBM
recommends that you convert IEAAPFxx to PROGxx (using a procedure described in Chapter 32,
“IEAAPFxx (authorized program facility list)” on page 265), remove the APF=xx system parameter from
IEASYSxx, and remove APF=xx from IEASYS00.

Use PROG=xx rather than the EXIT=xx system parameter, which indicates the current EXITxx parmlib
member. EXITxx can also be used to specify exits, but you can specify only one exit routine at a time
for each exit. IBM recommends that you convert EXITxx to PROGxx (using the IEFEXPR REXX exec
provided by IBM, as described in z/OS MVS Migration), remove the EXIT=xx system parameter from
IEASYSxx, and remove EXIT= from IEASYS00.

Use PROG=xx rather than LNK=xx to activate the LNKLST concatenation at IPL. In the PROGxx
member, you can also define alternate data sets for the system defaults to appear at the beginning of
the LNKLST and LPALST concatenations. If you specify both PROG=xx for a member with a LNKLST
ACTIVATE statement and LNK=xx the system uses the definitions in PROGxx and issues message
CSV478I:

LNK IPL PARAMETER HAS BEEN IGNORED.
LNKLST SET lnklstname IS BEING USED

Value Range: Any two characters (A-Z, 0-9, @, #, or $).

Default Value: If PROG=xx and APF=xx are not specified, the system automatically places
SYS1.LINKLIB and SYS1.SVCLIB in the APF list. The system also automatically authorizes
SYS1.LPALIB, but only during system initialization. If the default for the LNKAUTH system parameter
(LNKAUTH=LNKLST) is accepted or specified, libraries in the LNKLST concatenation are also
authorized (when they are accessed as part of the LNKLST concatenation). If a library is in the
LNKLST concatenation but is not APF-authorized, the system will consider the library to be
unauthorized for the duration of the job or step if the library is referenced through a JOBLIB or
STEPLIB DD statement.

If PROG=xx is not specified, the system uses LNK=xx for the LNKLST concatenation.

Associated Parmlib Member: PROGxx
RDE={YES}

{NO }

This parameter specifies whether the reliability data extractor (RDE) feature is to be included (YES) or
not (NO). For information on RDE, see z/OS MVS Diagnosis: Tools and Service Aids.

Value Range: Not applicable.

Default Value: NO. This default applies if you omit the RDE parameter, or specify an incorrect value
for it.

Associated Parmlib Member: None
REAL=nnnn

IEASYSxx

368 z/OS V1R4.0 MVS Initialization and Tuning Reference

This parameter specifies the maximum amount of central storage, in 1K blocks, that can be allocated
concurrently for ADDRSPC=REAL jobs (that is, V=R jobs). The value is rounded to a multiple of 4K
bytes.

Syntax Example: REAL=150 150/4=37.5 pages. Rounding to the next page boundary yields 38 pages,
or a value of 152K. This statement allows up to 152K (152 x 1024) bytes to be allocated for use by
V=R jobs.

Notes:

1. If possible, avoid a large value for the REAL parameter because a large value degrades system
performance even when no REAL regions are allocated.

2. If REAL is specified as zero, no ADDRSPC=REAL job is allowed to run.

Value Range: 0-9999. The operand can be from one to four digits.

Default Value: 76. (This means a default value of 76K.)

Associated Parmlib Member: None
RER={YES}

{NO }

This parameter specifies whether the reduced error recovery (RER) procedures for magnetic tapes are
to be used (YES) or not (NO). This parameter has meaning only when the procedures are stated on
the OPTCD parameter on a data definition (DD) statement or on the DCB macro.

Value Range: Not applicable

Default Value: NO. This default applies if you omit the RER parameter, or specify an incorrect value
for it.

Associated Parmlib Member: None
RSU=xxxx

RSU={xxxx }
{OFFLINE }
{xx% }
{xxxxxxM } {xxxxM }
{xxxxxxG } {xxxxG }

This parameter specifies the amount of central storage to be made available for storage
reconfiguration.

The frames in these storage increments are not to be used for long-term pages and will be designated
the non-preferred area. (Long-term pages include SQA pages, common area fixed pages and LSQA or
private area fixed pages associated with non-swappable address spaces.)

An address space is non-swappable:

v If the program name is in the program properties table (PPT) and the appropriate flags are set. (For
more information on the PPT, see Chapter 66, “SCHEDxx (PPT, master trace table, and abend
codes for automatic restart)” on page 527.)

v If ADDRSPC=REAL is specified on the JOB or EXEC statement.

v If the address space issues the TRANSWAP sysevent. The DONTSWAP and HOLD sysevents also
make an address space non-swappable, but these specifications are considered to be of short
duration, and associated LSQA and private area pages are not necessarily put into preferred
storage.

During IPL, MVS assigns the V=R area to the low end of storage and assigns the current SQA to the
high end of storage. Then, to satisfy an RSU specification, the system can define reconfigurable

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 369

storage increments, starting with the first offline storage increment at the low end of storage and
proceeding upward. If the system cannot satisfy the request from offline storage, it proceeds to define
reconfigurable storage increments with the online storage increments. The system starts with the first
online storage increment at the high end of storage and proceeds downward, defining reconfigurable
storage increments using only those online storage increments that do not contain V=R, SQA, LSQA,
or nucleus frames.

After the system has defined the reconfigurable storage increments, it defines the remainder of the
processor storage increments as the preferred area for long-term pages.

Value Ranges:

0 If your processor complex is not using PR/SM, or if your processor complex is using PR/SM but
you are not using dynamic storage reconfiguration, set the RSU parameter to 0 (the default).
Values from 1–9999 are supported, but it is recommended that you use either the megabyte or
gigabyte format described below.

xxxxxxM or xxxxM
Specifies the RSU value in megabytes of storage. You may specify a six-digit value in
z/Architecture mode, or a four-digit value in ESA/390 mode. The value you specify may be
rounded up. See PR/SM Planning Guide for specific information.

xxxxxxG or xxxxG
Specifies the RSU value in gigabytes of storage. You may specify a six-digit value in z/Architecture
mode, or a four-digit value in ESA/390 mode. The value you specify may be rounded up. See
PR/SM Planning Guide for specific information.

OFFLINE
Indicates that all of the offline storage increments are to be made reconfigurable.

xx%
Indicates that the RSU is specified as a percentage of all storage, both online and offline. The
actual number of storage increments that become reconfigurable will be rounded up to a whole
number of storage increments.

Note: An uncorrectable storage error might prevent you from reconfiguring the processor. If this
happens, specify an additional storage increment (on the RSU parameter), at the next IPL, to
increase the chance that reconfiguration might work.

If you specify an RSU value that the system cannot fully satisfy, the system defines as many
reconfigurable storage increments as possible and issues message IAR004I to indicate that the RSU
parameter was not completely satisfied. The operator can then issue the display matrix (D M)
command to determine how many increments were made available for reconfiguration.

Syntax Examples for the RSU Parameter:

Example 1: RSU=0. Indicates that you are not using PR/SM, or that you are not using dynamic
storage reconfiguration.

Example 2: RSU=25%. This example requests that 25 percent of all storage, including online and
offline, be made available for storage reconfiguration.

Example 3: RSU=300M. This example requests that 300 megabytes of storage be made available for
storage reconfiguration.

Default Value: 0. If the RSU parameter is omitted or specified as 0, all processor storage increments
are available for preferred storage.

IEASYSxx

370 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

||
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

Associated Parmlib Member: None
RSVNONR=nnnnnn

This parameter specifies the number of entries in the address space vector table that are to be
reserved for replacing entries that are marked non-reusable. A non-reusable address space is one
where a job that ended had been running in a cross memory environment. When such a job ends, the
system ends the address space and marks its associated ASVT entry non-reusable (unavailable) until
all of the address spaces the job had cross memory binds with have ended.

It is recommended that you specify larger than necessary values for MAXUSER, RSVSTRT, and
RSVNONR. However, do not over-specify the RSVNONR value by too great an amount. A very large
RSVNONR value could cause a wait state 040 to occur at IPL time. The value you should choose for
RSVNONR depends on what subsystems you are running, how often you restart the subsystems, and
how often you IPL. The more subsystems you have, the higher the RSVNONR value should be.
Frequent restarts of subsystems will also require a higher RSVNONR value. Conversely, the more
often you IPL, the lower the RSVNONR value will need to be. The ASIDs are reset each time you IPL.
If you IPL frequently you will be less likely to exhaust the available ASIDs, and you will not need to
reserve as many entries in the address space vector table. For example, if you only IPL once every
three months, you will need a RSVNONR value that is three times higher than if you IPL every month.

If started tasks or batch jobs that create non-reusable ASIDs end enough times, they will exhaust all
available ASIDs and an IPL will be required. When IPLing is not an acceptable option, determine
which programs caused the problems and fix them. For methods that prevent running out of ASIDs,
see z/OS MVS Programming: Extended Addressability Guide.

Value Range: 0-32767. Note that the sum of the values specified for the RSVNONR, RSVSTRT, and
MAXUSER system parameters cannot exceed 32767.

Default Value: 100

Associated Parmlib Member: None
RSVSTRT=nnnnnn

This parameter specifies the number of entries in the address space vector table (ASVT) that are to
be reserved for address spaces created in response to a START command (such as the APPC
address space or the library lookaside address space). By reserving entries in the ASVT for such
address spaces, you can often avoid having to reinitialize the system because there is no available
entry in the ASVT for a critical address space. For example, if library lookaside (LLA) ends and you
issue a START LLA command to restart LLA, but no ASVT entry is available, LLA will not be restarted.
However, if there are reserved entries for critical address spaces (such as LLA), it is more probable
that an entry will be available and the LLA address space can be created without having to reinitialize
the system.

It is recommended that you specify larger than necessary values for MAXUSER, RSVSTRT, and
RSVNONR. However, do not over-specify the RSVSTRT value by too great an amount. The console
control block area allocates CSA storage based on the sum of MAXUSER and RSVSTRT, so a much
larger combined value of these two fields can result in a shortage of CSA storage. The console control
block area allocates CSA storage based on the sum of MAXUSER and RSVSTRT, so if the system is
not configured to have a lot of storage below 16MB, a much larger combined value of these two fields
can result in a shortage of CSA storage. This could result in an ABEND 878 reason code 08 when
applications are started after IPL. A large RSVSTRT value could also cause a wait state 040 to occur
at IPL time.

If started tasks or batch jobs that create non-reusable ASIDs end enough times, they will exhaust all
available ASIDs and an IPL will be required. When IPLing is not an acceptable option, determine
which programs caused the problems and fix them. For methods that prevent running out of ASIDs,
see z/OS MVS Programming: Extended Addressability Guide .

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 371

Value Range: 0-32767. Note that the sum of the values specified for the RSVSTRT, RSVNONR, and
MAXUSER system parameters cannot exceed 32767.

Default Value: 5

Associated Parmlib Member: None
RTLS=xx

This parameter specifies the parmlib member, CSVRTLxx, from which the Runtime Library Service
(RTLS) is configured. The two-character identifier, represented by xx, is appended to CSVRTL to
identify the parmlib member.

For detailed information about values for CSVRTLxx, see Chapter 20, “CSVRTLxx (Define the RTLS
configuration)” on page 211.

Value Range: Any two alphanumeric characters.

Default Value: 00 (Specifies CSVRTL00, the IBM-supplied default parmlib member)

Associated Parmlib Member: CSVRTLxx
SCH={(aa) }

{(aa,L) }
{(aa,bb..) }
{(aa,bb..,L)}

This parameter specifies certain system characteristics. The two alphanumeric characters, represented
by aa,bb.., specify one or more SCHEDxx members of SYS1.PARMLIB. SCHEDxx can include the
following statement types:

MT Specifies the size of the master trace table, if one exists.

PPT Allows an installation to add entries to the program properties table.

RESTART
Allows an installation to add eligible restart codes to the restart codes table.

NORESTART
Allows an installation to delete eligible restart codes from the restart codes table.

If you specify the L option, the system displays the contents of the SCHEDxx SYS1.PARMLIB member
at the operator’s console as the system processes the member.

If a SCHEDxx member contains incorrect specifications, the system prompts the operator to specify
another member. The response is in the form SCH=aa. To cancel the parameter, the operator replies
by hitting the ENTER key.

For more information on the SCHEDxx member, see Chapter 66, “SCHEDxx (PPT, master trace table,
and abend codes for automatic restart)” on page 527.

Value Range: Any two alphanumeric characters.

Default Value: None

Associated Parmlib Member: SCHEDxx
SMF=xx

This parameter specifies the parmlib member, SMFPRMxx, from which SMF obtains its options. The
two alphanumeric characters, represented by xx, are appended to “SMFPRM” to name the member.

IEASYSxx

372 z/OS V1R4.0 MVS Initialization and Tuning Reference

For detailed information on SMF parameters, see Chapter 67, “SMFPRMxx (system management
facilities (SMF) parameters)” on page 537.

Value Range: Any two alphanumeric characters.

Default Value: 00 (Specifies SMFPRM00, the IBM-supplied default parmlib member.

Associated Parmlib Member: SMFPRMxx
SMS=xx

This parameter specifies the parmlib member, IGDSMSxx, from which the storage management
subsystem (SMS) will obtain its options when the system is initialized for partitioned data set extended
(PDSE) support. The two alphanumeric characters, represented by xx, are appended to IGDSMS to
name the member. NIP saves the name until SMS is initialized. If initialization of PDSE support fails,
the IGDSMSxx parmlib member is selected from the IEFSSNxx parmlib member by using the ID=xx
keyword (for detailed information, see Chapter 52, “IGDSMSxx (Storage Management Subsystem
definition)” on page 409).

Value Range: Any two alphanumeric characters.

Default Value: 00 (Specifies IGDSMS00, the IBM-supplied default parmlib member)

Associated Parmlib Member: IGDSMSxx
SQA=(a,b)

This parameter specifies the sizes of the virtual system queue area (SQA) and extended SQA. The
subparameter “a” specifies the size of the SQA, located below 16MB. The subparameter “b” specifies
the size of the extended SQA, located above 16MB. These values are added to the system’s minimum
SQA of eight 64KB blocks (or 512KB) and minimum extended SQA of approximately 8MB. Both the
SQA and extended SQA are fixed in central storage as they are used.

The system also reserves additional SQA and ESQA storage for the I/O configuration. The amount of
SQA and ESQA depends on the number of devices and control units installed. Because the system
adds these amounts to the SQA and ESQA blocks specified on the SQA parameter in IEASYSxx, the
actual amounts of SQA and ESQA allocated might be more than you specified. Also, MVS will not
round the lowest address of SQA down, or the uppermost address of ESQA up, to cause these areas
to start or end on a 64K, page, or segment boundary.

Notes:

1. During IPL processing, the system reserves eight 64K blocks of virtual storage for SQA and
eighteen 64K blocks of virtual storage for extended SQA. Both of these storage areas are available
to fulfill requests for SQA virtual storage during the IPL. This space is the minimum allocation for
SQA and extended SQA. It is also called the ‘initial allocation of SQA.’

Also, the system reserves 8MB of extended SQA to be used for the common area page tables.
This storage area is not available to fulfill requests for SQA virtual storage until NIP completes
processing the CSA parameter. After the CSA parameter is processed, which means that the size
of the common area and the amount of storage required for the common area page tables is
known, the reserved storage not needed for the page tables becomes available to fulfill requests
for extended SQA virtual storage.

2. During a quick start (that is, when the CLPA parameter is not specified), NIP determines if the
currently specified SQA values are equal to the previously specified (cold start) values. If not, NIP
issues an informational message and uses the cold-start SQA values. (See “CLPA” on page 341
for a discussion of cold start and quick start.)

3. Large amounts of messages at IPL time (whether suppressed or displayed) will increase ESQA
storage needs. The installation of unlabeled DASD, for example, often results in many issuances of
the following message:

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 373

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

IEA311I UNLABELED DASD ON device

In an IPL environment, one page of ESQA is used for every ten messages issued. (IEA311I
messages can be avoided by having the unlabeled DASD offline at IPL.) If prevention of excessive
messaging is not feasible, it may be necessary to increase the ESQA specification to provide
space for the messages.

4. Additional device-related ESQA is required by self-describing devices (self-description is the ability
of components of a system to provide unique identification information about themselves
dynamically on request). It may be necessary to increase the ESQA specification when new
devices are added to the system.

MVS determines the amount of expanded storage installed on the processor and automatically
calculates the blocks of extended SQA necessary to initialize the expanded storage. This amount is
added to the minimum system allocation and any increase you specify with the SQA parameter.

SQA Space Shortage: For a GETMAIN storage request for SQA storage where the request can be
satisfied with storage either below or above 16MB, the virtual storage manager (VSM) will try to satisfy
the request with space above 16MB. That is, VSM attempts to satisfy the request with space in the
extended SQA, and, if such space is not available, VSM then attempts to satisfy the request with
space in the extended common service area (extended CSA). If there is no space available above
16MB, VSM will then try to satisfy the request with space below 16MB, first from the SQA, and finally
from the CSA.

For a GETMAIN request for SQA storage where the request must be satisfied with storage below
16MB, VSM tries to satisfy the request with space in the SQA, and, if none is available, VSM then
tries to satisfy the request with space in the CSA.

Notes:

1. If excessive amounts of CSA or SQA are allocated, a warning message is generated and the
parameter must be respecified. A warning message is also generated when the size of the entire
common area below 16MB exceeds 8MB.

VSM keeps track of the remaining virtual SQA below 16MB, and informs the system resources
manager, via a SYSEVENT macro, when the total of available virtual SQA plus available virtual
CSA has reached two threshold values. The two values are eight pages, or 32K, and four pages,
or 16K. The system resources manager reacts to the situation by issuing an “SQA shortage”
message at each of the two thresholds. At the upper threshold (32K), it also inhibits the creation of
new address spaces by disallowing start initiator commands, LOGON commands, MOUNT
commands, and START commands for system tasks that require their own address spaces, such
as START VTAM.

2. The IPS and the installation control specification are processed before the SQA parameter. If the
installation control specification or IPS parmlib member is extremely large, the tables built in the
SQA and extended SQA could exceed the initial SQA allocation. Exceeding the allocation can be
prevented by increasing the initial allocation within the value range as described below or by
putting the IPS and the installation control specification into effect with the SET command after
system initialization.

SQA Space Shortage During NIP: During NIP processing, it is possible that the system’s minimum
allocation for SQA and extended SQA might be depleted before NIP processes the SQA parameter. If
this situation occurs, you can increase the minimum SQA and/or extended SQA allocations. See the
INITSQA parameter in the LOADxx parmlib member (Chapter 58, “LOADxx (system configuration data
sets)” on page 451). However, if SQA is exhausted after processing local page data sets has begun,
the value specified for the SQA parameter may be too low. Here, do not increase the initial SQA
allocation. Instead, increase the SQA value in IEASYSxx.

Value Range: Each a value can be expressed as:

IEASYSxx

374 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

|
|
|
|

|
|
|
|

v A decimal number, n, indicating n 64KB (65536-byte) blocks. The number is 0 through 256.

v A decimal number followed by K, nK, indicating n 1KB blocks. The number is 0 through 16384.

v A decimal number followed by M, nM, indicating n 1MB (1024*1024-byte) blocks. The number is 0
through 16.

Each b value can be expressed follows. Note that the maximum values are accepted, but not
recommended because they would result in a private region that is too small. Do not specify more
than you think you might ever need.

v A decimal number, n, indicating n 64KB blocks. The number is 0 through 32511.

v A decimal number followed by K, nK, indicating n 1KB blocks. The number is 0 through 2080767.

v A decimal number followed by M, nM, indicating n 1MB blocks. The number is 0 through 2031.

When a and b are specified in kilobytes and megabytes, the system rounds the space up to a whole
number of 64KB blocks.

Syntax Example: SQA=(4,5). The first value requests that, for the SQA, (4 x 64K) be added to the
system’s minimum virtual allocation. The second value requests that, for the extended SQA, (5 x 64K)
be added to the system’s minimum allocation.

This example can also be specified as SQA=(256K,320K).

Default Value: For the “a” subparameter, the default is 1. This means one 64K block will be added to
the initial SQA allocation of 512K for a default size of 576K for the SQA. For the “b” subparameter, the
default is 0. This means no 64K blocks will be added to the minimum extended SQA allocation of
approximately 8MB.

Associated Parmlib Member: None
SSN={aa }

{(aa,bb,...)}

You specify this parameter to identify one or more IEFSSNxx parmlib members that contain the
information needed to define and initialize selected subsystems. The two alphanumeric characters are
appended to the characters, IEFSSN, to form the name of the parmlib member. NIP saves the parmlib
name or names until the subsystems are to be initialized. For information on the IEFSSNxx parmlib
member, see Appendix A, “IEFSSNxx (subsystem definitions) - positional parameter form” on
page 573.

Value Range: Any two alphanumeric characters

Default Value: SSN=00

Associated Parmlib Member: IEFSSNxx
SVC={aa }

{(aa,bb,...)}

The two alphanumeric characters, (aa, bb, and so forth) are appended to IEASVC to form the name of
the parmlib member(s). This member contains the installation-defined SVCs. NIP processing uses the
member(s) to place the specified SVCs in the SVC table.

Value Range: Two alphanumeric characters

Default Value: None

Associated Parmlib Member: IEASVCxx
SYSNAME=name

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 375

This parameter optionally specifies the name that identifies this system. The name must be 1-8
characters long; the valid characters are A-Z, 0-9, $, @, and #. The name specified remains in effect
for the duration of the IPL.

The following values can override the value specified on the SYSNAME parameter:

v The value specified on the SYSNAME parameter in the IEASYMxx parmlib member.

v The value specified on the SYSNAME parameter in one or more alternate sets of parameters in
IEASYSxx. The operator specifies the alternate parameters on the SYSP parameter on the REPLY
command.

The value of SYSNAME is also the substitution text for the &SYSNAME system symbol. &SYSNAME
can be specified in parmlib members to help support multisystem environments. For details about how
to use &SYSNAME and other system symbols, see Chapter 2, “Sharing parmlib definitions” on
page 25.

The system name defined by the SYSNAME parameter is used during the initialization of global
resource serialization to identify the GRSDEF statement in the GRSCNFxx parmlib member that is to
apply to this system. The system prompts the operator for a valid system name if the system name
specified does not have the proper syntax. If the system name specified does not match any of the
MATCHSYS keyword values in the GRSCNFxx parmlib member, the operator is informed, via an error
message, to either reIPL the system or specify GRS=NONE. The operator also uses the system name
defined by SYSNAME parameter to refer to the system in the system commands that control global
resource serialization.

The system name defined by the SYSNAME parameter is also used to identify the originating system
for messages in the multiple console support (MCS) hard-copy log and in the display created by the
DISPLAY R command. Without specific SYSNAME= values in multisystem complexes, it is impossible
to determine which system actually issued the message in the hard-copy log. SYSNAME will be used
in the SYSLOG heading and in all message formats where the system name is requested.

System logger may use the system name as part of the staging data set name. The system name
specified here allows you to use a digit as the first character, but this is not valid in a staging data set
name. If you use a digit as the first character in the system name, system logger substitutes ’STG’ for
the digit and uses part of the system name as the low level qualifier for the staging data set name. For
complete information, see z/OS MVS Setting Up a Sysplex and look for the topic on Naming
Conventions for the Log Stream and DASD Log data sets.

Also, the SYSNAME is used, in the IGDDFPKG member, to identify a system for which a particular
DFSMS/MVS offering level is licensed. For information, see Chapter 51, “IGDDFPKG (DFSMS/MVS
functional component list)” on page 405.

Value Range: 1-8 of these characters: A-Z, 0-9, $, @, #.

Default Value: If the system name is not specified in IEASYMxx or IEASYSxx, the default is one of
the following:
v The processor name that is defined to HCD (if not in LPAR mode).
v The LPAR name for the processor.
v The VM userid, if the MVS image is running as a guest under VM/ESA.

Associated Parmlib Member: None
SYSP={aa }

{(aa,bb...)}

IEASYSxx

376 z/OS V1R4.0 MVS Initialization and Tuning Reference

Note: This parameter may be specified only by the operator. It cannot validly be specified in a system
parameter list. It is included here for the sake of completeness.

The SYSP parameter specifies that one or more alternate system parameter lists (for example,
IEASYS01, IEASYS02, and so forth) that the system is to read after the default list IEASYS00. The
two alphanumeric characters, represented by aa, bb, and so forth, are appended to IEASYS to name
the alternate list(s). You can specify any number of alternate parameter lists. The specification cannot
be prohibited by the OPI parameter.

When specifying alternate parameter lists on SYSP, consider the following points about the way the
system processes parameter lists:

v If a system parameter is specified in both IEASYS00 and an alternate parameter list selected by the
operator, the value in the alternate parameter list overrides the value in IEASYS00.

v You can also specify alternate parameter lists on the SYSPARM parameter in the IEASYMxx and
LOADxx parmlib members. See “Step 2. Determine where to specify system parameters” on
page 33 for information about how the system processes the alternate parameter lists that are
specified in IEASYMxx, LOADxx, and on SYSP.

v The system processes the suffixes on SYSP from left to right. If the suffixes indicate two or more
parameter lists that contain the same parameter, the value on the parameter that is processed last
overrides the values on any parameters that were processed previously.

Do not specify system symbols on the SYSP parameter.

Example:

The operator responds to SPECIFY SYSTEM PARAMETERS by entering:
R 00,SYSP=(01,02)

Assume that the two specified members contain the following parameters:
IEASYS01: MLPA=(00,01),SQA=8
IEASYS02: MLPA=02,SQA=10

NIP would accept MLPA=02 and SQA=10, in addition to other parameters contained in IEASYS00.

Value Range: Any two alphanumeric characters

Default Value: 00 (This specifies IEASYS00.)

Associated Parmlib Member: IEASYSxx
UNI=xx

This parameter specifies the CUNUNIxx member of parmlib that contains the image name and real
storage information required to enable the Unicode Conversion Services. The two alphanumeric
characters, xx, are appended to CUNUNI to form the name of the parmlib member, CUNUNIxx.

Value Range: Any two alphameric characters.

Default Value: None

Associated Parmlib Member: CUNUNIxx
VAL={aa }

{(aa,bb,...)}

This parameter specifies the VATLSTxx member or members of parmlib. Volume attribute processing
reads this member or members during initialization to obtain mount and use attributes for direct access
volumes. The mount and use attributes are set in the UCBs whose volume serial numbers are listed in

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 377

the VATLSTxx member(s). If multiple members are specified, the lists are read in the order in which
they appear in the VAL parameter. If a particular volume serial number appears on more than one
entry, the volume attributes specified in the last entry for that volume serial will be accepted.

(For additional information, refer Chapter 69, “VATLSTxx (volume attribute list)” on page 557.)

Value Range: Any two alphanumeric characters

Default Value: 00 (This means that VATLST00, if it exists, will be read.)

Associated Parmlib Member: VATLSTxx
VIODSN={dsname | IGNORE}

VIODSN specifies the name of the VSAM data set for holding information about journaled VIO data
sets.

For warm start processing, the system assumes that the name of the VSAM data set you specify is
the same one used for the last IPL. If you do not specify a value for VIODSN or if the system cannot
allocate or open the data set you specify, VIO journaling will not take place, and journaled VIO jobs
from the previous IPL will have to be restarted. If you specify a new name, and the data set is
allocated and opened, this new data set will be used, and will require the restart of previous jobs.

If you specify IGNORE, no VIO journaling is activated. No VIO journaling can take place until the next
IPL.

In a multisystem environment, if you specify a unique name for each of your VIODSN data sets, IBM
recommends that you not place these names in the SYSTEMS exclusion resource name list in parmlib
member GRSRNLxx.

Before an IPL, the VIO journaling data set must have been allocated, and cataloged in the system
master catalog.

Syntax Examples for the VIODSN Parameter:

Example 1:
VIODSN=SYS1.VIODSN

The data set ’SYS1.VIODSN’ will be used.

Example 2:
VIODSN=IGNORE

There will be no VIO journaling during this IPL.

Example 3:
VIODSN=&SYSNAME;.STGINDEX

Assuming the value specified on the SYSNAME= parameter is SYSTEMA, the data set
’SYSTEMA.STGINDEX’ will be used.

Example 4:
VIODSN=&SYSNAME;&SYSNAME;DATA.FILE

Assuming the value specified on the SYSNAME= parameter is S1, the data set ’S1S1DATA.FILE’ will
be used.

Value Range: Only one data set can be specified. The data set can contain system symbols.

Default Value: SYS1.STGINDEX

IEASYSxx

378 z/OS V1R4.0 MVS Initialization and Tuning Reference

Associated Parmlib Member: None
VRREGN=nnnn

This parameter specifies the default real-storage region size for an ADDRSPC=REAL job step that
does not have a REGION parameter in its JCL. The numerical value of the operand (nnnn) indicates
the real-storage region size in 1K-byte blocks.

Note: The following VRREGN values will prevent an ADDRSPC=REAL job step from running if it
omits a REGION parameter:

v VRREGN value that is greater than the value of the REAL parameter or
v VRREGN value of zero.

Value Range: 0-9999

Default Value: 64 (This means a default REGION size of 64K.)

Associated Parmlib Member: None

IEASYSxx

Chapter 47. IEASYSxx (system parameter list) 379

IEASYSxx

380 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE
and TERMINAL parameters)

IECIOSxx contains records that the installation creates to:

v Modify the time intervals which, when exceeded, result in the missing interrupt handler (MIH) detecting
a missing interrupt.

v Modify the I/O timing limits. The system uses the I/O timing limits to monitor queued and active I/O
requests. If an I/O request exceeds the time limit that you specify, the system abnormally ends the
request.

v Modify the device threshold values and recovery actions in the hot I/O detection table (HIDT). The
system uses the HIDT information to detect, and recover from, hot I/O conditions.

v Specify trace options other than the default for IOS component trace.

v Specify recovery actions to recover from a hung interface (that is, a terminal condition).

Missing interrupt handler (MIH)
The MIH detects missing interrupt conditions. The following device conditions qualify as missing interrupts
if the specified time interval has elapsed:
v Primary status interrupt pending
v Secondary status interrupt pending
v Start pending condition
v Idle with work queued
v Mount pending

If the MIH detects a missing interrupt, processing will be done that is dependent on the detected condition.
For any detected missing interrupt, the MIH performs one or more of the following actions:
v Invokes the device dependent MIH exit (if it exists)
v Records the condition in the logrec data set
v Notifies the system operator
v Clears the condition
v Simulates an interrupt
v Redrives the device
v Requeues the I/O request

When specifying time intervals, consider the following:

v The MIH detects a missing interrupt condition within 1 second of the time interval that you specify.

v If the time interval is too short, a false missing interrupt can occur and cause early termination of the
channel program. For example, if a 30-second interval is specified for a tape drive, a rewind might not
complete before the MIH detects a missing interrupt.

v If the time interval is too long, a job or system could hang because the MIH has not yet detected a
missing interrupt. For example, if a 15-minute time interval is specified for a tape drive used as an IMS
log tape, the MIH could delay IMS for 15 minutes because of MIH detection.

v See “Interaction of MIH and I/O Timing Processing” If you are using I/O timing processing as well as
MIH processing.

v During IPL (if the device is defined to be ONLINE) or during the VARY ONLINE process, some devices
may present their own MIH timeout values, via the primary/secondary MIH timing enhancement
contained in the self-describing data for the device. The primary MIH timeout value is used for most I/O
commands, but the secondary MIH timeout value may be used for special operations such as long-busy
conditions or long running I/O operations. Any time a user specifically sets a device or device class to
have an MIH timeout value that is different from the IBM-supplied default for the device class, that value
will override the device-established primary MIH time value. This implies that if an MIH time value that is
equal to the MIH default for the device class is explicitly requested, IOS will not override the

© Copyright IBM Corp. 1991, 2002 381

device-established primary MIH time value. To override the device-established primary MIH time value,
you must explicitly set a time value that is not equal to the MIH default for the device class.

Note that overriding the device-supplied primary MIH timeout value may adversely affect MIH recovery
processing for the device or device class.

Please refer to the specific device’s reference manuals to determine if the device supports
self-describing MIH time values.

Notes:

1. To cancel MIH processing for specific devices, specify 00:00 for the time interval value (mm:ss) defined
for the associated devices.

2. During IOS recovery processing, the system will override your time interval specification and may issue
MIH messages and MIH logrec error records at this IOS determined interval.

3. Any dynamic change that causes a device’s UCB to be deleted and then re-added will cause the
device’s MIH time interval to be reset to the default MIH setting for its device class. Once the dynamic
change is completed, users should reissue the SETIOS MIH MVS command to reestablish any specific
MIH setting for the device. For more information on the SETIOS MIH command, see OS/390 System
Commands.

I/O timing
The I/O timing facility abnormally ends the following I/O requests that have exceeded the I/O timing limits
specified for a device:

v Queued requests waiting for execution.

v Start pending requests.

v Active requests.

For any I/O requests that exceeds the I/O timing limit, the system performs the following actions:

v Abnormally ends the I/O request that has exceeded the time limit, and does not requeue the request for
execution.

v Issues a message.

v Writes an entry in the SYS1.LOGREC data set for the abnormally ended I/O request.

Note: Installations that want the system to issue an I/O timing message and record in SYS1.LOGREC,
but do not want to abnormally end the I/O request can do so with I/O timing message-only
processing. Message-only processing allows the system to detect I/O timeout conditions, but,
provides the ability to allow the user to decide which I/O requests should be terminated.

The system records data associated with the original I/O error, if any exists.

IBM Recommendations for I/O Timing Limits: Within 1 second, the system abnormally ends an I/O request
that has exceeded the I/O timing limit. IBM recommends setting your I/O timing limits to 6 seconds or
longer. An I/O timing limit of less than 6 seconds can result in a loss of service information required to
correct a DASD subsystem hardware failure that triggered the long I/O event. In addition, a limit of less
than 6 seconds can result in a loss of SYS1.LOGREC records.

Notes:

1. To cancel the I/O timing limit, (that is, to have no time limit on I/O requests) specify IOTIMING=00:00.

2. I/O timing is only supported for non-paging DASD devices.

IECIOSxx

382 z/OS V1R4.0 MVS Initialization and Tuning Reference

Interaction of MIH and I/O timing processing
You may specify that both MIH processing and I/O timing processing monitor your I/O requests. When the
value you specify for the I/O limit is less than or equal to the value you specify for MIH, I/O timing
processing takes precedence over MIH processing. The system will abnormally end the I/O request when
it exceeds the I/O timing limit that you have specified. MIH processing will not get control.

When the value that you specify for the I/O timing limit is greater than the value that you specify for MIH,
normal MIH recovery will be in effect until the I/O timing limit is reached. Once the I/O request exceeds the
I/O timing limit that you have specified, the system will abnormally end the I/O request.

To get the full benefit of MIH recovery, your MIH time intervals plus your MIH time intervals for the HSCH
and CSCH instructions should be at least 1 second less than your I/O timing limit.

Hot I/O (HOTIO)
“Hot I/O” refers to a hardware malfunction that causes repeated, unsolicited I/O interrupts. If such I/O
interrupts are not detected, the system can loop or the system queue area (SQA) can be depleted. IOS
tries to detect the hot I/O condition and perform recovery before the system requires a reIPL.

When the number of repeated, unsolicited I/O interrupts reaches the threshold value defined in the HIDT,
IOS assumes that there is a hot I/O condition and proceeds to perform recovery actions. Recovery actions
taken for a “hot” device depend on the type of device and its reserve status.

Table 16. HOTIO Parameters

Non-ESCON ESCON

Reserved Not Reserved Reserved Not Reserved

DASD or dynamic
pathing device

DFLT113 DFLT111 SDFT112 SDFT111

non-DASD and
non-dynamic pathing

device

-- DFLT110 -- SDFT110

You can use HOTIO statements in IECIOSxx to modify the HIDT, and to eliminate operator intervention
where recovery actions defined in the HIDT (by default) require the operator to respond to a message.

Note: To cancel hot I/O processing (that is, to have no detection and no recovery from hot I/O conditions)
specify 0 for the device threshold value — DVTHRSH=0.

IOS component tracing
IOS traces events during its processing that may aid in the debugging of problems involving the IOS
component. You can use the CTRACE statement in IECIOSxx to identify the SYS1.PARMLIB member that
contains the IOS component trace options. If no CTRACE statement is specified, IOS component trace is
initialized with default minimum trace options. For more information on IOS component tracing, see z/OS
MVS Diagnosis: Tools and Service Aids.

Parameter in IEASYSxx (or specified by the operator):

IOS=xx

IECIOSxx

Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE and TERMINAL parameters) 383

The two alphanumeric characters (xx) are appended to IECIOS to identify the IECIOSxx parmlib member.
If the IOS parameter is not specified, the system uses defaults for MIH processing, defaults for hot I/O,
and defaults for IOS CTRACE processing.

To change the IECIOSxx member after initialization, you can specify the SET IOS=xx command. The SET
IOS=xx command changes the I/O timing limits and MIH intervals. It does not, however, change the values
initialized for hot I/O detection and it does not change the current IOS CTRACE options. Changing the hot
I/O detection or recovery values requires a reIPL. Changing the CTRACE parmlib member or options
requires the use of the TRACE operator command. (For a description of the TRACE operator command,
see z/OS MVS System Commands.)

Syntax rules for IECIOSxx
The following rules apply to the creation of IECIOSxx:

v Use columns 1 through 71 for data; columns 72 through 80 will be ignored.

v An asterisk (*) in column 1 indicates a comment record. Note that comment records cannot be
continued and that comments cannot appear in a parameter record.

v Each record must start with MIH, HOTIO, or TERMINAL followed by one or more blanks, or must be a
valid CTRACE specification in the format given below.

v The format for each record is:
MIH parameter[,parameter]. . .
MIH IOTIMING=mm:ss,parameter[,parameter]. . .
HOTIO parameter[,parameter]. . .
TERMINAL parameter[,parameter]. . .
CTRACE(parmlib_member_name)

v If duplicate keywords are found, the last occurrence of the keyword will be used.

v On MIH records, specify the DEV and TIME keywords as a pair. That is, use them together on one
record to define time intervals for specific device numbers.

v On MIH records, only one pair of DEV and TIME keywords can appear on any one record. They can
appear in any order, and can be separated by other keywords.

v On MIH records, if the same device number exists in more than one DEV keyword, the time interval
specified for the last occurrence of the DEV keyword (containing the device number) will be used.

v You can code an MIH time interval and I/O timing limit on the same record when either of the following
is true:

– All the devices listed in the record are to be monitored by both the MIH and the I/O timing facility. In
the following example, device A20 and devices A11, A12, and A14 will have both an MIH time
interval of 5 seconds and an I/O timing limit of 11 seconds:
MIH DEV=(A20,A11-A14),TIME=00:05,IOTIMING=00:11

– A device class is to be monitored by the MIH, and an individual device (or range of devices) is to be
monitored by the I/O timing facility.

When the device class is DASD, the MIH will monitor all DASD devices, including those specified on
the DEV parameter. The I/O timing facility will monitor only those devices specified on the DEV
parameter. In the following example, the DASD device class will have an MIH time interval of 5
seconds. Device A20 and devices A11, A12, A13, and A14 will have an MIH time interval of 5
seconds, and will also have an I/O timing limit of 11 seconds.
MIH DASD=00:05,DEV=(A20,A11-A14),IOTIMING=00:11

When the device class is not DASD, the MIH will monitor the device class, and the I/O timing facility
will monitor only those devices specified on the DEV parameter. In the following example, the tape
device class will have an MIH time interval of 5 minutes. Device B12 is a DASD device, because
only DASD devices can be monitored by the I/O timing facility. Device B12 will have an I/O timing
limit of 10 seconds.

IECIOSxx

384 z/OS V1R4.0 MVS Initialization and Tuning Reference

MIH TAPE=05:00,DEV=B12,IOTIMING=00:10

v To request that the MIH monitor one device (or range of devices) and the I/O timing facility monitor
device (or range of devices), code two separate records.

v If multiple TERMINAL statements are found, only the last valid one specified applies. All others will be
ignored.

v TERMINAL statements that are found in IECIOSxx members that are activated via the SET IOS=xx
operator command will be processed so you can dynamically change the setting for this value, or make
the initial specification.

v On CTRACE records, you cannot indicate more than one CTRACE specification per record. That is,
once ″CTRACE(xxxxxxxx)″ has been found, the rest of the record is treated as comments.

v You can establish I/O timing for the entire DASD device class by using a device class name of
IOTDASD. In the example below, an I/O timing limit of 1 minute is established for all DASD devices.
MIH IOTDASD=01:00

– When the IOTDASD device class name is specified with the DEV and IOTIMING keywords, all
devices specified on the DEV keyword will have an I/O timing limit equal to the limit specified on the
IOTIMING keyword. In the example below, an I/O timing limit of 5 seconds is established for DASD
devices 180 through 18F and an I/O timing limit of 30 seconds is established for all other DASD
devices.
MIH IOTDASD=00:30,DEV=(180-18F),IOTIMING=00:05

– To request that the I/O timing facility monitor a device (or devices) with message-only processing
active, use the MSGONLY keyword. In the following example, an I/O timing limit of 1 minute is
established for all DASD devices. Furthermore, message-only processing is established for all DASD
devices. This implies that if any I/O request to any DASD device exceeds the I/O timing limit, then
the system will issue a message, record the condition in SYS1.LOGREC, and will NOT abnormally
terminate the I/O request. Instead, the request is left in the system. If another I/O timing interval
expires, the system will reissue a message, and rerecord the condition in SYS1.LOGREC.
MIH IOTDASD=01:00,MSGONLY=YES

In the following example, an I/O timing limit of 10 minutes and message-only processing is
established for device 180 through 18F.
MIH DEV=(180-18F),IOTIMING=10:00,MSGONLY=YES

To turn off message-only processing, either use the MSGONLY=NO keyword, or set the I/O timing
limit for the device (or devices) to zero (00:00).

Note: Indicating IOTDASD=00:00 will not turn off I/O timing nor reset message-only processing for
any devices that were explicitly set up for I/O timing using the DEV and IOTIMING keywords.

Syntax Examples:
HOTIO DVTHRSH=200
MIH STND=02:30,DASD=00:10,DEV=03C0,TIME=01:30
MIH DEV=(2E8-2FF,7300-7370),TIME=00:30
MIH 3851=15:00
HOTIO DFLT110=(BOX,BOX)
HOTIO DFLT111=(CHPK,BOX)
HOTIO DFLT112=(CHPK,BOX)

HOTIO SDFLT110=(BOX,BOX)
HOTIO SDFT1111=(CUK,BOX)
HOTIO SDFT1112=(CUK,OPER)
HOTIO BOX_LP=(DASD,TAPE,UREC,COMM,CTC,GRAF,CHAR,ALL)
HOTIO BOX_LP=(DASD,TAPE,UREC)
HOTIO BOX_LP=(ALL)
MIH IOTIMING=00:12,DEV=(2E8-2FF,730-737)
MIH IOTIMING=00:12,DEV=200,MSGONLY=YES
MIH IOTDASD=10:00,MSGONLY=YES

IECIOSxx

Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE and TERMINAL parameters) 385

MIH CTC=02:30,IOTIMING=00:00,DEV=(180-187,230,B10-B17)
MIH TIME=00:00,DEV=(180-187,230,B10-B17)
TERMINAL BOX_LP=(DASD)
TERMINAL BOX_LP=(TAPE,UREC)
TERMINAL BOX_LP=(ALL)
CTRACE(CTIIOS00)

In the preceding syntax examples, the last two MIH records specify IOTIMING=00:00 and TIME=00:00.
These specifications cancel MIH or I/O timing processing for the device numbers on the associated DEV
keyword. Similarly, you can cancel hot I/O processing by specifying:
HOTIO DVTHRSH=0

Note: For 3800 devices, the default of 3 minutes for the MIH interval might not be sufficient. The
recommended MIH interval for a 3800 is 5 minutes.

IBM-supplied default for IECIOSxx
There is no default IECIOSxx parmlib member. However, there are default time intervals for MIH
processing, and a default device threshold value, as well as default recovery actions, for hot I/O
processing. Also, there are default IOS component tracing options which are established at IPL time. (The
following parameter descriptions define the defaults.)

The default for I/O timing processing is that I/O requests are not timed.

Statements/parameters for MIH
CHAR=mm:ss

Specifies the MIH time interval to be used for the character reader device class, where mm is minutes
and ss is seconds.

Value Range:
mm=00-99
ss=00-59

Default: 03:00

COMM=mm:ss
Specifies the MIH time interval to be used for the communications device class, where mm is minutes
and ss is seconds.

Value Range:
mm=00-99
ss=00-59

Default: 03:00

CTC=mm:ss
Specifies the MIH time interval to be used for the channel-to-channel device class, where mm is
minutes and ss is seconds.

Value Range:
mm=00-99
ss=00-59

Default: 03:00

DASD=mm:ss
Specifies the MIH time interval to be used for all direct access devices (DASD), where mm is minutes
and ss is seconds.

IECIOSxx

386 z/OS V1R4.0 MVS Initialization and Tuning Reference

Value Range:
mm=00-99
ss=00-59

In general, the default time interval (15 seconds) is sufficient for most DASD configurations. However,
IBM recommends higher-than-default MIH values for the DASD 3390 configurations shown in Table 17:

Table 17. 3390 Configurations That Require Higher-Than-Default MIH Values

DASD Device Control Unit MIH Time Interval

3390 3990 Model 3 30 seconds

3990 Model 6 30 seconds

3995 Model 151 45 seconds

3995 Model 153 45 seconds

For the IBM-recommended MIH value for your DASD configuration, see the appropriate Planning,
Installation, and Storage Administration Guide.

Default: 00:15

IOTDASD=mm:ss
Specifies the I/O timing limit to be used for all non-paging direct access storage devices (DASD),
where mm is minutes and ss is seconds. The maximum I/O timing limit is 5,999 seconds. When
IOTDASD is set to 00:00, I/O timing is not in effect for the DASD device class.

Value Range:
mm=00-99
ss=00-59

Note that initially, the time interval is set to 00:00, which indicated that the I/O timing facility is not
active for any DASD.

Note also that the MSGONLY keyword can also be used to set I/O timing message-only processing on
or off for all DASD devices.

Default: 00:00

DEV=devnum
Specifies the device number(s) for the device(s) for which specific time intervals are to be used. To
specify more than one device number, use a comma to separate the device numbers. To specify a
range of device numbers, use a hyphen to separate the beginning and ending device numbers. If
more than one device number is specified, enclose the device numbers in parentheses.

Note: The DEV keyword must precede or follow the TIME keyword on the same record.

Value Range: 1 to 4 hexadecimal digits, optionally preceded by a slash (/).

Default: None

GRAF=mm:ss
Specifies the MIH time interval to be used for the graphics device class, where mm is minutes and ss
is seconds.

Value Range:
mm=00-99
ss=00-59

IECIOSxx

Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE and TERMINAL parameters) 387

Default: 03:00

HALT=mm:ss
Specifies the MIH time interval to be used for monitoring Halt (HSCH) and clear (CSCH) subchannel
operations. This keyword is device independent; setting it affects all devices on the system.

Value Range:
mm=00-99
ss=00-59

Default: 00:05

IOTIMING=mm:ss
Specifies the I/O timing limit to be used for monitoring I/O requests to DASD devices. The maximum
I/O timing limit is 5,999 seconds. When IOTIMING is set to 00:00, I/O timing is not in effect for that
device or range of devices.

Value Range:
mm=00-99
ss=00-59

Note that the MSGONLY keyword can be used to set I/O timing message-only processing on or off for
specific DASD devices.

Default: I/O requests are not timed.

MSGONLY=YES|NO
Specifies whether an I/O timeout condition is processed using full I/O timing recovery (MSGONLY=NO)
or message only recovery (MSGONLY=YES). When MSGONLY=NO is specified and an I/O request
exceeds the I/O timing interval, a message is issued to the operator, a record is written to
SYS1.LOGREC, and the I/O request is abnormally terminated. When MSGONLY=YES is specified and
an I/O request exceeds the I/O timing interval, a message is issued to the operator and a record is
written to SYS1.LOGREC, however, the I/O request is NOT abnormally terminated. Instead, the
request is left in the system.

Message-only processing allows the system to detect I/O timeout conditions, but, provides the ability
to allow the user to decide which I/O requests should be terminated.

Notes:

1. If more than one MSGONLY keyword appears on a record, the last valid MSGONLY keyword is
used.

2. The MSGONLY keyword is only valid when the IOTDASD keyword is specified or when the DEV
and IOTIMING keywords are specified. Otherwise, the MSGONLY keyword is ignored. This implies
that the MSGONLY keyword value only relates to devices that are affected by the IOTDASD or
DEV/IOTIMING keywords.

Default: NO

MNTS=mm:ss
Specifies the MIH time interval to be used for monitoring ‘mount pending’ conditions for DASD and
TAPE devices.

Value Range:
mm=00-99
ss=00-59

Default: 03:00

MOUNTMSG=YES|NO
Specifies that MIH is to issue all MIH mount pending messages.

IECIOSxx

388 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default: NO

STND=mm:ss
Specifies the MIH time interval to be used for all of the following device classes:
v Character readers (CHAR)
v Communications (COMM)
v CTCs (CTC)
v Graphics (GRAF)
v Tapes (TAPE)
v Unit records (UREC).

Specify the time interval as mm:ss, where mm is minutes and ss is seconds.

If you code STND following CHAR, COMM, CTC, GRAF, TAPE, or UREC, the value for STND
overrides the values for those device classes. Similarly, if you code CHAR, COMM, CTC, GRAF,
TAPE, or UREC following STND, the values for those device classes override the value for STND. For
example:
SETIOS MIH,CTC=01:00,STND=04:00,DASD=00:10,HALT=00:08,TAPE=05:00

In this example, the value for the CTC device class is 4:00, because the value specified for STND
overrides the value specified for CTC. However, the value for the tape device class is 5:00, because
the value specified for TAPE overrides the value specified for STND. Thus, this MIH record sets the
values for CHAR, COMM, CTC, GRAF, and UREC to 4:00, and sets the value for TAPE to 5:00.

Value Range:
mm=00-99
ss=00-59

Default: 03:00

TAPE=mm:ss
Specifies the MIH time interval to be used for the tape device class, where mm is minutes and ss is
seconds.

Value Range:
mm=00-99
ss=00-59

IBM recommends the following time intervals, based on tape device class:

Tape Device Class Time Interval

3480 5 minutes

3490 5 minutes

3490E 10 minutes

3490E (When loaded with IBM Enhanced Capacity
Cartridge System Tape)

20 minutes

Note: You may specify either TAPE (such as ‘TAPE=10:00’), or a combination of DEV and TIME, for
example:

DEV=(4A1-4E7),TIME=10:00

The time interval you set with the TAPE parameter will apply to all tape device types. You
cannot set time intervals for specific esoteric or generic groups.

IECIOSxx

Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE and TERMINAL parameters) 389

If your configuration indicates IBM 3590-1 tape devices, see the notes under “Missing interrupt handler
(MIH)” on page 381. The IBM 3590-1 is an example of a device that exploits the primary/secondary
MIH timing enhancement.

Default: 03:00

TEST
Specifies the system is to dynamically test MIH parameters and values. The TEST parameter is
ignored during initialization. The system uses this parameter when you issue a SET IOS=xx command
to syntax check the MIH updating.

TIME=mm:ss
Specifies the MIH time interval to be used for the devices identified on the DEV keyword, where mm is
minutes and ss is seconds.

Note: The TIME keyword must precede or follow the DEV keyword on the same record.

Value Range:
mm=00-99
ss=00-59

Default: None

UREC=mm:ss
Specifies the MIH time interval to be used for the unit record device class, where mm is minutes and
ss is seconds.

Value Range:
mm=00-99
ss=00-59

Default: 03:00

Statements/parameters for HOTIO
DVTHRSH=ddddd

Specifies the device threshold for unsolicited I/O interrupts, which must be reached for hot I/O
recovery to begin.

Value Range: 0-32767

Default: 100

DFLT110=(options)
Specifies the recovery action to be taken for a non-DASD, non-dynamic pathing device. (For the
recovery actions that can be specified as options, see “Options for HOTIO recovery” on page 391.)

Default: (BOX,BOX)

DFLT111=(options)
Specifies the recovery action to be taken for a DASD or a dynamic pathing device that is not reserved
or assigned. (For the recovery actions that can be specified as options, see “Options for HOTIO
recovery” on page 391.)

Default: (CHPK,BOX)

DFLT112=(options)
Specifies the recovery action to be taken for a DASD or a dynamic pathing device that is reserved or
assigned. (For the recovery actions that can be specified as options, see “Options for HOTIO
recovery” on page 391.)

Default: (CHPK,OPER)

IECIOSxx

390 z/OS V1R4.0 MVS Initialization and Tuning Reference

SDFT110=(options)
Specifies the recovery action to be taken for a non-DASD, non-dynamic pathing device that is
attached to an IBM ESCON channel path. (For the recovery actions that can be specified as options,
see “Options for HOTIO recovery”).

Default: (BOX,BOX)

SDFT111=(options)
Specifies the recovery action to be taken for a DASD or a dynamic pathing device that is not reserved
or assigned and is attached to an IBM ESCON channel path. (For the recovery actions that can be
specified as options, see “Options for HOTIO recovery”.)

Default: (CUK,BOX)

SDFT112=(options)
Specifies the recovery action to be taken for a DASD or a dynamic pathing device that is reserved or
assigned and is attached to an IBM ESCON channel path. (For the recovery actions that can be
specified as options, see “Options for HOTIO recovery”.)

Default: (CUK,OPER)

BOX_LP=(device_classes)
Specifies which device classes should be boxed instead of performing channel path recovery when all
of the following conditions are true:

v the device is defined on the CHPID being recovered.

v either all of the device’s paths are undergoing recovery or this is the only path to the device.

v the device is currently reserved or assigned.

The device classes you can specify for BOX_LP are DASD, TAPE, UREC, COMM, CTC, and GRAF.
You can also specify:
v NONE to turn off BOX_LP processing for all device classes.
v ALL to turn on BOX_LP processing for all device classes. ALL is the recommended setting.

Default: (ALL)

Options for HOTIO recovery
The parameters (DFLT110, DFLT111, DFLT112, SDFT110, SDFT111, and SDFT112) that are used to
specify recovery actions have default options defined in the HIDT. Each of these parameters has a default
option for non-recursive hot I/O conditions and a default option for recursive hot I/O conditions. You can
override one or both options.

For example, if you want to override the DFLT111 non-recursive default option (CHPK) so that the
recovery action would have to be obtained from the operator, code: DFLT111=(OPER,). Note that the
options are enclosed in parentheses and separated by a comma.

The following options can be specified for both non-recursive and recursive hot I/O conditions. Code the
options with the DFLT110, DFLT111, DFLT112, SDFT110, SDFT111, and SDFT112 parameters, and use
the following format:

Parameter=(a,b)

where:
a is the action to be taken for a non-recursive hot I/O condition.
b is the action to be taken for a recursive hot I/O condition.

Option Meaning and Use

BOX Specifies that the device is to be forced offline.

IECIOSxx

Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE and TERMINAL parameters) 391

|

|

|
|
|
|

|

CHPF Specifies that the channel path over which the last interrupt for the hot device was received is to
be forced offline.

CHPK Specifies that channel path recovery is to be initiated for the channel path over which the last
interrupt for the hot device was received. If successful, the channel path is to remain online.

Note: If a device on the channel path undergoing channel path recovery belongs to a device class
specified in the BOX_LP=(...) parameter, then that device may become boxed instead of
undergoing channel path recovery.

OPER Specifies that the recovery action is to be obtained from the operator.

CUK Specifies that control unit recovery is to be initiated for the channel path over which the last
interrupt for the hot device was received.

Note: The CUK option is valid only for IBM ESCON channel paths (SDFT110, SDFT111, and
SDFT112).

Statements/parameters for TERMINAL
TERMINAL BOX_LP =(device_classes)

Specifies special recovery actions for recovering from a terminal or hung interface condition. The
TERMINAL statement specifies which device classes should be boxed instead of performing channel
path recovery to recover from a hung interface (or terminal condition). Box processing will override
channel path recovery processing when all of the following are true:

v the device is defined on the CHPID being recovered

v either all of the device’s paths are undergoing recovery or this is the only path to the device.

v the device is currently reserved or assigned.

The device classes you can specify for BOX_LP are DASD, TAPE, UREC, COMM, CTC, and GRAF.
You can also specify:
v NONE to turn off BOX_LP processing for all device classes.
v ALL to turn on BOX_LP processing for all device classes. ALL is the recommended setting.

Default: (ALL)

Statements/parameters for CTRACE
CTRACE(parmlib_member_name)

where parmlib_member_name is an 8-character SYS1.PARMLIB member name which must be in the
format CTnIOSxx, where:
n is an alphanumeric character that specifies the source of the member. IBM-supplied members

use “I”.
xx is any two alphanumeric characters.

Default: None

Note that if the CTRACE parameter is not used, then IOS component tracing is activated to trace minimum
operations.

For more information about specifying options for the IOS component trace, or for more information IOS
minimum operations see z/OS MVS Diagnosis: Tools and Service Aids. For information about coding the
component trace member of SYS1.PARMLIB, see “CTncccxx (Component Trace Parameters)”.

IECIOSxx

392 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

|

|
|
|
|

|

Chapter 49. IEFSSNxx (subsystem definitions) - keyword
parameter form

Note

IBM recommends that you use the keyword parameter form of the IEFSSNxx parmlib member, which
is described here. However, the positional parameter form of the IEFSSNxx parmlib member is still
supported. See Appendix A, “IEFSSNxx (subsystem definitions) - positional parameter form” on
page 573 for more information. Subsystems defined in the keyword parameter form of the IEFSSNxx
parmlib member can use dynamic SSI services, while subsystems defined in the positional form of
the IEFSSNxx parmlib member cannot use dynamic SSI services. See z/OS MVS Using the
Subsystem Interface for more information on dynamic SSI services.

IEFSSNxx contains parameters that define the primary subsystem and the various secondary subsystems
that are to be initialized during system initialization.

IEFSSNxx allows you to:

v Name the subsystem initialization routine to be given control during master scheduler initialization.

v Specify the input parameter string to be passed to the subsystem initialization routine.

v Specify a primary subsystem name and whether you want it started automatically.

For information about writing subsystems, see z/OS MVS Using the Subsystem Interface.

The order in which the subsystems are initialized depends on the order in which they are defined in the
IEFSSNxx parmlib member on the SSN parameter. Unless you are starting the Storage Management
Subsystem (SMS), start the primary subsystem (JES) first. Some subsystems require the services of the
primary subsystem in their initialization routines. Problems can occur if subsystems that use the subsystem
affinity service in their initialization routines are initialized before the primary subsystem. If you are starting
SMS, specify its record before you specify the primary subsystem record.

Note: In general, it is a good idea to make the subsystem name the same as the name of the member of
sys1.proclib used to start the subsystem. If the name does not match, you may receive error
messages when you start the subsystem.

The format of the IEFSSNxx record for SMS is described in “Defining SMS through the IEFSSNxx
member” on page 409.

Restrictions for IEFSSNxx
The following restrictions apply:
v All subsystem definitions in a single IEFSSNxx member must use the same format. A single member

cannot contain both positional and keyword definitions.
– If a member begins with the positional format and switches to the keyword format, processing of the

member stops, and the IEFJ002I message is issued. The last subsystem definition processed for the
member is the last positional format definition before the switch. The system does not process
another definition of either format from the member, but continues processing with the next member,
if any.

– If a member begins with the keyword format and a positional format definition is found, the system
issues a syntax error message, and processing continues with the next definition of the keyword
format.

– Once a subsystem name is defined to the system, any attempt to start that subsystem (or any
started task with the same name as that subsystem) via a START command which does not explicitly

© Copyright IBM Corp. 1991, 2002 393

|
|

specify SUB=JES2 (or JES3) will result in that subsystem or started task being started under the
Master subsystem rather than under the job entry subsystem. Because the only procedure libraries
available to the Master subsystem are those specified in the MSTJCLxx’s IEFPDSI data set, any
procedures being started that are defined in the job entry subsystem’s PROC00 data set, but not in
the MSTJCLxx’s IEFPDSI data set, will be unavailable. Therefore they will not be found; the system
will issue message IEFC612I.

Only subsystems that have been defined using the keyword format IEFSSNxx parmlib member, the IEFSSI
REQUEST=ADD macro or the SETSSI ADD system command can use the following dynamic SSI
services:

v Macros
IEFSSI REQUEST=ACTIVATE
IEFSSI REQUEST=DEACTIVATE
IEFSSI REQUEST=OPTIONS
IEFSSI REQUEST=SWAP
IEFSSI REQUEST=GET
IEFSSI REQUEST=PUT
IEFSSVT

v System commands
SETSSI ACTIVATE
SETSSI DEACTIVATE

You cannot use dynamic SSI services for subsystems defined with the positional form of this member. See
Appendix A, “IEFSSNxx (subsystem definitions) - positional parameter form” on page 573 for more
information on the positional form of this member.

Parameter in IEASYSxx (or supplied by the operator):
The SSN parameter in IEASYSxx identifies the IEFSSNxx member that the system is to use to initialize
the subsystems, as follows:

SSN={aa }
{(aa,bb,...)}

The two-character identifier, represented by aa (or bb, and so forth) is appended to IEFSSN to identify
IEFSSNxx members of parmlib. If the SSN parameter is not specified, the system uses the IEFSSN00
parmlib member.

The order in which the subsystems are defined on the SSN parameter is the order in which they are
initialized. For example, a specification of SSN=(13,Z5) would cause those subsystems defined in the
IEFSSN13 parmlib member to be initialized first, followed by those subsystems defined in the IEFSSNZ5
parmlib member. If you specify duplicate subsystem names in IEFSSNxx parmlib members, the system
issues message IEFJ003I to the SYSLOG, the master console, and consoles that monitor routing code 10
messages.

Some exits that use system services may run before other system address spaces are active. You must
ensure that any address spaces required by the system services are available prior to invoking the
service.

For more information, see the section on handling errors in defining your subsystem in z/OS MVS Using
the Subsystem Interface.

IEFSSNxx

394 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|
|
|
|

Syntax rules for IEFSSNxx
The following rules apply to the creation of IEFSSNxx:

v Each SUBSYS statement in IEFSSNxx defines one subsystem to be initialized.

v Use columns 1 through 71. Do not use columns 72-80, because the system ignores these columns.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v A statement must begin with a valid statement type followed by at least one blank or end-of-line. If there
is an error in the statement type, the system will flag the error on the preceding statement.

v A statement ends with the beginning of the next valid statement type or end-of-file. Therefore, if there is
an error in a statement type, the system will flag the error on the preceding statement.

v A statement can be continued even though there is no explicit continuation character. Be aware that if
the system cannot recognize the start of a statement (for example, if the next statement starts with an
error in the statement type), it will automatically assume that it is a continuation of the previous
statement.

v Operands must be separated by valid delimiters. Valid delimiters are a blank, or column 71. If the
operand contains parentheses, then the right parenthesis is accepted as a valid delimiter.

v Multiple occurrences of a delimiter (except for parentheses) are accepted, but treated as one.

IBM-supplied default for IEFSSNxx
If you do not specify the SSN system parameter, the system uses the IEFSSN00 parmlib member.
IEFSSN00 specifies JES2 as the primary subsystem.

If you specify a set of IEFSSNxx members that do not identify a primary subsystem, the system issues a
message that prompts the operator to specify the primary subsystem.

Statements/parameters for IEFSSNxx

SUBSYS
The statement that defines a subsystem that is to be added to the system. If more than one SUBSYS
statement appears for the same subsystem name, the first statement will be the one used to define
the subsystem. The duplicate statements will be rejected with a failure message that is sent to the
console.

SUBNAME(subname)
The subsystem name. The name can be up to 4 characters long; it must begin with an alphabetic or
national character (#, @, or $), and the remaining characters (if any) can be alphanumeric or national.

CONSNAME(consname)
The name of the console to which any messages that the SSI issues as part of initialization
processing are to be routed. This name is optional and can be 2-8 characters long. This console name
is also passed to the routine named on the INITRTN keyword if it is specified.

The default is to issue messages to the master console.

INITRTN(initrtn)
The name of the subsystem initialization routine. This name is optional and can be 1-8 characters
long. The first character can be either alphabetic or national (#, @, or $). The remaining characters

SUBSYS SUBNAME(subname)
[CONSNAME(consname)]
[INITRTN(initrtn)

[INITPARM(initparm)]]
[PRIMARY({NO|YES})

[START({YES|NO})]]

IEFSSNxx

Chapter 49. IEFSSNxx (subsystem definitions) - keyword parameter form 395

|
|

|
|

|
|
|
|

can be either alphanumeric or national. The routine receives control in supervisor state key 0. It must
be the name of a program accessible through LINKLIB.

INITPARM(initparm)
Input parameters to be passed to the subsystem initialization routine. The input parameters are
optional and are variable in length for a maximum of 60 characters. If blanks, commas, single quotes,
or parentheses are included in the input parameters, the entire parm field must be enclosed in single
quotes. If the parm field is enclosed in single quotes, a single quote within the field must be specified
as two single quotes.

The INITPARM keyword can only be specified if the INITRTN keyword is specified.

PRIMARY({NO|YES})
Parameter indicating whether this is the primary subsystem. The primary subsystem is typically a job
entry subsystem (either JES2 or JES3).

This parameter is optional. Initialize the primary subsystem before any secondary subsystem(s) except
SMS. If you specify PRIMARY on more than one statement, the system issues message IEFJ008I and
defines the second subsystem but ignores the PRIMARY specification.

The IEFSSNxx parmlib member is the only place you can define the primary subsystem. It cannot be
defined using the dynamic SSI services IEFSSI REQUEST=ADD macro or the SETSSI ADD
command.

The default is NO.

START({YES|NO})
Parameter indicating whether an automatic START command should be issued for the primary
subsystem.

If the parmlib entry for the primary subsystem is START(NO), the operator must start it later with a
START command. If the parmlib entry for the primary subsystem does not specify the START
parameter, it defaults to START(YES).

The START parameter cannot be specified for a secondary subsystem. If you specify the
PRIMARY(NO) parameter, there is no default for the START parameter.

You can include any number of records in the IEFSSNxx parmlib member.

Examples of IEFSSNxx member

Example 1
Define subsystem ‘JES2’ as a primary subsystem and the START command to be issued by the system.
No initialization routine is required because subsystem JES2 builds the SSVT when the START command
is issued.
SUBSYS SUBNAME(JES2) PRIMARY(YES)

Example 2
Define subsystem ‘ABC’. Call its initialization routine, which will build the SSVT.
SUBSYS SUBNAME(ABC) INITRTN(INITPGM)

IEFSSNxx

396 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 50. IFAPRDxx (product enablement policy)

Use the IFAPRDxx parmlib member to define the enablement policy for products or product features that
support product enablement. The policy lists the products and features, as well as the system environment
in which they are enabled to run.

When an installation orders an IBM product, like OS/390, that provides product enablement, IBM supplies
a tailored IFAPRD00 member of SYS1.PARMLIB. This tailored member enables the product and any
optional features ordered with the product. Your installation can, however, order additional optional features
from IBM at a later time, then enable these features after contacting IBM, subject to the product’s license
terms and conditions. For information about how to define a specific IBM product, see z/OS MVS Product
Management.

To enable an optional product or feature, you add it to the policy; that is, you add the product to an
IFAPRDxx member, then activate the member. Adding a product to the policy is the most common task
related to IFAPRDxx; you can, however, disable a product or remove it from the policy. Note that adding a
product or feature might require changes to other SYS1.PARMLIB members and an IPL before the product
or feature can run.

The system builds the enablement policy from the PRODUCT statements and WHEN statements in the
active IFAPRDxx member(s). Each WHEN statement defines a system environment. PRODUCT
statements identify products and product features that are enabled or disabled when running in the system
environment defined on the preceding WHEN statement.

The system checks the policy when a product, such as an optional OS/390 feature, calls the Register
service during its initialization. If a product in the policy is not defined or not found, the type of register
request determines whether the product is treated as enabled or disabled. For information about the
Register service, see z/OS MVS Programming: Product Registration. For information about how to set up
your system to report on registered products, including those that support product enablement, see z/OS
MVS Product Management.

When the system checks the policy for a match with a product that is registering, all comparisons allow
wildcard characters (* and ?). You can thus define WHEN statements that match multiple system
environments and PRODUCT statements that match multiple products.

To determine enablement, the system matches the product that is registering against the statements in the
enablement policy. It is possible, because of wildcard characters (? and *) in the policy statements, that
multiple policy statements might match the given input product. In that case, MVS uses the ″best″ match
to determine whether or not the product is enabled, using the following rules:

1. An exact match is better than a wildcard match. There is no differentiation between two wildcard
matches.

2. The parameters are processed in the following order: Prodowner, ProdID, Prodname, Featurename,
Prodvers, Prodrel, and Prodmod. An exact match on a parameter earlier in the list (such as
Prodowner) is better than a match on a parameter later in the list (such as Prodname).

3. If, after applying the first two rules, more than one match remains, MVS uses the first match of those
that remain.

Before creating the member
The contents of this member are controlled by the OS/390 product terms and conditions for those
PRODUCT statements that contain both IBM CORP as product owner and OS/390 as product name.
Before making changes to the PRODUCT statements supplied by IBM in the tailored IFAPRD00 member,
see z/OS MVS Product Management.

© Copyright IBM Corp. 1991, 2002 397

To create or change an IFAPRDxx member, you need to know how to define a system environment and
how to define a product:

v The system environment can include the system name, sysplex name, LPAR name, hardware name,
and VM user ID, if the system is running as a VM guest.

v The product definition can include the product owner (such as ‘IBM CORP’), product name, name of a
product feature, product identifier, and version, release, and modification level for the product. The
definition must include the state, which indicates whether the product is enabled to run on the system,
disabled (not allowed) to run on the system, or not defined.

If the active member includes more than one definition for a product, the system uses the last definition
it encounters.

Usage considerations
Note the following when using the IFAPRDxx member:

v You can use the SET PROD operator command to modify the enablement policy dynamically by
specifying which IFAPRDxx member(s) the system is to use. Statements in the member(s) modify, not
replace, an existing policy.

The change to the policy takes place immediately but does not affect any product instances that are
already running.

v The system does not automatically list the IFAPRDxx parameters at IPL or when the operator issues
SET PROD, but the operator can issue the DISPLAY PROD,STATE command to display the active
enablement policy.

For more information, see z/OS MVS System Commands.

Parameter in IEASYSxx (or issued by the operator):

PROD={aa }
{(aa,bb...)}

The two alphanumeric characters (aa or bb) are appended to IFAPRD to identify an IFAPRDxx parmlib
member. If you do not specify the PROD parameter, there is no active enablement policy; all products that
attempt to register are treated as not found.

To change the IFAPRDxx member(s) after IPL, the operator can issue the SET PROD command to
specify one or more different active members, Some products check the enablement policy during IPL; a
policy change for such a product does not take effect until the next IPL.

Syntax rules for IFAPRDxx
The following syntax rules apply to IFAPRDxx:

v Use columns 1-71. Do not use columns 72-80; the system ignores them.

v Blank lines are allowed anywhere in the member.

v Comments can appear in columns 1-71 and must begin with “/*” and end with “*/”. You can continue a
comment; it does not need to end on the line on which it begins.

v You can use both uppercase and lowercase letters; the system translates lowercase letters to
uppercase letters before processing.

v The system recognizes the end of a statement when it encounters either the beginning of the next valid
statement or an end-of-file (EOF) indicator.

v Use valid delimiters to separate keyword parameters. A valid delimiter is a comma, a blank, or column
71. The system treats multiple blanks as one. Column 71, when within a string enclosed in quotes, is
not a valid delimiter.

IFAPRDxx

398 z/OS V1R4.0 MVS Initialization and Tuning Reference

v Blanks can appear between keyword parameters, between values, and between statements. Blanks
cannot appear within a keyword value unless the value is enclosed in single quotes.

Syntax format of IFAPRDxx
There are two kinds of statements in IFAPRDxx: WHEN and PRODUCT. The WHEN statement defines a
system environment; all PRODUCT statements that follow identify products running on the system that the
preceding WHEN statement defines.

The following diagram shows the syntax of the WHEN statement:

As you use the diagram, consider:
v The WHEN parameter begins the WHEN statement.
v All parameters are optional.
v You must surround any parameters you specify with parentheses.

WHEN ([LPARNAME(l)]
[SYSNAME(sn)]
[SYSPLEX(sp)]
[HWNAME(h)]
[VMUSERID(v)])

IFAPRDxx

Chapter 50. IFAPRDxx (product enablement policy) 399

The following diagram shows the syntax of the PRODUCT statement:

As you use the diagram, consider:
v The PRODUCT parameter begins the PRODUCT statement.
v The STATE parameter is required; all other parameters are optional.

IBM-supplied default for IFAPRDxx
With a product that provides product enablement, such as OS/390, IBM will supply a tailored IFAPRD00
member, one that reflects the optional features that have been ordered.

Statements/parameters for IFAPRDxx
WHEN

Begins a WHEN statement, which specifies a system environment.

To match the system environment you specify on the WHEN statement with the actual system, MVS
compares each specified parameter with the actual system. If all parameters match the actual system,
the WHEN statement is considered to be true, and the system processes the PRODUCT statements
that follow the WHEN statement. Otherwise, the WHEN statement is considered to be false, and the
system ignores the subsequent PRODUCT statements.

When it compares a parameter with an actual system condition, MVS allows wildcard matching.
WHEN statement parameters can include wildcard characters (* and ?) that allow a single parameter
to match many different actual conditions. For example, SYSNAME(SY?) matches system names like
SY1 or SYA but not SYS1. SYSNAME(S*) matches S1 or SYA or SYS1. If you omit a parameter, MVS
treats the parameter as if you had specified an asterisk (*), and, because of wildcard matching, it
always compares as true; it matches the actual system.

The initial state of the WHEN statement is true; that is, if PRODUCT statements appear before any
WHEN statement, MVS processes these PRODUCT statements as if they followed a true WHEN
statement.

When the SET PROD command or the PROD system parameter specifies more than one member,
however, the WHEN state carries over from one member to the next. To avoid a false WHEN state
from a preceding member, begin each member with a WHEN statement, even WHEN(), which is
always true.

Syntax Error: When MVS finds a syntax error in a WHEN statement while it is building the policy,
MVS ignores the WHEN statement and checks the following PRODUCT statements for syntax errors
but does not add them to the policy.

LPARNAME(l)
Specifies the LPAR name, the name of a logical partition defined through HCD or IOCP. To match an
actual LPAR name, specify the 1-8 character name, which can include wildcard characters (* and ?).
To match any LPAR name or to match when the system is not running in a logical partition, specify
LPARNAME(*) or omit the LPARNAME parameter. To match only when the system is not running in a
logical partition, specify LPARNAME().

If you specify an LPAR name when the actual system is not running in a logical partition, the
comparison uses an actual LPAR name of 8 blanks, and there is no match.

PRODUCT [OWNER(o)]
[NAME(n)]
[FEATURENAME(fn)]
[VERSION(v)]
[RELEASE(r)]
[MOD(m)]
[ID(i)]
STATE({ENABLED|DISABLED|NOTDEFINED})

IFAPRDxx

400 z/OS V1R4.0 MVS Initialization and Tuning Reference

SYSNAME(sn)
Specifies the system name, which must be from 1 to 8 characters in length. For the WHEN statement
to be true, the name must match the actual system name. The comparison allows wildcard matching;
the name can contain wildcard characters (* and ?).

The default is SYSNAME(*), which matches any system name.

SYSPLEX(sp)
Specifies the sysplex name, which must be from 1 to 8 characters in length. For the WHEN statement
to be true, the name must match the actual sysplex name. The comparison allows wildcard matching;
the name can contain wildcard characters (* and ?).

The default is SYSPLEX(*), which matches any sysplex name.

HWNAME(h)
Specifies the hardware name, the name (identifier) of a central processor complex (CPC) defined to
HCD. To match an actual hardware name, specify the 1-8 character name, which can include wildcard
characters (* and ?). To match any hardware name or to match when the hardware name related to
the actual system is not known, specify HWNAME(*) or omit the HWNAME parameter. To match only
when the hardware name related to the actual system is not known, specify HWNAME().

If you specify a hardware name when the hardware name related to the actual system is not known,
the comparison uses an actual hardware name of 8 blanks, and there is no match.

VMUSERID(v)
Specifies the userid of a VM/ESA system under which the MVS image is running as a guest. (For
information on running MVS as a VM guest, see VM/ESA Running Guest Operating Systems.)

To match an actual VM userid, specify the 1-8 character userid, which can include wildcard characters
(* and ?). To match any VM userid or to match when the actual system is not running as a VM guest,
specify VMUSERID(*) or omit the VMUSERID parameter. To match only when the actual system is not
running as a VM guest, specify VMUSERID().

If you specify a VM userid when the actual system is not running as a VM guest, the comparison uses
an actual VM userid of 8 blanks, and there is no match.

PRODUCT
Begins a PRODUCT statement. A PRODUCT statement defines a product and its enablement state.

When a product attempts to register, the system matches the input product against the policy
statements.

When it compares an input request with a policy statement, MVS uses wildcard matching. PRODUCT
statement parameters can include wildcard characters (* and ?) that allow a single parameter to match
many different input requests. For example, NAME(NM?) matches product names like NM1 or NMA
but not NAM1. NAME(N*) matches N1 or NMA or NAM1. If you omit a PRODUCT statement
parameter, MVS treats the parameter as if you had specified an asterisk (*), and, because of wildcard
matching, it always compares as true; it matches the input request.

It is thus possible that multiple policy statements might match the given input request. In that case,
MVS uses the best match to determine whether or not the product is enabled, using the following
rules:
1. An exact match is better than a wildcard match. There is no differentiation between two wildcard

matches.
2. The parameters are processed in the following order: OWNER, ID, NAME, FEATURENAME,

VERSION, RELEASE, and MOD. An exact match on a parameter earlier in the list (such as
OWNER) is better than a match on a parameter later in the list (such as NAME).

3. If, after applying the first two rules, more than one match remains, MVS uses the first match of
those that still remain.

IFAPRDxx

Chapter 50. IFAPRDxx (product enablement policy) 401

Note: When MVS is building the policy, it adds to the policy any PRODUCT statement that it finds
after a valid WHEN statement. When there is a syntax error in a WHEN statement, MVS
ignores the WHEN statement and checks the subsequent PRODUCT statements for syntax
errors but does not add them to the policy.

OWNER(o)
Specifies the name of the product owner, such as ‘IBM CORP’. The name must be 1 to 16 characters
long.

The characters should be alphabetic, numeric, national (@, #, $), underscore (_), slash (/), hyphen (-),
or period (.). The system allows wildcard matching; the name can contain wildcard characters (* and
?).

If the name includes lowercase alphabetic characters, embedded blanks, or other characters, enclose
the parameter in single quotes, as in OWNER(’lowercase’).

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

The default is OWNER(*), which matches any product owner name.

NAME(n)
Specifies the product name. The name must be 1 to 16 characters long.

The characters should be alphabetic, numeric, national (@, #, $), underscore (_), slash (/), hyphen (-),
or period (.). The system allows wildcard matching; the name can contain wildcard characters (* and
?).

If the name includes lowercase alphabetic characters, embedded blanks, or other characters, enclose
the parameter in single quotes, as in NAME(’lowercase’).

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

The default is NAME(*), which matches any product name.

FEATURENAME(fn)
Specifies the name of a feature of the product. The name must be 1 to 16 characters long.

The characters should be alphabetic, numeric, national (@, #, $), underscore (_), slash (/), hyphen (-),
or period (.). The system allows wildcard matching; the name can contain wildcard characters (* and
?).

If the name includes lowercase alphabetic characters, embedded blanks, or other characters, enclose
the parameter in single quotes, as in FEATURENAME(’lowercase’).

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

The default is FEATURENAME(*), which matches any feature name.

FN is an accepted abbreviation of FEATURENAME.

VERSION(v)
Specifies the product version, where v must be 1 to 2 characters long.

The characters should be alphabetic or numeric. The system allows wildcard matching; the version
can contain wildcard characters (* and ?).

If v includes lowercase alphabetic characters, embedded blanks, or other characters, enclose the
parameter in single quotes, as in VERSION(’lc’).

The system performs all comparisons in upper case.

The default is VERSION(*), which matches any product version.

VER and VERS are accepted abbreviations of VERSION.

IFAPRDxx

402 z/OS V1R4.0 MVS Initialization and Tuning Reference

RELEASE(r)
Specifies the product release number. r must be 1 to 2 characters long.

The characters should be alphabetic or numeric. The system allows wildcard matching; the release
number can contain wildcard characters (* and ?).

If r includes lowercase alphabetic characters, embedded blanks, or other characters, enclose the
parameter in single quotes, as in RELEASE(’1a’).

The system performs all comparisons in upper case.

The default is RELEASE(*), which matches any release number.

REL is an accepted abbreviation of RELEASE.

MOD(m)
Specifies the product modification level. m must be 1 to 2 characters long.

The characters should be alphabetic or numeric. The system allows wildcard matching; the
modification level can contain wildcard characters (* and ?).

If m includes lowercase alphabetic characters, embedded blanks, or other characters, enclose the
parameter in single quotes, as in MOD(’c2’).

The system performs all comparisons in upper case.

The default is MOD(*), which matches any modification level.

ID(i)
Specifies the product identifier. The identifier must be 1 to 8 characters long.

The characters should be alphabetic, numeric, national (@, #, $), underscore (_), slash (/), hyphen (-),
or period (.). The system allows wildcard matching; the identifier can contain wildcard characters (*
and ?).

If the identifier includes lowercase alphabetic characters, embedded blanks, or other characters,
enclose the parameter in single quotes, as in ID(’lc34’).

The system translates underscores to blanks for comparison and display, and it performs all
comparisons in upper case.

The default is ID(*), which matches any product identifier.

STATE({ENABLED|DISABLED|NOTDEFINED})
The state of the product. If you specify ENABLED or EN, the registering product can continue to run. If
you specify DISABLED, DI, or DIS, the registering product is not to continue. When you specify
NOTDEFINED or ND, the system removes from the policy any existing entry for the product.

Examples
Example 1

To enable the GDDM® REXX feature of OS/390, first see z/OS MVS Product Management for information
about enabling IBM products. Then, use the following PRODUCT statement:
PRODUCT OWNER(’IBM CORP’)

NAME(OS/390)
ID(5645-001)
FEATURENAME(GDDM-REXX)
STATE(ENABLED)

For an OS/390 feature, do not specify VERSION, RELEASE, or MOD; either omit the parameter or specify
an asterisk (*).

Example 2

IFAPRDxx

Chapter 50. IFAPRDxx (product enablement policy) 403

To indicate that the subsequent PRODUCT statements apply only when the products are running on
system S in sysplex SP, specify:
WHEN (SYSNAME(S) SYSPLEX(SP))

Example 3

To indicate that the state of product XXXX owned by YYY INC is to be disabled, specify:
PRODUCT OWNER(’YYY INC’) NAME(XXXX) STATE(DISABLED)

Specifying OWNER(YYY_INC) would have the same result.

Example 4

To remove product XXXX owned by YYY from the enablement policy, specify:
PRODUCT OWNER(YYY) NAME(XXXX) STATE(NOTDEFINED)

Example 5

To indicate that all products with names beginning with the letter I are to be enabled, specify:
PRODUCT NAME(I*) STATE(ENABLED)

IFAPRDxx

404 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 51. IGDDFPKG (DFSMS/MVS functional component
list)

Use the IGDDFPKG member of parmlib to specify which DFSMS/MVS functional components are licensed
for use on a particular MVS/ESA system, or across a sysplex.

Note: When DFSMS/MVS is installed in an OS/390 system, IGDDFPKG parameters are NOT processed.
Instead, DFSMS/MVS functional components are enabled for use on a particular MVS system or
sysplex by using the IFAPRDxx policy described in Chapter 50, “IFAPRDxx (product enablement
policy)” on page 397.

Certain releases of the DFSMS/MVS Network File System (NFS) feature require enabling through
the IDDFPKG member by including a DFSMS_FEATURE=NFS statement. See DFSMS/MVS
Program Directory 5695=DF1 for your level of NFS for further information.

Use the DFSMS_OFFERING statement to specify which of the following DFSMS offerings are licensed for
use on your system:
v DFSMSdfp™

v DFSMSdss™

v DFSMShsm
v DFSMSrmm™.

To prevent the use of unlicensed DFSMS/MVS functional components and features on the system, create
the IGDDFPKG member of SYS1.PARMLIB and specify which components are licensed for use. Users will
be denied access to any components that are not defined as licensed.

If the installation does not provide a IGDDFPKG member, only the DFSMSdfp functional component is
considered to be licensed.

Note: When DFSMS/MVS is installed in a non-OS/390 system, all IGDDFPKG parameters are processed.
If DFSMS/MVS is installed on OS/390 Release 2 or later, IGDDFPKG is not processed. You can
avoid these system dependencies by using Chapter 50, “IFAPRDxx (product enablement policy)” on
page 397 to enable products and features.

Before creating the member
Before creating the IGDDFPKG member, you need to know which DFSMS/MVS functional components are
licensed for use at your installation. If your installation operates multiple MVS systems within a sysplex,
and has different licensing agreements for the systems, you need to know which DFSMS/MVS functional
components are licensed for use on each system. For a sysplex, specify the appropriate DFSMS/MVS
offerings for each system name (the system name that is specified on the SYSNAME= parameter, either at
IPL or in the IEASYSxx member).

Listing components and features in IGDDFPKG
For each MVS system that uses DFSMS/MVS functional components specify the offering level on the
DFSMS_OFFERING statement. The syntax of the statement depends on whether you are specifying
components for one MVS system, or for multiple systems in a sysplex:

v For a single-system installation, or for a sysplex with only one licensing agreement, specify one
DFSMS_OFFERING statement as follows:

DFSMS_OFFERING = n

where n is set to a value that indicates which set of DFSMS/MVS functional components are licensed.

© Copyright IBM Corp. 1991, 2002 405

v For a sysplex, specify one DFSMS_OFFERING statement for each MVS system in the sysplex, as
follows:

DFSMS_OFFERING =(system name,n)

where system name identifies the system, and n is set to a value that indicates which set of
DFSMS/MVS functional components are licensed.

For the valid combinations of DFSMS/MVS functional components specified by n, see
“Statements/parameters for IGDDFPKG” on page 407.

Usage considerations
Note the following when using the IGDDFPKG member:

v You can modify IGDDFPKG between IPLs. Your changes, however, do not take effect until the next IPL
or after issuing the START DFSMSPKG command.

v The operator cannot list the IGDDFPKG parameters. The system, however, issues an informational
message (IEA287I) to the system log (SYSLOG) to indicate which DFSMS/MVS components are
considered to be licensed. To see this message, perhaps for self-auditing purposes, check the
SYSLOG.

v Any syntax error, read error, or unsupported parameter error causes the system to use
DFSMS_OFFERING=1 (only DFSMSdfp is licensed) by default.

Parameter in IEASYSxx (or issued by the operator):
None.

Syntax rules for IGDDFPKG
The following syntax rules apply to IGDDFPKG:

v IGDDFPKG can contain any number of DFSMS_OFFERING statements. The system reads the
statements from left to right, and from top to bottom.

v Use columns 1-80.

v Blank lines are allowed anywhere in the member.

v Comments may appear in columns 1-80 and must begin with “/*”. If the system detects an opening
comment delimiter, it ignores the rest of the line. Therefore, comments may appear as the only entry in
a line, or following the statement, but comments cannot span more than one line. To include
multiple-line comments, enter them as a series of one-line comments, each starting with the opening
comment delimiter.

v You can use both uppercase or lowercase characters.

v You must code the equal sign between DFSMS_OFFERING and its value. Blanks are allowed between
DFSMS_OFFERING and the equal sign, and between the equal sign and the specified value.

v You can enter multiple statements in the IGDDFPKG member, but every statement must be complete
on a single line.

v To specify additional lines, code a comma after the last entry on the line, without intervening blanks and
before any comments on that record.

v If you do not specify the sysname form of the statement, the system uses the current system by default.

v The system processes the member until one of the following conditions is met:
– A valid specification for the current system is found.
– End of member is reached.
– An I/O error occurs.
– A keyword with invalid syntax is found.
– The last entry in the line being processed is not followed by a comma.

IGDDFPKG

406 z/OS V1R4.0 MVS Initialization and Tuning Reference

Syntax format of IGDDFPKG

Syntax examples for IGDDFPKG
Example for a single-system installation:

DFSMS_OFFERING=FULL /* All DFSMS/MVS functional
/* components are licensed on this
/* system.

Example for a sysplex installation:
DFSMS_OFFERING=(TESTSYS1,1), /*DFSMSdfp is licensed

/*on the TESTSYS1 system.

DFSMS_OFFERING =(MIGRSYS1,3), /*DFSMSdfp, DFSMSdss, and
/*DFSMShsm are licensed on
/*the MIGRSYS1 system.

DFSMS_OFFERING = (PRODSYS,FULL) /*All DFSMS/MVS functional
/*components are licensed on
/*the PRODSYS system.

IBM-supplied default for IGDDFPKG
There is no IBM-supplied default IGDDFPKG member. If the installation does not supply the member, or
an error occurs while the system is processing the member, the system uses DFSMS_OFFERING=1 (only
DFSMSdfp is licensed) by default.

IBM-supplied sample for IGDDFPKG
IBM provides a sample member, named IGDDFPKG, in SYS1.SAMPLIB.

Statements/parameters for IGDDFPKG

DFSMS_OFFERING={1|2|3|4|5|FULL }
{(sysname,{1|2|3|4|5|FULL})}

The DFSMS_OFFERING statement specifies which DFSMS/MVS functional components are licensed
for use on the specified system. For a single-system installation, or for a sysplex with only one
licensing agreement, specify one DFSMS_OFFERING statement. For a sysplex with multiple licensing
agreements, specify one DFSMS_OFFERING statement for each system in the sysplex.

The valid parameters for the DFSMS_OFFERING statement are:

Value Meaning

1 DFSMSdfp is licensed.

2 DFSMSdfp and DFSMSdss are licensed.

3 DFSMSdfp, DFSMSdss, and DFSMShsm are licensed.

4 DFSMSdfp and DFSMSrmm are licensed.

5 DFSMSdfp, DFSMSdss, and DFSMSrmm are licensed.

FULL DFSMSdfp, DFSMSdss, DFSMShsm, and DFSMSrmm are licensed.

DFSMS_OFFERING={1|2|3|4|5|FULL }
{(sysname,{1|2|3|4|5|FULL})}

IGDDFPKG

Chapter 51. IGDDFPKG (DFSMS/MVS functional component list) 407

sysname
The name used to identify this system in a sysplex. It must be the same name as specified on
the SYSNAME keyword in member IEASYSxx.

Default: 1 (only DFSMSdfp is licensed)

If there are any syntax errors, the system issues an error message and uses DFSMS_OFFERING=1
by default.

IGDDFPKG

408 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 52. IGDSMSxx (Storage Management Subsystem
definition)

IGDSMSxx contains the parameters that initialize the Storage Management Subsystem (SMS) and specify
the names of the active control data set (ACDS) and the communications data set (COMMDS).

Parameter in IEASYSxx:
The SMS parameter in IEASYSxx identifies the IGDSMSxx member from which the storage management
subsystem (SMS) will obtain its options when the system is initialized for partitioned data set extended
(PDSE) support, as follows:

SMS {xx}

The two alphanumeric characters, represented by xx, are appended to IGDSMS to name the member. NIP
saves the name until SMS is initialized. If initialization of PDSE support fails, the IGDSMSxx parmlib
member is selected from the IEFSSNxx parmlib member by using the ID=xx keyword.

Defining SMS through the IEFSSNxx member
You can start SMS only after you define it to MVS as a valid subsystem. You do this by adding a record
for the SMS subsystem to parmlib member IEFSSNxx. IEFSSNxx defines how MVS is to initialize the SMS
address space.

You can code a IEFSSNxx member with keyword or positional parameters, but not both (IBM recommends
using keyword parameters). Figure 9 shows the syntax of the keywords that you can use to define SMS in
IEFSSNxx:

Figure 10 shows the positional format of the SMS definition in IEFSSNxx (for users of positional
parameters):

This record differs somewhat from the one discussed in Appendix A, “IEFSSNxx (subsystem definitions) -
positional parameter form” on page 573; do not use the optional parameters PRIMARY or NOSTART.

It is recommended that you place the SMS record before the primary subsystem’s (JES2 or JES3) record
in IEFSSNxx to start SMS before starting the primary subsystem.

The fields within the SMS record are as follows:

SMS Identifies the subsystem as SMS.

SUBSYS SUBNAME(SMS)
[INITRTN(IGDSSIIN)[INITPARM(’ID=yy,PROMPT=NO ’)]]

[YES]]
[DISPLAY]]

Figure 9. Keyword Format of the SMS Record in IEFSSNxx

SMS[,[IGDSSIIN][,’[ID=yy][,PROMPT={YES }’]]]
{DISPLAY}
{NO }

Figure 10. Positional Format of the SMS Record in IEFSSNxx

© Copyright IBM Corp. 1991, 2002 409

|

|
|
|

|

|
|
|

IGDSSIIN
Identifies the SMS subsystem initialization routine. If you include this field, SMS is automatically
started at IPL. If you omit this field, SMS as defined to MVS as a valid subsystem, but is not
automatically started at IPL.

ID=yy Specifies the two-character suffix of the IGDSMSxx member to be used to start SMS in either of
the following special cases:

v The SMS parameter of IEASYSxx does not specify a valid IGDSMSxx member and default
member IGDSMS00 does not exist.

v A system error prevents the initialization of system functions that manage PDSEs (for example,
the PDSE address space fails to start).

To avoid confusion, specify the same value on the SMS keyword in IEASYSxx and on the ID
keyword in IEFSSNxx.

If you specify both ID and PROMPT, enclose them in one pair of single quotation marks and
separate them with a comma.

Default: 00

PROMPT={YES|DISPLAY|NO}
Specifies the amount of control the operator is to have over the SMS initialization parameters. You
can specify one of the following values for PROMPT:

v YES specifies that the system is to prompt the operator (through a write-to-operator-with-reply
(WTOR) message) to change the parameters specified in the IGDSMSxx member. The system
displays the current status of parameters before it issues the WTOR. The effect of any change
lasts only for the duration of the IPL; the operator’s action, if any, does not change the contents
of the IGDSMSxx member.

v DISPLAY specifies that the system is to only display the parameters of the IGDSMSxx member;
the operator cannot change these parameters.

v NO specifies that the system will not display the parameters or allow the operator to change
them.

If you specify both ID and PROMPT, enclose them in one pair of single quotation marks and
separate them with a comma.

Default: NO

Example of an SMS record in IEFSSNxx
Figure 11 shows an example of an SMS record in IEFSSNxx:

This record:

v Defines SMS as a valid subsystem of MVS.

v Causes SMS to be started automatically at IPL.

v Identifies IGDSMS60 as the IGDSMSxx member that contains the SMS options.

v Specifies that SMS is to prompt the operator for changes to the SMS parameter options.

For more information about defining subsystems through IEFSSNxx, see Appendix A, “IEFSSNxx
(subsystem definitions) - positional parameter form” on page 573.

SUBSYS SUBNAME(SMS) INITRTN(IGDSSIIN)
INITPARM(’ID=60,PROMPT=YES’)

Figure 11. Example of the SMS Record in IEFSSNxx

IGDSMSxx

410 z/OS V1R4.0 MVS Initialization and Tuning Reference

Starting SMS - at IPL and afterward
After you have created IGDSMSxx and defined control data sets for SMS to use, you can start SMS in
either of the following ways:

v At IPL, by having specified IGDSSIIN in the SMS record in IEFSSNxx.

v After IPL, through the START SMS=xx (or T SMS=xx) command, where xx identifies the particular
IGDSMSxx member that contains the SMS initialization parameters.

For more information about using START SMS, see z/OS MVS System Commands.

Specifying SMS parameters through SETSMS and SET SMS
After you have activated an SMS configuration, you can use the SET SMS or SETSMS operator
commands to specify SMS parameters, as follows:

v Use the SET SMS command to initialize SMS parameters and start SMS if it was defined, but not
started at IPL time, or restart SMS if it is already active.

v Use the SETSMS command to change SMS parameters when SMS is already running.

For more information about using SETSMS and SET SMS, see z/OS MVS System Commands.

Syntax rules for IGDSMSxx
You can separate the keywords in IGDSMSxx with blanks or commas. You do not need to specify
continuation characters for records that span multiple lines.

Syntax format of IGDSMSxx
The following diagram shows the syntax format of the keywords that you code in IGDSMSxx:

IGDSMSxx

Chapter 52. IGDSMSxx (Storage Management Subsystem definition) 411

IBM-supplied default for IGDSMSxx
If you do not define an IGDSMSxx member, the system will attempt to use member IGDSMS00 by default.
IBM does not supply this member; your installation must create it.

Required keywords for IGDSMSxx
You must code the following keywords; there are no defaults.

SMS
Specifies that this record is for SMS.

ACDS(dsname)
Specifies the name of the active control data set (ACDS). If you omit dsname, the system will prompt
the operator for a value.

For information about the ACDS, see z/OS DFSMSdfp Storage Administration Reference.

COMMDS(dsname)
Specifies the name of the communications data set (COMMDS). If you omit dsname, the system will
prompt the operator for a value.

For information about the COMMDS, see z/OS DFSMSdfp Storage Administration Reference.

SMS ACDS(dsname) COMMDS(dsname)
[ACSDEFAULTS({YES|NO})]
[ASID({asid|*})]
[BMFTIME({nnn|3600})]
[CACHETIME({nnn|3600})]
[CF_TIME({nnnnn|3600})]
[COMPRESS({TAILORED|GENERIC})]
[DB2SSID(ssid)]
[DEADLOCK_DETECTION({iiii|15,kkkk|4})]
[DESELECT({event[,event][,...]|ALL})]
[DINTERVAL({nnn|150})]
[DSNTYPE({LIBRARY|PDS|HFS})]
[HSP_SIZE(nnn)]
[INTERVAL({nnn|15})]
[JOBNAME({jobname|*})]
[LRUCYCLES({nnn|240})]
[LRUTIME({nnn|15})]
[OAMPROC(procname)]
[OAMTASK(taskid)]
[OVRD_EXPDT({YES|NO})]
[PDSESHARING({NORMAL|EXTENDED})]
[REVERIFY({YES|NO})]
[RLSINIT({NO|YES})]
[RLS_MAX_POOL_SIZE({nnnn|100})]
[RLS_DYNAMICCFCACHEREASSIGN({NO|YES})]
[RLS_MAXCFFEATURELEVEL({Z|A})]
[SELECT({event[,event][...]|ALL})]
[SIZE(nnn{K|M})]
[SMF_TIME({YES|NO})]
[SYSTEMS({32|8})]
[TRACE({OFF|ON})]
[TRACEEXIT(user_trace_exit)]
[TYPE({ALL|ERROR})]
[USE_RESOWNER({YES|NO})]

IGDSMSxx

412 z/OS V1R4.0 MVS Initialization and Tuning Reference

Optional keywords for IGDSMSxx
The following keywords are optional; defaults, if any, are noted.

ACSDEFAULTS(YES|NO)

Specifies whether SMS initializes the following automatic class selection (ACS) routine variables from
an additional call to RACF:

&APPLIC
&DEF_DATACLAS
&DEF_MGMTCLAS
&DEF_STORCLAS

Specify YES to request that RACF or a functional equivalent give SMS the values. Because SMS
must set these variables every time a data set is created, specifying NO reduces the overhead of
using RACF. If you specify NO, these variables will have no values associated with them.

The ACSDEFAULTS keyword is not applicable for OAM.

Default: NO

ASID(asid|*)

Specifies whether SMS is to trace a specific address space (asid) or all address spaces *. The default
is to trace all address spaces, *, if SMS tracing is activated. You can enter up to 4 digits for the ASID
keyword. If you leave off the leading zeroes, they are inserted.

Default: *

BMFTIME({nnnnn})
{3600 }

Specifies the number of seconds that SMS is to wait between recording SMF records for buffer
manager facility (BMF) cache use. You can specify a value from 1 to 86399 (23 hours, 59 minutes, 59
seconds), and the default is 3600 (one hour).

The SMF_TIME keyword, if set to YES, overrides the BMFTIME keyword.

For information about the buffer management statistics recorded in SMF record type 42, see z/OS
MVS System Management Facilities (SMF).

Default: 3600

CACHETIME({nnnnn})
{3600 }

Specifies the number of seconds between recording SMF records for device cache use. The
CACHETIME parameter applies only to the volumes behind an IBM 3990 Storage Control with cache
unit. You can specify a value from 1 to 86399 (23 hours, 59 minutes, 59 seconds), and the default is
3600 (one hour).

The SMF_TIME keyword, if set to YES, overrides the CACHETIME keyword.

For information about the control unit cache summary recorded in SMF record type 42, see z/OS MVS
System Management Facilities (SMF) .

Default: 3600

CF_TIME({nnnnn})
{3600}

IGDSMSxx

Chapter 52. IGDSMSxx (Storage Management Subsystem definition) 413

For systems running DFSMS/MVS Version 1.3 or later, this keyword specifies the interval (in seconds)
for recording SMF record 42 (subtypes 15, 16, 17, 18) for the SMSVSAM address space’s use of the
coupling facility.

If you record these subtypes, you can use CF_TIME to synchronize SMF type 42 data with SMF and
RMF data intervals.

Specify a value from 1 to 86399 (23 hours, 59 minutes, 59 seconds). The default is 3600 (one hour).

The SMF_TIME keyword, if set to YES, overrides the CF_TIME keyword.

In a sysplex, the first system that is initialized with an IGDSMSxx member having a valid CF_TIME
specification determines the CF_TIME value for the other systems in the sysplex. You can change this
value through the SETSMS or SET SMS commands.

Default: 3600

COMPRESS({TAILORED|GENERIC})

Specifies the type of compression to be used for the data set.

TAILORED
Specifies that the data set is eligible for compression specifically tailored to the data set. A tailored
dictionary is built, using the initial data written to the data set, and imbedded into the data set. The
dictionary is used to compress or expand data written to or read from the data set. This type of
compression applies only to sequential data sets, not to VSAM KSDSs.

To convert an existing DBB-based compressed data set to use tailored compressions, you must
set the COMPRESS parameter to TAILORED and copy the generic DBB-based data set to a new
data set that meets compression requirements.

GENERIC
Specifies that the data set be compressed using generic Dictionary Building Block (DBB)
compression. The dictionary is derived from a defined set of compression algorithms in data set
SYS1.DBBLIB.

Notes:

1. Use tailored compression only when all systems in the SMS complex have been converted to
DFSMS/MVS 1.4, and when there is not need to revert to a prior release level for local
recovery or remote recovery with Aggregate Backup and Recovery Support (ABARS).

2. To convert an existing DBB-based compressed data set to use tailored compression, first set
the COMPRESS parameter to TAILORED in the IGDSMSxx parmlib member. Use IEBGENER,
ICEGENER, REPRO, or any QSAM or BSAM application to copy the DBB-based data set to a
new data set that meets compression requirements.

Default: GENERIC

DB2SSID(ssid)

Specifies the name of the DB2 subsystem which is used by Object Access Method (OAM) for object
storage. ssid can be from one to four characters.

If your installation does not use OAM for object storage, do not specify this parameter.

There is no default.

DEADLOCK_DETECTION(nnnn|15,kkkk|4)

IGDSMSxx

414 z/OS V1R4.0 MVS Initialization and Tuning Reference

For systems running DFSMS/MVS Version 1.3 or later, this keyword specifies the intervals for local
and global deadlock detection.

nnnn specifies the local system’s deadlock detection interval (in seconds). Specify nnnn as a one to
four digit numeric value in the range 1-9999.

kkkk specifies the number of local deadlock cycles that must expire before the sysplex performs global
deadlock detection. Specify kkkk as a one to four digit numeric value in the range 1-9999.

In a sysplex, the first system that is initialized with an IGDSMSxx member having a valid
DEADLOCK_DETECTION specification will determine the DEADLOCK_DETECTION value for the
other systems in the sysplex. You can change this value through the SETSMS or SET SMS
commands.

Default: 15,4

DESELECT({event[,event][,...]|ALL})

Deletes items from the list of events and services to be traced (if SMS tracing is active). DESELECT
has no default. If you specify events that conflict in SELECT and DESELECT, the keyword that
appears last has final authority.

The events that you can specify on SELECT and DESELECT are:

MODULE
SMS module entry or exit

SMSSJF
SMS/SJF interfaces

SMSSSI
SMS/SSI interfaces

ACSINT
ACS services interfaces

OPCMD
Operator commands

CONFC
Configuration changes

CDSC Control data set changes

CONFS
SMS configuration services

MSG SMS message services

ERR SMS error recovery and recording services

CONFR
Return data from an active configuration

CONFA
Activate a new configuration

ACSPRO
Perform ACS processing

IDAX SMS interpreter/dynamic allocation

DISP SMS disposition processing exit

CATG SMS catalog services

IGDSMSxx

Chapter 52. IGDSMSxx (Storage Management Subsystem definition) 415

VOLREF
SMS VOLREF services

SCHEDP
SMS scheduling services (prelocated catalog orientation)

SCHEDS
SMS scheduling services (system select)

VTOCL
SMS VTOC/data set services (allocate existing data set)

VTOCD
SMS VTOC/data set services (delete existing data set)

VTOCR
SMS VTOC/data set services (rename existing data set)

VTOCC
SMS VTOC/data set services (allocate new data set)

VTOCA
SMS VTOC/data set services (add a volume to a data set)

RCD SMS recording services or SMS fast VTOC/VVDS access

DCF SMS device control facility

DPN SMS device pool name select subsystem interface

TVR SMS tape volume record update facility

DSTACK
Trace execution of SMS data set stacking

ALL All of the above options

DINTERVAL({nnn})
{150}

Specifies the interval (in seconds) that SMS waits between reading device statistics from the 3990-3
control unit (applicable only if the 3990-3 is installed and has at least one SMS-managed volume).
Specify a value from 1 to 999 (16 minutes, 39 seconds).

Default: 150

DSNTYPE(LIBRARY|PDS|HFS)

Specifies the installation default for data sets allocated with directory space but without a data set type
specified. If DSNTYPE is PDS, the default is a partitioned data set format; if DSNTYPE is LIBRARY,
the default is a PDSE (partitioned data set extended) format. If DSNTYPE is HFS, the default is a
hierarchy File System format.

For more information about data set types, see z/OS DFSMS: Using Data Sets.

Default: PDS

HSP_SIZE({nnn})

This parameter specifies the size of the hiperspace that is used for PDSE member caching.

On systems which have expanded storage, by default the PDSE hiperspace uses either 256
megabytes of expanded storage or one half of the system’s available expanded storage (whichever
amount is lower).

IGDSMSxx

416 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

On systems which are running in z-Architecture mode, by default the PDSE hiperspace uses either
256 megabytes of real storage or one quarter of the available real storage (whichever amount is
lower). Note if the amount of available real storage is 64 megabytes or less, the amount of real
storage used is limited to one eighth of the available real storage.

You can use the HSP_SIZE parameter to request up to 512 megabytes for the PDSE hiperspace. Or,
you can indicate that the hiperspace is not to be created (by setting HSP_SIZE to 0). If the hiperspace
is not created, the system will not cache PDSE members.

If you specify a valid value for HSP_SIZE, the system uses it to create the PDSE hiperspace at
IPL-time. The HSP_SIZE value remains in effect for the duration of the IPL.

If not enough of the appropriate storage is available to satisfy the HSP_SIZE value, the system uses
some portion of the available storage (up to the full amount) for the PDSE hiperspace, depending on
the amount of caching activity in the system. The system stops caching PDSE members if the
available storage becomes full.

On systems not running ESAME mode, if no expanded storage is online to the system, the hiperspace
cannot be created.

Use the HSP_SIZE parameter with care. If you specify an HSP_SIZE value that is too low for normal
PDSE hiperspace usage, you can degrade PDSE performance. And, if you specify a value for
HSP_SIZE that is too large, and there is contention for storage on the system, you can degrade
performance of other components or applications in the system.

To determine the current HSP_SIZE value of the PDSE hiperspace, use the DISPLAY SMS,OPTIONS
command, or review the messages that are written to syslog when SMS is started.

To evaluate the effectiveness of a particular HSP_SIZE value, you can examine SMF type 42, subtype
1 records.

INTERVAL({nnn})
{15 }

Specifies the synchronization interval of the system, which is the number of seconds between system
checks of the COMMDS for information about SMS configuration changes from other systems in the
SMS complex. You can specify a value from 1 to 999 (16 minutes, 39 seconds)

Default: 15

JOBNAME(jobname|*)

Limits tracing to a certain job (jobname) or permits tracing on all jobs. The default is to trace all jobs, *.

This keyword supports objects or tape libraries.

Default: *

LRUCYCLES(nnn|240)

Specifies the maximum number of times (5 to 240 cycles) that the buffer management facility (BMF)
least recently used (LRU) routine will pass over inactive buffers before making them available for
reuse. While this parameter sets the maximum value, BMF will dynamically change the actual
number of times it passes over inactive buffers.

LRUCYCLES is related to LRUTIME. A change to the LRUCYCLES value introduced by this
parameter, will take effect on the next execution of the LRU routine. Most installations should use the
default value. In some very high data rate situations you may want to tune this value, You should
monitor the SMF 42 type 1 record to determine the amount of caching activity in the BMF data space.
See z/OS MVS System Management Facilities (SMF) for information about the buffer management
statistics recorded in SMF record type 42.

Default: 240

IGDSMSxx

Chapter 52. IGDSMSxx (Storage Management Subsystem definition) 417

|
|
|
|

LRUTIME(nnn|15)

Specifies the number of seconds (5 to 60) that the buffer management facility (BMF) will wait between
calls to the BMF data space cache LRU (least recently used) routine. The LRU routine releases
inactive buffers in the BMF data space that are used to cache PDSE (partitioned data set extended)
directory data.

LRUTIME is related to LRUCYCLES. A change to the LRUCYCLES value will take effect on the next
execution of the LRU routine. Most installations should use the default value. In some very high data
rate situations you may want to tune this value. You should monitor the SMF 42 type 1 record to
determine the amount of caching activity in the BMF data space. See z/OS MVS System Management
Facilities (SMF) for information about the buffer management statistics recorded in SMF record type
42.

Default: 15

OAMPROC(procname)

Specifies the name of the procedure that is to start the OAM address space when SMS is initialized.
You must specify this keyword if you want the OAM address space to be started during IPL. The
procedure name can be from one to eight characters.

There is no default.
OAMTASK(taskid)

Specifies the ID of the task that is to be used to start the OAM address space. OAMTASK is optional;
if you specify it without an OAMPROC value, it is ignored. If you omit OAMTASK, the task ID defaults
to the procedure name specified in OAMPROC. OAM keywords take effect only if you start SMS at
IPL; otherwise the system ignores them. The task ID can be from one to eight characters.

!-- ================ index entries ==============* -->

OVRD_EXPDT(YES|NO)

Specifies whether the expiration date or retention period for an SMS-managed DASD data set is to be
overridden when a user attempts to delete the data set in one of the following ways:
v DISP parameter on the JCL DD statemen.t
v Dynamic allocation.
v IEHPROGM utility.
v ISPF/PDF D or DEL line commands.

Specify YES to override an expiration date or retention period for an SMS-managed DASD data set.
The data set will be deleted regardless of expiration dates or retention period and the system will not
prompt for confirmation. Note that this is a system-level parameter that will effect all jobs running on
the system. Exercise caution in using it, so that you do not accidentally delete needed data sets.

When you specify YES, ensure that all appropriate personnel at your installation know that specifying
an expiration date or retention period for an SMS-managed DASD data set will not prevent the data
set from being deleted.

IBM recommends that you specify YES when:

v Expiration dates or retention periods are not used for data sets, or are overridden by appropriate
management classes.

v Data sets allocated to tape are redirected using tape mount and the retention periods and expiration
dates for these data sets are not overridden by management classes.

Specify NO to honor the expiration date or retention periods.

IGDSMSxx

418 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default: NO

PDSE_MONITOR({YES|NO}[,interval[,duration]])

Specifies how the processing for the PDSE monitor should be started or modified. YES turns on
monitor processing, NO turns off monitor processing. If the PDSE parameter is omitted, the monitor
will be started with default values for 60 seconds for interval and 15 seconds for duration.

interval specifies the number of seconds between succesive scans of the monitor. If the
PDSE_MONITOR keyword is specifed, but interval is omitted, the interval will be unchanged, except at
IPL time when the interval will be set to 60.

duration specifies the number of seconds a possible error condition must exist before it is treated as
an error. If the PDSE_MONITOR keyword is specifed, but duration is omitted, the duration will be
unchanged, except at IPL time when the interval will be set to 15.

Default: YES

PDSESHARING(NORMAL|EXTENDED)

Specifies how PDSEs can be shared across systems in a sysplex. NORMAL allows users to share
read access to PDSEs across systems in the sysplex. EXTENDED allows users to share read and
write access to PDSEs across systems in the sysplex.

All systems that share PDSEs must use the same sharing protocol, either NORMAL or EXTENDED.
The first system in the sysplex to IPL will determine which sharing protocol is used. If EXTENDED has
been established as the protocol and a system that is not able to run with EXTENDED PDSE sharing
joins the sysplex, that system will not be able to use the PDSEs.

For more information about sharing PDSEs across a sysplex, see z/OS MVS Setting Up a Sysplex.

Default: NORMAL

REVERIFY(YES|NO)

Specifies whether SMS is to check a user’s authority to allocate a new data set and use storage or
management class at job interpretation time or at both job interpretation time and execution time. If
you want SMS to check the authority at both times, code YES; NO directs SMS to check only at job
interpretation time.

Default: NO

RLSINIT({NO|YES})

Specify YES if you want the SMSVSAM address space started as part of system initialization or the V
SMS,SMSVSAM,ACTIVE command. This value applies only to the system accessed by the parmlib
member and is acted upon when SMSVSAM is next started.

Default: NO

RLS_MAX_POOL_SIZE({nnnn|100})

Specifies the maximum size in megabytes of the SMSVSAM local buffer pool. SMSVSAM attempts to
not exceed the buffer pool size you specify, although more storage might be temporarily used.
Because SMSVSAM manages buffer pool space dynamically, this value does not set a static size for
the buffer pool.

Use SMF 42, subtype 19 records to help you determine the maximum size of the SMSVSAM local
buffer pool.

You can specify a two to four-digit numeric value, with 10 as the minimum value. If you specify a value
less than 10, the field is set to 10. If you specify a value greater than 1500, SMSVSAM assumes there
is no maximum limit. IBM recommends that you limit the size of the local buffer pool.

IGDSMSxx

Chapter 52. IGDSMSxx (Storage Management Subsystem definition) 419

Default: 100

RLS_MAXCFFEATURELEVEL({Z|A})

Specify the method that VSAM RLS should use to determine the size of the data that is placed in the
CF cache structure. You can use the RLS_MAXCFFEATURELEVEL keyword to limit the connect level
when the sysplex has a mixed level of releases and maintenance. If you do not specify a value, or if
you specify Z, then only VSAM RLS data that has a Control Interval (CI) value of 4K or less is placed
in the CF cache structure. If you specify A, caching proceeds using the RLSCFCACHE keyword
characteristics that are specified in the SMS data class that is defined for the VSAM sphere.

RLS_MAXCFFEATURELEVEL is a sysplex wide value. The first system activated in the sysplex will
set the value; all other systems will use the value set by the first system.

Default: Z

Notes:

1. If A is specified for the RLS_MAXCFFEATURELEVEL parameter, systems lower than V1R3 will not
be able to connect to the CF cache structure.

2. If a lower-level system is the first system activated in the sysplex, RLS_MaxCfFeatureLevel
defaults to Z, and all systems will be able to connect to the CF cache structure.

SELECT({event[,event][,...]|ALL})

Specifies one or more events or services that SMS is to trace (if SMS tracing is active). See the
description of the DESELECT parameter for a list of valid events.

Default: ALL

SIZE(nnnnnnK|nnnM|nnnnnn|128K)

Specifies the size of the SMS trace table in bytes.

nnnnnnK specifies the size in kilobytes; the value can range from 0K to 255000K (255,000 kilobytes),
and it is rounded up to the nearest 4K unit.

nnnM specifies the size in megabytes; the value can range from 0M to 255M (255 megabytes).

If you specify nnnnnn without a unit, the system assumes a unit of kilobytes.

If you specify a value of 0, no tracing is performed.

Default: 128K

SMF_TIME(YES|NO)

For systems running DFSMS/MVS Version 1.3 or later, this keyword specifies whether DFSMS is to
use SMF timing; that is, whether SMF type 42 records are to be created at the expiration of the SMF
interval period, synchronized with SMF and RMF data intervals.

The following SMF record 42 subtypes are affected when you specify SMF_TIME(YES): 1, 2, 15, 16,
17, 18. If you record these subtypes, you can use SMF_TIME(YES) to synchronize SMF type 42 data
with SMF and RMF data intervals.

Specifying SMF_TIME(YES) overrides the following IGDSMSxx parameters: BMFTIME, CACHETIME,
CF_TIME.

Default: YES

SYSTEMS({8|32})

IGDSMSxx

420 z/OS V1R4.0 MVS Initialization and Tuning Reference

For systems running DFSMS/MVS Version 1.3 or later, this keyword specifies whether the system is
running in compatibility mode (8-name limit) or 32-name mode.

SYSTEMS(8) specifies that a maximum of 8 system names, system group names, or both, can be
specified for the SMS configuration. This value indicates that the system is running in compatibility
mode and can share configurations (SCDSs or ACDSs) and COMMDS with systems that are running
down-level releases of DFSMS/MVS. Essentially, the system continues to operate as it has in the past.

SYSTEMS(32) specifies that a maximum of 32 system names, system group names, or both, can be
specified for the SMS configuration. This value indicates that the system is not running in compatibility
mode, and therefore the ACDS, SCDS and COMMDS cannot be shared with any systems that are
running down-level releases of DFSMS/MVS, or are running in compatibility mode.

Default: 8

TRACE(ON|OFF)

Specifies whether SMS tracing is to be on or off.

Default: ON

TRACEEXIT(user-trace-exit)

Defines an installation exit for SMS tracing. The name of the exit must be 1 to 8 alphanumeric
characters and it must be a valid load module.

There is no default.

For more information about the SMS tracing exit, see z/OS DFSMS Installation Exits.

TYPE(ERROR|ALL)

Specifies whether SMS is to trace an error entry (ERROR) or all entries (ALL).

Default: ERROR

USE_RESOWNER({YES|NO})

Indicates whether construct authorization checking is done using the RESOWNER value, which is
based on the high-level qualifier of the data set name, or using the allocating user ID for the data set.

If you specify NO, the RESOWNER value is not extracted and the allocating user ID is used.

Default: YES

Example of the contents of IGDSMSxx
Assume that you want to define SMS with the following properties:

v An ACDS named SYS1.ACDS9.

v A COMMDS named SYS1.COMMDS.

v An interval of 15 seconds before synchronizing with any other SMS subsystems in the complex.

v SMF type 42 records are to be synchronized with the SMF and RMF intervals.

Figure 12 on page 422 shows the statement that you would code in IGDSMSxx to request that SMS have
these properties:

IGDSMSxx

Chapter 52. IGDSMSxx (Storage Management Subsystem definition) 421

SMS ACDS(SYS1.ACDS9) COMMDS(SYS1.COMMDS) INTERVAL(15)
SMF_TIME(YES)

Figure 12. Example of the Contents of IGDSMSxx

422 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 53. IKJPRM00 (TIOC parameters to control
TSO/TCAM)

IKJPRM00 is an optional member that contains installation-defined TIOC parameters used mainly to
control TSO/TCAM time sharing buffers. IKJPRM00 is used only during TIOC initialization and does not
participate in system initialization.

If the installation uses TSO/TCAM time sharing, the system programmer may optionally construct this
member. The default values, listed in “Statements/parameters for IKJPRM00” on page 424, are internal
constants of the TIOC program. You may override a default value by placing the same parameter into the
member.

IKJPRM00, or an alternate member name, may be specified by the operator as an optional parameter of
the MODIFY tcamproc command. The command starts TSO/TCAM time sharing under MVS. The
command syntax consists of:

MODIFY tcamproc,TS=START [,member name]

Member name can be either defaulted to IKJPRM00, or specified as the name of an installation-defined
alternate. If the operator omits the member name, the system looks for member IKJPRM00 when time
sharing is started. (For additional information on the use of the MODIFY tcamproc command, see z/OS
MVS System Commands.)

TIOC initialization tries to obtain parameters by reading the specified parmlib member. Special processing
occurs if errors are encountered. If parmlib can’t be allocated or opened, an information message is
issued, and default parameters are used.8 If the specified member cannot be found in parmlib, another
message is issued and TIOC initialization ends. In this case, the operator should reenter the MODIFY
tcamproc command, either specifying the correct member name or omitting the member name. If the name
is omitted, TIOC initialization tries to read IKJPRM00. If it can’t locate IKJPRM00, or encounters an I/O
error in reading the explicit or default member, it uses the default parameters. If TIOC initialization
encounters an invalid parameter, which is not correctly specified in a later entry, it uses the default value.
Unsupported parameters, if retained from a previous version of IKJPRM00, are ignored.

Parameter in IEASYSxx (or issued by the operator)
None.

Syntax rules for IKJPRM00
The following rules apply to the creation of IKJPRM00:

v Each record must start with the word TIOC, followed by a blank.

v For each record, columns 1 through 71 are valid for data. Columns 72 through 80 are ignored.

v A parameter must be complete in a record. It may not cross record boundaries. The parameter,
however, may be repeated.

v When a parameter is specified more than once in the member, the last occurrence is accepted.

v You may use either a blank or a comma as a separator between adjacent keywords.

v Invalid or misspelled parameters are ignored. Defaults are substituted, and an informational message is
issued to the operator.

8. See “IBM-supplied default for IKJPRM00” on page 424.

© Copyright IBM Corp. 1991, 2002 423

IBM-supplied default for IKJPRM00
The default values are:

BUFSIZE=64,BUFFERS=6xUSERMAX,USERMAX=number of time-sharing terminals9 +
10%,OWAITHI=20,OWAITLO=4, INLOCKHI=4,INLOCKLO=1,RESVBUF=BUFFERS/10,RECONLIM=0

Statements/parameters for IKJPRM00
BUFSIZE

Specifies the storage size of a TIOC buffer.

Value Range: 20-252

Default: 64

BUFFERS

Specifies the number of buffers in the TIOC buffer pool. (See note under the OWAITHI parameter.)

Value Range: 4-32767

Default: six times the USERMAX value

INLOCKHI

Specifies the number of TIOC buffers to be allocated to a terminal user for input before his keyboard is
locked. This is not an exact lock but works on an input line basis. If the number of buffers used to
input one or more lines exceeds the INLOCKHI value, the keyboard remains locked until all of these
conditions are satisfied: the user is swapped in, part or all of the input is removed (the TGET is
satisfied), and the number of allocated buffers is reduced to or below the INLOCKLO value.

INLOCKHI must be large enough to permit TIOC to receive the largest possible legitimate input
message sent from any terminal in the system. Note that when using the FIELD MARK key on 3270
terminals to enter a chain of commands, at least one TIOC buffer is required for each command in the
chain. Any input message larger than BUFSIZE times INLOCKHI (or any chain of commands
exceeding the number of available TIOC buffers) will be canceled and will cause an error message at
the terminal.

Value Range: 1-253

Default: 4

INLOCKLO

Specifies a low threshold of allocated input buffers When the number of allocated input buffers is
reduced to or below this number, the user’s keyboard is unlocked.

Value Range: less than INLOCKHI and BUFFERS

Default: 1

OWAITHI

Specifies the maximum number of output buffers that can be allocated to a terminal. When that
number is reached, the user’s address space is placed in output wait and is swapped out of central
storage.

Note: If your installation uses the 3270 terminal, specify enough buffers to completely fill the screen.
You may compute this number of buffers from the formula:

9. The number of time sharing terminals is the number of TCAM terminals defined as usable for time-sharing. (See TCAM Installation
Reference for information on defining terminals for time-sharing.)

IKJPRM00

424 z/OS V1R4.0 MVS Initialization and Tuning Reference

Buffers= (message length+6)
(BUFSIZE-12)

If there are not enough buffers for a “full screen write,” the address space will be put into output
wait and swapped out until buffers become available.

Value Range: 1-253

Default: 20

OWAITLO

Specifies a low threshold value for the number of allocated output buffers. When the number of output
buffers reaches this value, the system resource manager is notified that the terminal user’s job can be
swapped into storage and allowed to execute.

Value Range: less than OWAITHI and BUFFERS

Default: 4

RECONLIM

Specifies the time limit in minutes within which a user may reconnect after his TP line has been
disconnected.

Value Range: 0-32767

Default: 0

RESVBUF

Specifies the minimum number of free buffers that are available. Its purpose is to maintain a reserve of
free buffers that can handle output without “bottlenecking” the system. If the number of free buffers
falls below this value, all terminals are locked for input, regardless of INLOCKHI value. The terminals
will be unlocked when the number of free buffers becomes equal to RESVBUF.

Value Range: 1-value of BUFFERS

Default: 10% of the number of buffers specified in BUFFERS parameter.

USERMAX

Specifies the maximum number of time-sharing users that may be logged on.

Value Range: 1-32767

Default: Total number of terminals that support time sharing +10%. (Note: The number of terminals
that support time sharing is specified in the TCAM/TSO message handler, for more information see
“Time-Sharing Support” in TCAM Installation Reference.

IKJPRM00

Chapter 53. IKJPRM00 (TIOC parameters to control TSO/TCAM) 425

IKJPRM00

426 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 54. IKJTSOxx (TSO/E commands and programs)

You can use IKJTSOxx to identify the commands and programs the system is to use.

The IKJTSOxx member allows you to identify:
v Authorized commands and programs.
v Commands that a user cannot issue in the background.
v APF-authorized programs that users may call through the TSO/E service facility.

If your installation is using the virtual lookaside facility (VLF) and plans to use the TSO/E VLFNOTE
command, add VLFNOTE to this parmlib member as an authorized command, using the AUTHCMD
NAME parameter (described on page 429). See z/OS MVS Programming: Authorized Assembler Services
Guide for information on when to use the VLFNOTE command.

IKJTSOxx also allows you to specify the defaults for the TSO/E ALLOCATE, SEND, RECEIVE,
TRANSMIT, CONSOLE, and TEST commands.

By defining the SHR option on the ALLOCATE parameter, you can change the system default for the
disposition of data sets from OLD to SHARE (SHR).

The TRANSREC statement allows you to specify the characteristics for the data to be transmitted or
received.

The TEST parameter allows you to specify the installation-written test subcommands and the names of
TSO/E commands that are to be allowed to execute under the TEST command. These commands are in
addition to those allowed by default. Through the SEND statement, you can specify the data set into which
the SEND command is to store messages. The system checks that named data set when the user issues
the LISTBC command to retrieve stored messages. The SEND statement, with the MSGPROTECT
keyword, also allows you to protect mail from being seen by users who do not meet security criteria. By
itself, setting MSGPROTECT(ON) causes mail to be stored in a mail log named ‘logname.userid’, rather
than ‘userid.logname’. By combining MSGPROTECT(ON) with RACF 1.9, you can request that the system
compare the level of security of the mail received with the level of security of the recipient.

For information about setting up RACF 1.9 to work with MSGPROTECT(ON), see z/OS Security Server
RACF Security Administrator’s Guide.

To use IKJTSOxx, copy the default from SYS1.SAMPLIB(IKJTSO00) to SYS1.PARMLIB(IKJTSOxx). You
can then update the member to meet the needs of your installation.

Parameter in IEASYSxx (or specified by the operator):
IKJTSO=xx

The two-character identifier (xx) is appended to IKJTSO to identify the IKJTSOxx parmlib member. If you
do not specify the IKJTSO=xx parameter, the system processes the IKJTSO00 parmlib member.

Selecting the IKJTSOxx member
If present, IKJTSO00 is used automatically during IPL. A different IKJTSOxx member can be selected
during IPL by specifying IKJTSO=xx for the IPL parameters.

To select another IKJTSOxx member after IPL, you can issue the following TSO/E command:
PARMLIB UPDATE(xx)

© Copyright IBM Corp. 1991, 2002 427

or system command:
SET IKJTSO=xx

where xx is the alphanumeric value to be appended to IKJTSO.

To list the values in the active IKJTSOxx parmlib member, you can issue either of the following commands:
DISPLAY IKJTSO

or
PARMLIB LIST

For example,
DISPLAY IKJTSO,ALLOCATE

,AUTHCMD
,AUTHPGM
,AUTHTSF
,CONSOLE
,HELP
,NOTBKGND
,PLATCMD
,PLATPGM
,SEND
,TEST
,TRANSREC
,ALL

PARMLIB LIST(ALLOCATE)
(AUTHCMD)
(AUTHPGM)
(AUTHTSF)
(CONSOLE)
(HELP)
(NOTBKGND)
(PLATCMD)
(PLATPGM)
(SEND)
(TEST)
(TRANSREC)
(ALL)

For more information about the DISPLAY command, see z/OS MVS System Commands. For more
information about the PARMLIB command, see z/OS TSO/E System Programming Command Reference.

Syntax rules for IKJTSOxx
1. Comments may appear in columns 1-71 and must begin with a ‘/*’ and end with ‘*/’.

2. Use a plus sign (+) or a dash (-) to continue a line. Any comments must appear to the left of the
continuation character.

3. If the system encounters a syntax error in a IKJTSOxx statement, the default values are used for all
the parameters on the statement. The system issues a message and processing continues.

4. Columns 1 through 72 may contain data.

IBM-supplied default for IKJTSOxx
IKJTSO00 is supplied and used automatically during IPL. To use another IKJTSOxx member, issue the
SET IKJTSO=xx command or the PARMLIB UPDATE(xx) command after IPL. Either command will replace
the current IKJTSOxx with the member specified in the command.

IKJTSOxx

428 z/OS V1R4.0 MVS Initialization and Tuning Reference

Statements/parameters for IKJTSOxx

ALLOCATE DEFAULT{(OLD)}
{(SHR)}

Allows you to specify the default value for the data sets required by a program. If you do not specify
the ALLOCATE parameter, the system defaults to OLD.

AUTHCMD NAMES(cmd1,cmd2...)

Specifies the authorized TSO/E commands. cmd1,cmd2 list the authorized commands. Each name
can contain up to eight characters. See SYS1.SAMPLIB for the current list of authorized commands. If
you are using VLF and plan to use the TSO/E VLFNOTE command, include VLFNOTE in the active
IKJTSOxx member.

Utilities
IEBCOPY

AUTHPGM NAMES(pgm1,pgm2...)

Specifies the authorized programs. pgm1,pgm2 list the authorized programs. Each program name can
contain up to eight characters. SAMPLIB contains the following programs:

Utilities
RACF

IEBCOPY
ICHUT100 ICHUT200 ICHUT400

AUTHTSF NAMES(name1,name2...)

Specifies the APF-authorized programs that may be called through the TSO service facility.
name1,name2 identify the names of the programs. Each name can contain up to eight characters.
SAMPLIB contains the following programs:

IEBCOPY
IKJEFF76

HELP language(dsname1[,dsname2,...])[,language(dsname1[,dsname2,...])]

Specifies message help texts for the specified languages.

language
Specifies the three character language code. See Table 19 on page 473 for the table of
IBM-supported language codes.

dsname
Specifies the name of the data set that contains help text for the specified language. You can
specify up to 255 help data sets for each language.

Default: ENU(SYS1.HELP)

NOTBKGND NAMES(cmd1,cmd2...)

IKJTSOxx

Chapter 54. IKJTSOxx (TSO/E commands and programs) 429

Specifies the commands that may not be issued in the background. cmd1,cmd2 list these commands.
Each can contain up to eight characters. SAMPLIB contains the following commands:
OPERATOR

OPER
TERMINAL

TERM
CONSOLE

Specifies the installation’s defaults for the TSO/E CONSOLE command.

INITUNUM(nnnn)

Specifies the initial number of unsolicited messages that can be queued to the extended
MCS console session (established through the CONSOLE command) at any time. This
number does not include messages sent by the TPUT service. For information on the TPUT
service, see z/OS TSO/E Programming Services.

When the actual number of queued messages reaches 80% of the specified number,
installation exit IKJCNX50 is invoked. When the actual number of queued messages reaches
the specified number, installation exit IKJCNX64 is invoked. For information about these
installation exits, see z/OS TSO/E Customization.

Default: 1000 (decimal)

INITSNUM(nnnn)

Specifies the initial number of solicited messages that can be queued to the extended MCS
console session (established through the CONSOLE command) at any time. This number
does not include messages sent by the TPUT service. For information on the TPUT service,
see z/OS TSO/E Programming Services.

When the actual number of queued messages reaches 80% of the specified number,
installation exit IKJCNX50 is invoked. When the actual number of queued messages reaches
the specified number, installation exit IKJCNX64 is invoked. For information about these
installation exits, see z/OS TSO/E Customization.

Default: 1000 (decimal)

MAXUNUM(nnnnn)

Specifies the maximum number of unsolicited messages that can be queued to the extended
MCS console session (established through the CONSOLE command) at any time. The system
records this value at initialization time; this value can only be changed through the PARMLIB
UPDATE command for active extended MCS console sessions. This number does not include
messages sent by the TPUT service. For information on the TPUT service, see z/OS TSO/E
Programming Services .

This value is used by console activation processing and is passed to the TSO/E message
capacity exits (IKJCNX50 and IKJCNX64).

Default: 10000 (decimal)

MAXSNUM(nnnnn)

IKJTSOxx

430 z/OS V1R4.0 MVS Initialization and Tuning Reference

Specifies the maximum number of solicited messages that can be queued to the extended
MCS console session (established through the CONSOLE command) at any time. The system
records this value at initialization time; this value can only be changed through the PARMLIB
UPDATE command for active extended MCS console sessions. This number does not include
messages sent by the TPUT service. For information on the TPUT service, see z/OS TSO/E
Programming Services.

This value is used by console activation processing and is passed to the TSO/E message
capacity exits (IKJCNX50 and IKJCNX64).

Default: 10000 (decimal)

PLATCMD{NAMES(cmd1,cmd2...)}
{NONE }

Specifies the commands (cmd1, cmd2,...) that will be executed on the TSO/E command/program
invocation platform. These commands do not require task termination processing to clean up for them.
Each command can contain up to eight characters. SAMPLIB contains the following commands:
ALLOCATE

ALLOC
ALTLIB
ATTRIB

ATTR
EXEC EX IKJEXC2
FREE UNALLOC
PROFILE

PROF
SUBMIT

SUB
STATUS

ST

Default: NONE (no commands are eligible to run on the TSO/E command/program invocation
platform).

For more information about the TSO/E command/program invocation platform, see z/OS TSO/E
Customization .

PLATPGM{NAMES(pgm1,pgm2...)}
{NONE }

Specifies the programs (pgm1, pgm2,...) that are to be run on the TSO/E command/program
invocation platform. These programs do not require task termination processing to clean up for them.
Each program name can contain up to eight characters. SAMPLIB contains the following programs:
IEFBR14
IKJEFF76

Default: NONE (no programs are to be run on the command/program invocation platform).

For more information about the TSO/E command/program invocation platform, see z/OS TSO/E
Customization.

TEST TSOCMD(cmd1,cmd2,cmd3.....)
SUBCMD((scmd1,load1),(scmd2,load2)...)

IKJTSOxx

Chapter 54. IKJTSOxx (TSO/E commands and programs) 431

The TEST parameter specifies that the following commands are authorized to be executed in a test
environment.

TSOCMD specifies that the following commands (cmd1,cmd2...) are installation-written TSO/E
commands that are allowed to be executed under TEST. SUBCMD specifies that the following
installation-written command can be invoked as a subcommand of TEST.

The value for scmd1 is the command.

The value for load1 is the entry point for the program to be invoked as the subcommand. For each
SUBCMD specified, you must include both the command and the program name for the command.

TRANSREC

TRANSREC allows you to specify the characteristics for the RECEIVE and TRANSMIT commands.

NODESMF{((nodename1,smfid1),(nodename2,smfid2),...)}
{((*,*)) }

NODESMF specifies the correspondence between the system identifiers and the network node
names.

nodename specifies the name of the network node. nodename must be the name of a node
defined on the NJERMT JES3 initialization statement or on the NODE(xxxxxxxx) JES2 initialization
statement.

smfid specifies the system identifier for a particular processor, paired with a node-name . smfid
must be specified for each nodename . smfid must match the system identifier defined for the
processor on the SID parameter of the SMFPRMxx member.

, specifies that the nodename is to be retrieved dynamically from JES (JES2 Release 4.3.0 or
higher, or JES3 Release 5.1.1 or higher). This specification is recommended because it eliminates
the need to specify static values for nodename and smfid .

Default: (NODENAME, SMF)

Note: If you omit the smfid for the host node, TSO/E uses a value of eight question marks
(????????) for the nodename associated with the transmitted data.

SPOOLCL(spoolclass)

Specifies the output class default. Use the SPOOLCL operand class to specify your installation’s
output class default.

This parameter applies to outgoing data only. Incoming data addressed to the issuer of RECEIVE
or to the userid specified on the RECEIVE command by an authorized issuer of RECEIVE is
eligible to be received regardless of its sysout class.

Value range: A-Z, 0-9, or *

Default: If you do not specify a different SPOOLCL operand, the default of ‘B’ is used.
CIPHER{(ALWAYS)}

{(YES) }
{(NO) }

CIPHER indicates the installation specification for controlling data encryption.

IKJTSOxx

432 z/OS V1R4.0 MVS Initialization and Tuning Reference

ALWAYS indicates that for every transmission, the data will be automatically encrypted.

YES indicates that encryption is a user option.

NO indicates that encryption is not allowed on any transmission. (The specification of NO
overrides the specification of the ENCIPHER operand on the TRANSMIT command and does not
allow you to provide encryption through the TRANSMIT encryption exits, INMXZ03 or INMXZ03R.)

Default: YES

OUTWARN(n1,n2)

Allows the installation to specify the intervals at which a warning message is issued to a user who
is transmitting a large file.

n1 specifies the number of records to be transmitted before the first warning message is issued to
the user. The default is 10000 (decimal).

n2 specifies the number of records to be transmitted before second and subsequent warning
messages are issued. The subsequent warning messages are issued each time this number of
records is transmitted. The default is 5000 (decimal).

If you specify only one value with OUTWARN, the system uses that value as the first interval and
uses the default (5000) for the second and subsequent intervals.

OUTLIM(n1)

OUTLIM specifies the maximum number of records a user can transmit before the transmission is
terminated.

If n1 is less than or equal to 16777215, the system passes the value to JES as the OUTLIM value.
If n1 is greater than 16777215, the system does not pass the value to JES. However, n1 still
serves as the limit for the TRANSMIT command.

Note: n1 should be greater than zero.

The TSO/E TRANSMIT command produces punched card output. Punched card output is limited
by TSO/E or by JES, depending on which limit is lower. If the TSO/E limit is the lowest and is
reached, the transmission is terminated and the following message is displayed at the user’s
terminal:
INMX032I TRANSMIT command terminated. Transmission limit of ’nn’
records exceeded.

If the JES limit is the lowest and is reached, the transmission is (one of the following):
v Allowed to continue.
v Abended.
v Abended with a dump.

IBM recommends that you set the TSO/E limit lower than the JES limit to allow the TSO/E user to
receive messages that indicate whether the system successfully transmitted the data set.

IKJTSOxx

Chapter 54. IKJTSOxx (TSO/E commands and programs) 433

For additional information on output limits, see:

v z/OS MVS JCL Reference
– The OUTLIM DD statement

v z/OS JES3 Initialization and Tuning Guide
– The OUTLIM parameter on the OUTSERV statement

v z/OS JES2 Initialization and Tuning Guide
– The ESTPUN initialization statement

v z/OS MVS Programming: Authorized Assembler Services Guide
– The dynamic allocation SYSOUT output limit specification DALOUTLM (key=X'001B')

Default 30000 (decimal).

VIO(unitname)

VIO specifies the device type on which temporary space can be allocated for use by the
TRANSMIT and RECEIVE commands.

unitname is the name of the device type and can be either an esoteric name (SYSDA) or a
specific DASD device (for example, 3380).

If you do not specify VIO, the system defaults to the UNIT specification for the user in the UADS.
If there is no UNIT specification, the system defaults to an installation-defined default or to the
system default, SYSALLDA. (In each of the three preceding situations, IEBCOPY might fail.)

Note: IBM recommends that unitname be a device type that you designated as VIO at IPL. The
use of VIO ensures the integrity of sensitive data.

LOGSEL(logselector)

LOGSEL specifies the default middle qualifier for the log data set name. (The name in the
:LOGSEL tag in the control section of the NAMES data set takes precedence.)

logselector is 1-8 alphanumeric name of the middle qualifier. The first character must be
alphabetic or special (#, @, or $). The names must be separated by a period.

LOGNAME(lognamesuffix)

LOGNAME specifies the default suffix qualifier for the log data set name. The following values
take precedence over this parameter:
v LOGNAME operand of the TRANSMIT command.
v :LOGNAME tag in the control section of the NAMES data set.
v :LOGNAME tag in a nickname definition.

lognamesuffix is the name of the suffix qualifier and must be 1-8 alphanumeric characters,
beginning with an alphabetic or special (#, @, or $) character. The names must be separated by a
period.

Default: In the absence of any explicit specification, the default log data set name is
userid.LOG.MISC.

IKJTSOxx

434 z/OS V1R4.0 MVS Initialization and Tuning Reference

Maximum Length Restriction: TSO/E prefixes the name of the log data set with the
user-specified dsname-prefix from the PROFILE command, so the name is equivalent to
prefix.logselector.logname-suffix. The maximum length of the name is 44 characters, including the
periods and the prefix.

USRCTL(name)

USRCTL is the name for the NAMES data set.

name must be 1-8 alphanumeric characters beginning with an alphabetic or special (#, @, or $)
character. The names must be separated by a period.

Default: In the absence of any explicit specification, the default NAMES data set name is
userid.NAMES.TEXT.

Maximum Length Restriction: TSO/E prefixes the name of the NAMES data set with the
user-specified dsname-prefix from the PROFILE command. The maximum length of the name is
44 characters, including the periods and the prefix.

SYSCTL(datasetname)

SYSCTL specifies the name of an alternate NAMES data set.

You can use this parameter, in conjunction with a routine you write, to provide a global standard
set of nicknames within the installation. For example, the routine could manipulate the entries in a
directory and store the resulting output — nicknames — in the SYSCTL data set. End users could
then use the standard set of nicknames, instead of having to define their own nicknames on an
individual basis.

datasetname identifies the name of the data set and must be 1-8 alphanumeric characters,
beginning with an alphabetic or special (#, @, or $) character. The names must be separated by
periods. The total characters in the names including the periods cannot exceed 44 characters.
TSO/E does not prefix the datasetname .

SYSOUT(sysoutclass)

SYSOUT specifies the default SYSOUT class for messages that are written from utility programs,
such as IEBCOPY. sysoutclass identifies the sysout class and can be A-Z, 0-9, or asterisk (*).

Default: SYSOUT(*) — the system writes the messages to the terminal.

DAPREFIX(TUPREFIX|USERID)

DAPREFIX specifies how the control and log data sets are to be prefixed for messages written by
utility programs, such as IEBCOPY.

TUPREFIX indicates that the control and log data sets are to be prefixed with the PREFIX set in
the User Profile Table. If the PROFILE NOPREFIX option is in effect, the log data set is
‘LOG.MISC’ and the control data set is ‘NAMES.TEXT’.

USERID indicates that the control and log data sets are to be prefixed with the userid whenever
the PROFILE NOPREFIX option is in effect. This prevents users from logging to ‘LOG.MISC’ and
reading ‘NAMES.TEXT’ when PROFILE NOPREFIX is in effect.

TUPREFIX is the default.

IKJTSOxx

Chapter 54. IKJTSOxx (TSO/E commands and programs) 435

SEND

Specifies the installation’s defaults for the TSO/E SEND and LISTBC commands, and the OPERATOR
SEND command. The defaults are shown here.
OPERSEND(ON/OFF),

OPERSEND specifies whether users who are authorized to use the OPERATOR command can
issue the SEND subcommand to send messages or notes. For information on the OPERATOR
and SEND commands, see z/OS TSO/E Customization.

USERSEND(ON/OFF),

USERSEND specifies whether users can issue the SEND command to send messages or notes to
other terminal users.

USERSEND is not valid for the SEND subcommand of the OPERATOR command. Use the
OPERSEND parameter to specify whether authorized users of the OPERATOR command can use
the SEND subcommand.

SAVE(ON/OFF),

SAVE specifies whether the SEND command processor and the OPERATOR SEND subcommand
processor are to save messages in a log that the installation specifies.

USEBROD(ON/OFF)

USEBROD indicates whether messages intended for users who do not have individual user logs
are to be stored in the SYS1.BRODCAST data set. (If the installation is not using individual user
logs, the system ignores this operand.)

ON indicates that messages are to be stored in the SYS1.BRODCAST data set.

OFF indicates that messages are not to be saved and the user will not receive the messages.

ON is the default.

Table 18 on page 437 shows how LISTBC and SEND interpret the USEBROD and CHKBROD
operands if the installation is using individual user logs. This figure applies to messages only;
USEBROD and CHKBROD do not affect the processing of notices.

CHKBROD(ON/OFF)

CHKBROD indicates whether LISTBC processing is to check for messages in the broadcast data
set and the user log and retrieve any messages found. LISTBC processing uses CHKBROD only
when USEBROD is ON; that is, LISTBC processing ignores the broadcast data set when
USEBROD is OFF.

ON indicates that the LISTBC processing is to check both the broadcast data set and the user log.

OFF indicates that the LISTBC processing is to check only the user log for messages.

OFF is the default.

IKJTSOxx

436 z/OS V1R4.0 MVS Initialization and Tuning Reference

Notes:

1. CHKBROD applies only if you use user logs to store messages. It does not apply if you use
only the broadcast data set to store messages. For more information about user logs, see
z/OS TSO/E Customization.

2. If USEBROD is ON and the user log does not exist, LISTBC creates the user log and then
checks SYS1.BRODCAST and retrieves any messages found. This checking and retrieval
occur regardless of the CHKBROD setting.

LISTBC and SEND processing differ depending on the USEBROD and CHKBROD operands. If
LOGNAME is set to ’SYS1.BRODCAST’, the following conditions are true:
v The USEBROD and CHKBROD operands do not affect processing
v SEND and LISTBC use the broadcast data set for messages.

For the effects of USEBROD and CHKBROD on LISTBC and SEND processing when LOGNAME
is not set to ’SYS1.BRODCAST’, see Table 18. This figure assumes the installation is using
individual user logs.

Table 18. LISTBC and SEND Results Based on CHKBROD and USEBROD Settings when Installation is Using
Individual User Logs

USEBROD ON USEBROD OFF

CHKBROD ON v LISTBC:
– The broadcast data set is always checked

for messages, even when a user log
exists.

v SEND:
– Messages are saved in the broadcast data

set when no user log exists.

v LISTBC:
– The broadcast data set is not checked for

messages.

v SEND:
– Messages are not saved in the broadcast

data set when no user logs exists.
Message IKJ55058I is issued instead.

CHKBROD
OFF

v LISTBC:
– The broadcast data set is not checked for

messages, except when LISTBC creates a
new user log or when an existing user log
cannot be allocated.

v SEND:
– Messages are saved in the broadcast data

set when no user log exists.

v LISTBC:
– The broadcast data set is not checked for

messages.

v SEND:
– Messages are not saved in the broadcast

data set when no user log exists. Message
IKJ55058I is issued instead.

BROADCAST (DATASET(data-set-name) VOLUME(volume-name)
TIMEOUT(time-out) switch-prompt)

Identifies the broadcast data set and the processing options to use when switching between
broadcast data sets.

data-set-name
Specifies the fully qualified data set name. The use of quotes in the data set name is ignored;
that is, ‘SYS3.BRODCAST’ is equal to SYS3.BRODCAST. DATASET is a required
sub-keyword.

volume-name
Specifies the volume serial on which the broadcast data set resides. VOLUME is an optional
sub-keyword.

time-out
Specifies the number of seconds a switch request will wait for resources before timing out.
Valid values for TIMEOUT are integers in the range of 0 to 999, inclusive. TIMEOUT is an
optional sub-keyword. The default value is 5 seconds.

IKJTSOxx

Chapter 54. IKJTSOxx (TSO/E commands and programs) 437

switch-prompt
Specifies whether TSO/E should prompt before switching the broadcast data set. Valid values
for switch-prompt are PROMPT and NOPROMPT. switch-prompt is an optional sub-keyword.
The default value is PROMPT.

If the BROADCAST keyword is not specified, the default values are: SYS1.BRODCAST for
data-set-name, no volume, five second time-out, and PROMPT for switch-prompt.

The data set must be:

v Formatted with the TSO/E SYNC command

v Cataloged or the volume serial must be specified on the BROADCAST keyword.

Note: TSO/E will use the name specified in the BROADCAST keyword or its default. Any entries for
the SYSLBC DD name in MSTJCLxx will be disregarded by TSO/E.

MSGPROTECT(ON/OFF)

If you use user logs, use the MSGPROTECT operand to indicate whether the individual user log
data set is security protected from the user.

Set MSGPROTECT to one of the following values. The default value is OFF.

v ON — the individual user log is protected from the user and the messages (mail) within the
individual user log can be viewed only if the user is logged on with the proper security label.

If the MSGPROTECT operand is ON, the user log data set name is “logname.userid”, where
‘logname’ is the data set name qualifier you specify on the LOGNAME operand of the SEND
PARMLIB parameter and ‘userid’ is the user’s TSO/E user ID. This naming convention protects
the user log data set from the user when an installation has defined the RACF profile for
LOGNAME.* UACC (NONE). Mail in the user log can be viewed by the user if the user is
logged on at the proper security label by using the LISTBC command, or by requesting MAIL
during LOGON.

If RACF 1.9 or later is installed and your installation has set up security labels for your users
using RACF, and the MSGPROTECT operand is ON, the security label of the sender is stored
with the message in the user log data set. When the receiving user issues the LISTBC
command to view messages, the security label of the receiving user is checked with the security
label stored with the message for each message in the user log. The result of that check
determines if LISTBC displays the message(s). If LISTBC does not display a message and the
user is authorized at the security label of the message but is not currently logged on at the
security label of the message, then the message remains in the user log. The user can log on
to TSO/E with the proper security label and view the message at a later time. If LISTBC does
not display a message and the user can never log on at the proper security label for the
message (user is not authorized by RACF for that security label), the message gets deleted.

Note: The MSGPROTECT operand should only be used with RACF 1.9 or later. If a lower level
of RACF is installed on your system, MSGPROTECT will not protect messages. If you
plan to use the MSGPROTECT operand with a lower level of RACF installed, each user
log must be allocated by the installation.

v OFF — users can view their received mail without any security checking by the system.

If MSGPROTECT is OFF, the user log data set name is “userid.logname,” where ‘userid’ is the
user’s TSO/E userid and ‘logname’ is the data set name qualifier you specify on the LOGNAME
operand. This naming convention allows the user to access the user log data set.

If MSGPROTECT is OFF, the mail in the user log is not security protected from the user. The
user can log on and get the messages by requesting MAIL or by issuing the LISTBC command.

IKJTSOxx

438 z/OS V1R4.0 MVS Initialization and Tuning Reference

If the MSGPROTECT value is switched from ON to OFF, messages that were left in the individual
user logs on one setting cannot be retrieved until the settings are switched back.

Note: IBM recommends that installations create a user catalog and define an alias associated
with this user catalog of LOGNAME. This prevents the master catalog from filling up with
catalog entries for the new user logs.

LOGNAME(data-set-name/*)

LOGNAME identifies the log name of the data set where the system stores messages and notes.

To store messages (mail) in the broadcast data set, set LOGNAME to *. * is the preferred method
to request that the mail be stored in the broadcast data set.

Note: For compatibility, the system accepts the specification of LOGNAME(SYS1.BRODCAST),
and the user’s mail is stored in the current broadcast data set. The BROADCAST keyword
on the SEND statement is used to specify a broadcast data set name other than
SYS1.BRODCAST.

To store messages in individual logs, set LOGNAME to the qualifier for the user log data set
name. You can also specify a member name in parentheses.

The name of the user log data set depends on the setting of the MSGPROTECT parameter. If
MSGPROTECT is off, the user log naming convention is
userid.LOGNAME

where:
v userid is the user’s TSO/E user ID.
v LOGNAME is the qualifier you specify on the SEND PARMLIB parameter.

If MSGPROTECT is ON, the user log naming convention is
LOGNAME.userid

For example, suppose you set LOGNAME to ulog.data. If MSGPROTECT is OFF, the user log
data set name is:
userid.ulog.data

If MSGPROTECT is ON, the user log data set name is:
ulog.data.userid

For more information on user logs, see z/OS TSO/E Customization.

SYSPLEXSHR(ON/OFF)

SYSPLEXSHR indicates whether the broadcast data set is shared outside systems in the sysplex.
ON indicates that the broadcast data set is shared only among systems in the sysplex. OFF
indicates that the broadcast data set is shared with systems outside the sysplex.

Note: IBM recommends that you set SYSPLEXSHR to the same value in every system’s
IKJTSOxx member. Doing so avoids confusion in your installation when modifying the the
broadcast data set. A system with SYSPLEXSHR set to OFF does not communicate
broadcast data set changes to systems with SYSPLEXSHR set to ON.

OPERSEWAIT(ON/OFF)

IKJTSOxx

Chapter 54. IKJTSOxx (TSO/E commands and programs) 439

Indicates whether WAIT or NOWAIT is requested when an OPERATOR SEND command is issued
without an explicit WAIT/NOWAIT operand. The default value is ON.

v ON - indicates you want the OPERATOR SEND command to be issued with WAIT. WAIT on
OPERATOR SEND specifies that messages cannot be sent to any specified user until all users
can receive them. That is, no user’s terminal is busy (no user’s output buffers are full).

v OFF - indicates you want the OPERATOR SEND command to be issued with NOWAIT.
NOWAIT on OPERATOR SEND specifies that messages can be sent to any specified user
whose terminal is not busy (output buffers not full).

USERLOGSIZE(primary-quantity,secondary-quantity,dir-block)

USERLOGSIZE specifies the amount of space allocated for the USERLOG data set if userlogs are
used.

primary-quantity specifies the number of tracks requested for the primary allocation of the user
log data set. The default is 1 track.

secondary-quantity specifies the number of tracks requested for secondary allocations of the
user log. The default is 20 directory blocks.

dir-block is an optional parameter that specifies the number of blocks requested for the directory
if the user log is a partitioned data set. The default is 20 directory blocks.

IKJTSOxx

440 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 55. IPCSPRnn (interactive problem control system)

An IPCSPRnn member contains parameters used during an IPCS session. These session parameters
allow an installation to tailor IPCS sessions to its particular requirements. The parameters define the
names of various data sets and default values to be used throughout that IPCS session. When you
execute the IPCS command, IPCS initialization processes these parameters. Thus, you cannot modify or
respecify them during an IPCS session.

The installation can have several IPCSPRnn members. You then specify the member that suits your needs
for a particular IPCS session.

See Chapter 7, “BLSCECT (Formatting exits for dump and trace analysis)” on page 89 for information on
IPCS parmlib member allocation.

Parameter in IEASYSxx (or specified by the operator):
None.

The PARM(nn) keyword on the IPCS TSO command specifies the IPCSPRnn member that the system will
use during that IPCS session.

Syntax rules for IPCSPRnn
v IPCS processes each statement as lines of TSO/E Command Language. See z/OS TSO/E Command

Reference and z/OS TSO/E User’s Guide.

v The IPCSPRnn member’s suffix identifier can consist of numerals only. For example, ‘IPCSPR01’ is
permitted, but ‘IPCSPR1A’ is not.

IBM-supplied default for IPCSPRnn
The IPCS installation package includes the default member IPCSPR00.

Statements/parameters for IPCSPRnn
DSD(datasetname)

Specifies the data set name of the IPCS data set directory. datasetname must be fully qualified and
need not be in single quotes. IPCS appends nothing to either end of the specified name. This
parameter is required. Without it, IPCS ends.

NODSD
Suppresses the use of problem and data management. This option requires the specification of the
NOPDR option.

Default: NODSD

PDR(datasetname)
Specifies the data set name of the IPCS problem directory. datasetname must be fully qualified and
need not be in single quotes. IPCS appends nothing to either end of the specified name. This
parameter is required. Without it, IPCS ends.

NOPDR
Suppresses the use of problem and data set management. This option requires the specification of the
NODSD option.

Default: NOPDR

© Copyright IBM Corp. 1991, 2002 441

PROBIDPREFIX(prefix)
Specifies the three-character value used to form a problem identifier where prefix is three
alphanumeric characters. IPCS uses this prefix whenever an IPCS subcommand displays or prints a
problem identifier. To form the complete problem identifier, IPCS concatenates a 5-digit decimal
number to this prefix.

If the DSD(datasetname) and PDR(datasetname) parameters are specified, PROBIDPREFIX(prefix) is
a required parameter. Without it, IPCS ends.

SYSTEM(system-id)
Specifies the default system identifier where system-id is one to eight alphanumeric characters. The
ADDPROB subcommand of IPCS uses this value if you omit the SYSTEM keyword on that
subcommand. This parameter is optional. The default is blank.

GROUP(group-id)
Specifies the default group identifier. group-id is one to eight alphanumeric characters. The ADDPROB
subcommand of IPCS uses this value if you omit the GROUP keyword on the subcommand. This
parameter is optional. The default group-id is blank.

ADMINAUTHORITY(userid-list)
Specifies the TSO/E userids of the persons that are to have IPCS administrative authority. userid is
one to eight alphanumeric characters.

The owners of the specified TSO/E userids have the same authority that a problem owner has, but
they have that authority over all problems in the problem directory.

Specifying administrators does not affect the privileges of problem owners. An owner can still modify
and delete problems that he or she owns.

Specifying persons with administrative authority provides centralized control over all problems defined
to IPCS. Administrators can assign and reassign problem owners, access a problem when the owner
is unavailable, update problems when their attributes change, correct attributes that were incorrectly
specified, and so forth.

This parameter is optional.

If not specified, no one has administrative authority for the installation.

If specified, it is a list whose entires are separated by one or more blanks, commas, or horizontal
tabulation characters (X'05'). Each entry in the list can specify the userid of an administrator or can
specify an inclusive range of userids. The following example authorizes the person with userid
THEBOSS plus all persons with userids beginning with the letters ADMIN as administrators.

ADMINAUTHORITY(THEBOSS,ADMIN:ADMIN)

DELETEAUTHORITY(userid-list)
Specifies the TSO/E userids of the persons with IPCS delete authority. The owners of the specified
TSO/E userids are the only persons who can delete problems. Specifying persons with delete
authority diminishes the privileges of a problem owner and the person with administrative authority.
They can modify problems but cannot delete them.

Specifying persons with delete authority provides centralized control over removing problems from
IPCS. When a problem is deleted, all the accumulated information about it is lost. By designating
persons who can delete problems, you can help prevent the inadvertent loss of such information.

This parameter is optional.

If specified, only the designated person can use the DELPROB subcommand of IPCS. Problem
owners cannot use the DELPROB subcommand nor can the person designated with the
ADMINAUTHORITY parameter (if the userid specified is the different).

If this parameter is not specified, problem owners and the person specified with the
ADMINAUTHORITY parameter can use the DELPROB subcommand.

IPCSPRnn

442 z/OS V1R4.0 MVS Initialization and Tuning Reference

If specified, it is a list whose entries are separated by one or more blanks, commas, or horizontal
tabulation characters (X'05'). Each entry in the list can specify the userid of an administrator or can
designate an inclusive range of userids.

LINELENGTH(value)
Specifies the default record length (LRECL) for the IPCS print output data set. value is a two- or three-
decimal digit from 83 through 255. This parameter is optional.

If you do not specify an LRECL for the print output data set and if it is not specified in the session
parameters, the default is 137.

Value Range: 83-255

Default: 137

PAGESIZE(value)
Specifies the default number of lines per page for the IPCS print output data set. value is a decimal
number ranging from 3 through 2³¹-1. This parameter is optional. If you do not specify it, the default is
60.

PAGESIZE values should correspond with the number of lines that will fit on the forms typically used
at your installation.

Default: 60

IPCSPRnn

Chapter 55. IPCSPRnn (interactive problem control system) 443

IPCSPRnn

444 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 56. IVTPRM00 (Communication Storage Manager)

IVTPRM00 sets parameters for the Communication Storage Manager (CSM). IVTPRM00 is read during
CSM initialization when the first IVTCSM REQUEST=CREATE_POOL macro is issued. (VTAM issues this
macro when started.) The parameters can be changed without a re-IPL by editing the IVTPRM00 member
and issuing the MODIFY CSM command with no command parameters specified.

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax format of IVTPRM00
FIXED MAX(maxfix)
ECSA MAX(maxecsa)
POOL(bufsize,bufsource,initbuf,minfree,expbuf)

Note: FIXED MAX, ECSA MAX, and POOL must begin in column 1.

Syntax rules for IVTPRM00
System symbols can be used. For more information, see ″Using MVS System Symbols″ in the z/OS
Communications Server: SNA Network Implementation Guide.

IBM-supplied defaults for IVTPRM00
The following are the IBM-supplied defaults for the CSM buffer pools:

bufsize 4K 16K 32K 60K 180K
initbuf 64 32 16 16 2
minfree 8 4 2 2 1
expbuf 16 8 4 4 2

Statements/parameters for IVTPRM00
FIXED MAX

Defines the maximum amount of storage dedicated to fixed CSM buffers.

maxfix
A decimal integer specifying the maximum bytes of fixed storage dedicated to CSM use.

Valid Range: 1024K to 2048M

Default Value: 100M

Notes:

1. K indicates kilobytes, M indicates megabytes.

2. You must code only one blank between the keywords FIXED and MAX. If more than one blank
appears between these keywords, the system ignores the statement as a comment and no
syntax error message is generated. In this case, the system uses the default value of 100M.

3. The FIXED MAX statement must be completed one line.

4. No blanks should be coded between the keyword MAX and ″(″.

ECSA MAX
Defines the maximum amount of storage dedicated to ECSA CSM buffers.

© Copyright IBM Corp. 1991, 2002 445

maxecsa
A decimal integer specifying the maximum bytes of ECSA storage dedicated to CSM use.

Valid Range: 1024K to 2048M

Default Value: 100M

Notes:

1. K indicates kilobytes, M indicates megabytes.

2. You must code only one blank between the keywords ECSA and MAX. If more than one blank
appears between these keywords, the system ignores the statement as a comment and no
syntax error message is generated. In this case, the system uses the default value of 100M.

3. The ECSA MAX statement must be completed one line.

4. No blanks should be coded between the keyword MAX and ″(″.

POOL
One POOL definition can be specified for each CSM buffer pool of a particular bufsize and bufsource
combination.

bufsize
The size of the buffers in the pool to be created.

Valid Range: 4K, 16K, 32K, 60K, 180K

Default Value: None (valid range value required).

bufsource
The storage source from which buffers are allocated. The values are:

ECSA
Buffers are allocated from ECSA storage.

DSPACE
Buffers are allocated from data space storage.

initbuf
The initial number of buffers created in the pool when the first IVTCSM
REQUEST=CREATE_POOL macro is issued by an application. If zero is specified, only the base
pool structure is created and the pool is expanded on the first IVTSCSM
REQUEST=GET_BUFFER based on the expbuf specification. The pool is not reduced below the
level specified by either initbuf or expbuf, whichever is higher.

Valid Range: 0 - 9999

Default Value: IBM-supplied default unless overridden by a CREATE_POOL request.

minfree
The minimum number of free buffers allowed in the pool at any time. The storage pool is
expanded the the value specified in expbuf if the number of free buffers falls below this limit.

Valid Range: 0 - 9999

Default Value: IBM-supplied default unless overridden by a CREATE_POOL request.

446 z/OS V1R4.0 MVS Initialization and Tuning Reference

expbuf
The number of free buffers by which the pool is expanded when the free buffers fall below the
minfree value.

Valid Range:
Expbuf

Bufsize Range

4K 1 - 256
16K 1 - 256
32K 1 - 128
60K 1 - 68

180K 1 - 22

Default Value: None.

Chapter 56. IVTPRM00 (Communication Storage Manager) 447

448 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 57. LNKLSTxx (LNKLST concatenation)

Use the LNKLSTxx member of parmlib to specify the program libraries that are to be concatenated to
SYS1.LINKLIB to form the LNKLST concatenation. In addition to the data sets you specify in LNKLSTxx,
the system automatically concatenates data sets SYS1.MIGLIB and SYS1.CSSLIB to SYS1.LINKLIB.

You can create any number of LNKLSTxx members.

Using PROGxx to define LNKLST concatenations
Instead of using LNKLSTxx to specify the LNKLST concatenation, consider using PROGxx.

If you specify both PROG=xx for a member with a LNKLST ACTIVATE statement and LNK=xx, the system
ignores LNK=xx at IPL and issues message CSV487I:

LNK IPL PARAMETER HAS BEEN IGNORED. LNKLST SET lnklstname IS BEING USED

LNKLST set refers to the data sets that are defined to the LNKLST concatenation through LNKLST
statements in PROGxx. See “Using the LNKLST statement” on page 506.

Using LNKLSTxx
If you use LNKLSTxx instead of PROGxx, during IPL, the system opens and concatenates each data set
in the order it was listed, starting with the first-specified LNKLSTxx member. The system creates a data
extent block (DEB) that describes the data sets concatenated to SYS1.LINKLIB and their extents. The
extents remain in effect for the duration of the IPL.

After this processing completes, library lookaside (LLA) is started. LLA manages the LNKLST data sets
and can be used to control updates to them.

For more information about SYS1.LINKLIB and other data set concatenations, see:
v “Concatenating data sets to the LNKLST concatenation” on page 507.
v “APF authorization for LNKLST data sets” on page 508.
v “Cataloging LNKLST data sets” on page 508.
v “Modifying the contents of LNKLST data sets” on page 508.

Parameter in IEASYSxx (or supplied by the operator):

The two characters (A-Z, 0-9, @, #, or $), represented by aa (or bb, and so forth.), are appended to
LNKLST to identify one or more LNKLSTxx members of parmlib.

If the L option is specified, the names of the data sets that are concatenated to SYS1.LINKLIB are
displayed at the operator’s console as the data sets are opened. The list is preceded by the message,
“IEA331I LINK LIBRARY CONCATENATION”.

Syntax rules for LNKLSTxx
The following rules apply to the creation of LNKLSTxx:

v On each record, use commas to separate the names of data sets.

LNK={aa }
{(aa,bb,...[,L])}
{(,L) }

© Copyright IBM Corp. 1991, 2002 449

v To indicate that a record is to be continued, place a comma followed by at least one blank after the last
data set name on a record.

v If a data set is cataloged in a user catalog, but not in the system master catalog, you must also specify
the volume serial (VOLSER) of the volume on which the data set resides. Specify the VOLSER in
parentheses, immediately after the data set name.

v If you do not use the corresponding SYSLIB statement in PROGxx and you specify SYS1.LINKLIB,
SYS1.MIGLIB, or SYS1.CSSLIB in LNKLSTxx (perhaps to change the system’s default processing), you
must also specify the VOLSER of the volume on which the data set resides. Otherwise, the system
ignores the specification.

v On a line, data entered after the last data set name and the optional comma continuation character is
treated as a comment and ignored.

v Data records entered after the last data line are treated as comments and ignored.

Syntax format of LNKLSTxx
IEASYSxx: ...,LNK=(nn,nn,nn,...)
LNKLSTxx: {data-set-name },{data-set-name },...

{data-set-name(volser)} {data-set-name(volser)}

Syntax example of LNKLSTxx
IEASYSxx: ...,LNK=(00,01,02,03)
LNKLST00: SYS1.CMDLIB,SYS1.TSORTNS,SYS1.BTAMLIB
LNKLST01: SYS1.LINKLIB,DBLUE.U30LIB(U30PAK),SYS2.U30LIB
LNKLST02: SYS1.AUXLIB,SYS1.JES3
LNKLST03: SYS1.TEST

As a result of these specifications, the following data sets, in the order specified, are concatenated to
SYS1.LINKLIB (after SYS1.MIGLIB and SYS1.CSSLIB):

SYS1.CMDLIB,SYS1.TSORTNS,SYS1.BTAMLIB,DBLUE.U30LIB,
SYS2.U30LIB,SYS1.AUXLIB,SYS1.JES3,SYS1.TEST

In the LNKLST01 parmlib member in this example, note the following:
v The specification of SYS1.LINKLIB is ignored.
v DBLUE.U30LIB is a user-cataloged data set on VOLSER U30PAK.

IBM-supplied default for LNKLSTxx
IBM does not supply a default LNKLSTxx member. By default, the system concatenates data sets
SYS1.MIGLIB and SYS1.CSSLIB to SYS1.LINKLIB.

IBM-supplied sample for LNKLSTxx
IBM provides a sample LNKLSTxx member in SYS1.SAMPLIB. The sample member is named LNKLST00.

LNKLSTxx

450 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 58. LOADxx (system configuration data sets)

The LOADxx member specifies:

v Information about your I/O configuration.

v An alternate nucleus ID.

v The architecture level of the nucleus.

v The NUCLSTxx member that you use to add and delete modules from the nucleus region at IPL-time.

v Information about the master catalog.

v Information about the parmlib concatenation.

v The name of the sysplex (systems complex) that a system is participating in; it is also the substitution
text for the &SYSPLEX system symbol.

v The IEASYMxx and IEASYSxx parmlib members that the system is to use.

v Additional parmlib data sets that the system will use to IPL. These data sets are concatenated ahead of
SYS1.PARMLIB to make up the parmlib concatenation.

v Filtering keywords so you can use a single LOADxx member to define IPL parameters for multiple
systems. The initial values of the filter keywords (HWNAME, LPARNAME and VMUSERID) are set at
IPL to match the actual values of the system that is being IPLed. The LOADxx member can be
segmented by these keywords.

The LOADxx member is selected through the use of the LOAD parameter on the system control
(SYSCTL) frame of the system console. For information about specifying the LOAD parameter, see z/OS
MVS System Commands. If the operator does not select a LOADxx member on the system console, the
system uses LOAD00.

Note: The system must have access to a LOADxx member.

Placement of LOADxx
You can place the LOADxx member in one of the following system data sets:
v SYSn.IPLPARM
v SYS1.PARMLIB

Consider placing LOADxx in the SYSn.IPLPARM data set. During IPL, the system looks for LOADxx in the
following order:
1. SYS0.IPLPARM through SYS9.IPLPARM on the IODF volume.
2. SYS1.PARMLIB on the IODF volume.
3. SYS1.PARMLIB on the sysres volume.

Do not create a SYSn.IPLPARM data set unless it contains the LOADxx member that is used to configure
your system. When the system finds either SYSn.IPLPARM or SYS1.PARMLIB, it expects to find a
LOADxx member in the data set. The search will stop with the first SYSn.IPLPARM or SYS1.PARMLIB
data set found. The system will use the LOADxx it finds within that data set as designated by the LOAD
parameter. If the LOADxx member specified on the LOAD parameter is not in the data set, the system
loads a wait state.

Copying LOADxx members
To copy LOADxx members to a backup volume, use either DFDSS (for SMS-managed volumes) or
IEBCOPY. To ensure that the system will associate the copied LOADxx member with the proper IODF on
a SYSn.IPLPARM volume, do not specify the IODF prefix in the LOADxx member. The system then will
default the prefix of the IODF data set to the prefix of the SYSn.IPLPARM data set that contains the
LOADxx member (see the IODF description in z/OS MVS System Data Set Definition).

© Copyright IBM Corp. 1991, 2002 451

|
|
|
|
|
|

Filtering with LOADxx
The LOADxx filter keywords HWNAME, LPARNAME, and VMUSERID allow you to use a single LOADxx
member to define IPL parameters for multiple systems. At IPL, the initial values of the keywords are set to
match the actual values of the system being IPLed. The filter keywords are used to optionally change the
IPL parameters.

Note: If a filter keyword is not applicable to a particular system, it is initialized to blanks at IPL.
Subsequent specification of this filter keyword within LOADxx resets it.

The keywords control filtering in a hierarchy with HWNAME on the top and VMUSERID on the bottom.
Figure 13 shows this hierarchical relationship. The HWNAME parameter is used to specify the Control
Processing Complex (CPC) name. HWNAME also sets LPARNAME and VMUSERID to their default
values. The LPARNAME parameter, the next level in the hierarchy, is used to set the Logical Partition
name. LPARNAME also sets VMUSERID to the default value. The value of HWNAME is unchanged. The
lowest level of the hierarchy, the VMUSERID parameter, specifies the userid of a VM/ESA system under
which an OS/390 image is running as a guest.

There is no way to explicitly indicate that you want the LPARNAME parameter or the VMUSERID
parameter reset to their default values. If the system being IPLed is not running as LPAR mode or on VM,
LPARNAME and VMUSERID may not be meaningful. This is a case when you may want to reset these
values. As discussed above, specifying the HWNAME parameter resets the LPARNAME and VMUSERID
parameters to their default values. You can also reset just the VMUSERID parameter to its default value
by specifying the LPARNAME parameter.

See “Filtering example” for examples of how to set the keywords.

When another LOADxx statement (such as SYSCAT or IODF) is specified, the current HWNAME,
LPARNAME, and VMUSERID filters are compared to the actual system values. If they all match, that
LOADxx statement is accepted as applicable to the system being IPLed.

See “Statements/parameters for LOADxx” on page 456 for specifics about each keyword.

Filtering example
This example illustrates uses of the HWNAME, VMUSERID, and LPARNAME filter parameters to segment
LOADxx statements for various configurations. The contents of the LOADxx member are shown and then
the IPL results are given.

Central Processing Complex (CPC)

Logical Partition

IPL parameters set by HWNAME.

IPL parameters set by LPARNAME.
The following sets it to the default
value:

HWNAME

IPL parameters set by VMUSERID.
The following set it to the default
value:

HWNAME
LPARNAME

MVS Image

Figure 13. LOADxx Filtering Hierarchy

LOADxx

452 z/OS V1R4.0 MVS Initialization and Tuning Reference

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
NUCLEUS 1
NUCLST 00

*This segment applies to any machine in any logical partition (or
*not in LPAR mode).

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
SYSPARM 01
PARMLIB ALLSYS.PARMLIB

*This segment applies to an IPL on VM user ID V1 on any LPAR (or not
*in LPAR mode), and on any hardware.
*Note that at this point neither HWNAME
*nor LPARNAME have been specified in the LOADxx member, so they
*will automatically match those of the system being IPLed.

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
VMUSERID V1
IEASYM V1
SYSPARM V1

*This segment applies to any IPL on VM user ID V2 on any LPAR (or not
*in LPAR mode), and on any hardware.
*Note that at this point neither HWNAME
*nor LPARNAME have been specified in the LOADxx member, so they
*will automatically match those of the system being IPLed.

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
VMUSERID V2
IEASYM V2
SYSPARM V2
PARMLIB V2.PARMLIB

*This segment applies to an IPL in logical partition L1 on any hardware
*and not under any VM user ID (or not under VM).
*Note that at this point HWNAME has not been specified in the LOADxx member,
*so it automatically matches the system being IPLed.
*Also note that specification of LPARNAME
*causes the VMUSERID filter to be reset to match the system being IPLed.
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
LPARNAME L1
IEASYM L1
SYSPARM L1

*This segment applies to an IPL on machine H1 in any logical partition
*(or not in LPAR mode) and under any VM user ID (or not under VM).
*Note that specification of HWNAME
*causes the LPARNAME and VMUSERID filters to be reset to match the
*system being IPLed.

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
HW H1
SYSPARM H1
PARMLIB H1.PARMLIB

*This segment applies to an IPL on machine H1 in logical partition L2
*under any VM user ID (or not under VM).

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
LPARNAME L2
IEASYM BB
PARMLIB L2.PARMLIB

*This segment applies to an IPL on machine H1 in logical partition L2
*not running under VM.

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--

LOADxx

Chapter 58. LOADxx (system configuration data sets) 453

VMUSERID
IEASYM CC
PARMLIB NOT.VM.PARMLIB

*This segment applies to an IPL on machine H1 running in non-LPAR mode
*under any VM user ID (or not under VM). The specification of
*LPARNAME causes the VMUSERID filter to be reset to match the system
*being IPLed.

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
LPARNAME
IEASYM DD
PARMLIB NOT.LPAR.PARMLIB

*This segment applies to an IPL on machine H2 in any logical partition
*(or not in LPAR mode), under any VM user ID (or not under VM).
*The specification of HWNAME causes the LPARNAME
*and VMUSERID filters to be reset.

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
HWNAME H2
SYSPARM H2
PARMLIB H2.PARMLIB

*This is only *one* LOADxx.

IPL Results:

These are some of the results of the above example. Note that use of a second PARMLIB statement adds
to the list of parmlibs. For any other statement, the previous value is replaced.

IPL on hardware H1 with logical partition L0 not under VM:
SYSPARM H1
IEASYM not used
PARMLIB ALLSYS.PARMLIB
PARMLIB H1.PARMLIB
PARMLIB SYS1.PARMLIB

IPL on hardware H1 with logical partition L1 under VMUSERID V1:
SYSPARM H1
IEASYM L1
PARMLIB ALLSYS.PARMLIB
PARMLIB H1.PARMLIB
PARMLIB SYS1.PARMLIB

IPL on hardware H1 with logical partition L2 under VMUSERID V0:
SYSPARM H1
IEASYM BB
PARMLIB ALLSYS.PARMLIB
PARMLIB H1.PARMLIB
PARMLIB L2.PARMLIB
PARMLIB SYS1.PARMLIB

IPL on hardware H1 with logical partition L2 not under VM:
SYSPARM H1
IEASYM CC
PARMLIB ALLSYS.PARMLIB
PARMLIB H1.PARMLIB
PARMLIB L2.PARMLIB
PARMLIB NOT.VM.PARMLIB
PARMLIB SYS1.PARMLIB

IPL on hardware H1, not in LPAR mode, and not under VMUSERID V2:

LOADxx

454 z/OS V1R4.0 MVS Initialization and Tuning Reference

SYSPARM H1
IEASYM DD
PARMLIB ALLSYS.PARMLIB
PARMLIB H1.PARMLIB
PARMLIB NOT.LPAR.PARMLIB
PARMLIB SYS1.PARMLIB

IPL on hardware H2, not in LPAR mode, and not under VMUSERID V1 or V2:

SYSPARM H2
IEASYM not used
PARMLIB ALLSYS.PARMLIB
PARMLIB H2.PARMLIB
PARMLIB SYS1.PARMLIB

IPL on hardware H2 under VMUSERID V2 in logical partition L0:
SYSPARM H2
IEASYM V2
PARMLIB ALLSYS.PARMLIB
PARMLIB V2.PARMLIB
PARMLIB H2.PARMLIB
PARMLIB SYS1.PARMLIB

IPL on unnamed hardware with logical partition L1 not under VMUSERID V1 or V2:
SYSPARM L1
IEASYM L1
PARMLIB ALLSYS.PARMLIB
PARMLIB SYS1.PARMLIB

Parameter in IEASYSxx (or supplied by the operator):
None.

Support for system symbols
You can use LOADxx to define substitution text for the &SYSPLEX system symbol and point to other
parmlib members that define system symbols. However, you should not use those system symbols or any
others in LOADxx. The system must complete processing of LOADxx to define substitution texts to the
system symbols. Therefore, the system might not substitute text for system symbols that you use in
LOADxx.

Syntax rules for LOADxx
The following syntax rules apply to LOADxx:

v Each record consists of 80 columns, although columns 73 through 80 are ignored.

v The fields are column-dependent as shown in “Statements/parameters for LOADxx” on page 456.
Columns not shown to contain data must contain blanks. All data must be left-justified within the column
ranges.

v Lines that begin with an asterisk in column 1 are comments.

v Blank lines are ignored.

Syntax format of LOADxx
LOADxx is a column-dependent parmlib member. An asterisk in column 1 denotes a comment. Parameters
begin in column 1. Data begins in column 10. Columns 73-80 are ignored.

LOADxx

Chapter 58. LOADxx (system configuration data sets) 455

In the syntax diagram below, column grids are included as comments to help you place parameters and
data in the correct columns.

IBM-supplied default for LOADxx
Although IBM provides no default member in SYS1.PARMLIB, you can create a sample LOADxx member
using the JCL in the IPXLOADX member of SYS1.SAMPLIB. You can also use the SPPINST member of
SYS1.SAMPLIB to create, update or list LOADxx members through an ISPF application.

For detailed information on setting up and using these tools, see the prolog of the IPXLOADX and
Appendix B, “Symbolic Parmlib Parser” on page 577 at the end of this manual.

Statements/parameters for LOADxx
ARCHLVL

The ARCHLVL statement specifies the mode in which the operating system will run. In z/OS, the
processor determines the appropriate z/OS architecture mode, and you do not need to specify the
ARCHLVL parameter. It is recommended that you do not specify the ARCHLVL statement.

Note: Specifying the ARCHLVL parameter explicitly identifies the nucleus extension, IEANUCax, for
the architecture level of your system. The system will use this extension along with the the
common base, IEANUC0x, to build the nucleus.

Column Contents

1-7 ARCHLVL

10 A one-digit value, a, to specify the architecture level for the nucleus extension. This
can be one of the following:

1 ESA/390 mode

Default: If running in ESA/390 mode, the default is 1.

2 z/Architecture mode

Note: If you specify a value for ARCHLVL that is not the default for the processor,
message IEA368I will be issued during the IPL process, and the value you
specified will be ignored.

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7
HWNAME h1
LPARNAME l1
VMUSERID v1

*---+----1----+----2----+----3----+----4----+----5----+----6----+----7
ARCHLVL a
IEASYM [xx]

[(xx,yy,zz,...,L)]
INITSQA xxxxK yyyyK

xxxxM yyyyM
IODF xx hiqualif configid id y
NUCLEUS n
NUCLST nn y
PARMLIB dsn [volid]

[******]
[*MCAT*]

SYSCAT volserxycsdsname hlqtvc
SYSPARM [xx]

[(xx,yy,zz,...,L)]
SYSPLEX plexname

LOADxx

456 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default: If running on a zSeries™ processor, the default is 2 (run in z/Architecture
mode). Otherwise, the default is 1 (run in ESA/390 mode).

HWNAME
Specifies the name of a central processor complex (CPC), as defined to hardware configuration
definition (HCD). The HWNAME parameter is used as a filter to define value parameters for a
specified processor.

This optional filter parameter identifies a segment of LOADxx that may contain IODF, SYSCAT,
SYSPARM, SYSPLEX, IEASYM, PARMLIB, NUCLEUS and NUCLST statements that will be used if
the specified HWNAME matches the name of the processor where the LOADxx statement is running.
When HWNAME is specified, it resets the LPARNAME and VMUSERID to their default values.

Column Contents

1-6 HWNAME

10-17 A required hardware processor name as defined in the IODF. There is no default
value.

IEASYM
The IEASYM statement identifies one or more suffixes of IEASYMxx members of SYS1.PARMLIB that
do the following for one or more systems:

v Define static system symbols.

v Specify the IEASYSxx parmlib members that the system is to use.

To specify one IEASYMxx parmlib member, code IEASYM as follows:

Column Contents

1-6 IEASYM

10-11 A 2-character suffix appended to “IEASYM” to select the member.

Example: The following example shows an IEASYM statement that tells the system to use the
IEASYM01 parmlib member:
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
IEASYM 01
*

To specify one IEASYMxx parmlib member and display a list of member names in message IEA009I,
code IEASYM as follows:

Column Contents

1-6 IEASYM

10 A left parenthesis.

11-12 A 2-character suffix appended to “IEASYM” to select the member.

13-14 The following characters: ,L

15 A right parenthesis.

Example: The following example shows an IEASYM statement that tells the system to use the
IEASYM01 parmlib member and display the names of those members in message IEA009I.
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
IEASYM (01,L)
*

To specify more than one IEASYMxx parmlib member, code IEASYM as follows:

LOADxx

Chapter 58. LOADxx (system configuration data sets) 457

Column Contents

1-6 IEASYM

10 A left parenthesis.

11-71 A list of 2-character suffixes appended to IEASYM to select the members. To display a
list of member names in message IEA009I, specify ,L anywhere after the first suffix
and enclose the values in parentheses, as shown in the example below.

Example: The following example shows an IEASYM statement that tells the system to use the
IEASYM01 and IEASYM02 parmlib members and display the names of those members in message
IEA009I.
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
IEASYM (01,02,L)
*

If you specify a list of IEASYMxx suffixes, the system processes them from left to right. The system
uses the definitions in all IEASYMxx members for which suffixes are specified. If the system finds
duplicate definitions, the last definition overrides any previous definitions.

Default: None. If you do not specify an IEASYM statement, the system does not process IEASYMxx
during initialization.

INITSQA
The INITSQA statement allows additional SQA and ESQA storage to be reserved for IPL and NIP
processing when the default amount is not sufficient. Note that increasing the minimum below the line
SQA allocation must be done with caution to ensure that it does not affect the lower boundary of CSA
storage. (See “SQA” on page 373 for additional information on specifying SQA storage.) If a syntax
error exists, the entire statement is ignored and message IEA368I is issued.

Column Contents

1-7 INITSQA

10-14 The amount of SQA to be added to the default initial amount. If blank, no SQA is
added. If non-blank, a 4-digit numeric value followed by a multiplier of K or M must be
specified.

Value Range: 0000K to 2048K or 0000M to 0002M

Default: 0000K

16-20 The amount of ESQA to be added to the default initial amount. If blank, no ESQA is
added. If non-blank, a 4-digit numeric value followed by a multiplier of K or M must be
specified.

Value Range: 0000K to 8192K or 0000M to 0016M

Default: 0000K

IODF
The IODF statement identifies the I/O definition file that contains information about the I/O
configuration defined to your system through the hardware configuration definition (HCD). To change
the I/O configuration definition once the system is running, use the activate process. For information
about the ACTIVATE command, see z/OS MVS System Commands. For information about using the
HCD to change the I/O configuration definition, see z/OS HCD User’s Guide.

Column Contents

1-4 IODF

LOADxx

458 z/OS V1R4.0 MVS Initialization and Tuning Reference

10-11 IODF suffix. This suffix is appended to nnnnnnnn.IODF to form the name of the
nnnnnnnn.IODFxx data set.

Value Range: A two-digit hexadecimal number (X'00-FF'), asterisks (’**’), pluses (’++’),
minuses (’--’), or equals (’==’).

If you used HCD to create your I/O Configuration data set (IOCDS), you can specify
asterisks, pluses, minuses, or equals for the IODF suffix. If you specify asterisks,
pluses, minuses, or equals, OS/390 uses the IODF name found in the hardware
configuration token. This IODF represents the last I/O configuration in the channel
subsystem which you activated during the last Power On Reset (POR) or dynamic I/O
configuration change. If you override descriptor fields 1 and 2 in the HCD panel with
an invalid IODF name, OS/390 treats IODF suffixes ’**’ and ’++’ as if no IODF suffix
was specified in LOADxx (OS/390 searches from X'00' to X'FF' for a production IODF).
If an invalid IODF name is found and you specified ’--’, OS/390 searches for a
production IODF starting with a suffix of X'FF'and searches backwards to X'00'. If an
invalid IODF name is found and ’==’ were specified, OS/390 loads wait state X'0B1'
reason code X'00B'.

If pluses (’++’) are specified and a valid IODF name is found in the hardware token,
but is not found in the search or cannot be used, IODF selection is made in the
following order:

v Search for the next available IODF starting with the current IODF suffix number plus
one and search up to X'FF'. If none is found, the search continues from X'00' up to
the current IODF number minus one.

v Select the first IODF that has both a processor definition in the IODF that matches
the currently active hardware definition, and a matching operating system
configuration identifier.

v If no matching IODF token is found, select the first IODF that has a matching
operating system configuration identifier.

v If no matching operating system configuration identifier is found, a wait state is
loaded.

If minuses (’--’) are specified and a valid IODF name is found in the hardware token,
but is not found in the search or cannot be used, IODF selection is made in the
following order:

v Search for the next available IODF starting with the current IODF suffix number
minus one and search down to X'00' If none is found, the search continues from
X'FF' down to the current number plus one.

v Select the first IODF that has both a processor definition in the IODF that matches
the currently active hardware definition, and a matching operating system
configuration identifier.

v If no matching IODF token is found, select the first IODF that has a matching
operating system configuration identifier.

v If no matching operating system configuration identifier is found, a wait state is
loaded.

If equals (’==’) are specified and a valid IODF name is found in the hardware token,
but is not found in the search or cannot be used, the result is the same as if you
specified a specific number for the IODF suffix (hilevqu.IODF01).

Default: If not specified, all possible IODFs (00-FF) are searched. The IODF selection
is made in the following order:

v If no matching IODF token is found, select the first IODF that has a matching
operating system configuration identifier.

LOADxx

Chapter 58. LOADxx (system configuration data sets) 459

v If no matching operating system configuration identifier is found, a wait state is
loaded.

Attention: If you specify asterisks (’**’), pluses (’++’), minuses (’--’), or equals (’==’) for
an IODF that does not reside on the IODF volume, or if you omit the IODF parameter
altogether, the resulting search can substantially increase the time it takes to IPL the
system, especially if the IODF volume has a large VTOC. In this situation, the system
enters a X'073' wait state, indicating that the IPL is waiting for an I/O interrupt. To
correct the problem, either specify the correct IODF suffix in LOADxx, or move the
required IODF to the IODF volume, then reIPL.

13-20 High-level qualifier for the IODF data set name. This qualifier is added to IODFxx to
form the name of the nnnnnnnn.IODFxx data set.

If equals (’========’) are specified, OS/390 attempts to extract the high-level qualifier
from the hardware configuration token. If the token is not available, a wait state is
loaded. Otherwise, OS/390 uses this high-level qualifier for the IODF name. If the first
character of the high-level qualifier found in the hardware configuration token is blanks
(’ ’), a wait state is loaded.

Value Range: 1 to 8 alphameric characters or ″========″.

Default: If LOADxx resides in a SYSn.IPLPARM data set, and there is no high-level
qualifier specified, the high-level qualifier defaults to the high-level qualifier of the
SYSn.IPLPARM data set. If LOADxx resides in a SYS1.PARMLIB data set, and there
is no high-level qualifier specified, a wait state is loaded.

22-29 Operating system configuration identifier. This eight-character identifier is used to
select the appropriate configuration from those configurations defined in the IODF. For
a list of eligible operating system configurations, select the “Define Operating System
Configurations” option on the primary HCD panel.

Default: If there is only one operating system configuration identifier in
nnnnnnnn.IODFxx, then that one will be used. If there is more than one identifier and
the identifier is not specified, a wait state is loaded.

31-32 Eligible device table identifier

Default: 00

34 To indicate that the system should load all of the device support modules for the
devices defined in the IODF and all the device types that support dynamic processing,
specify either Y or blank. To indicate that the system should load only the modules
required for the devices defined in your IODF, specify any non-blank character other
than Y.

Default: Y

LPARNAME
Specifies the name of a logical partition that is defined to a processor, which is one of the following:

v The partition name specified on the “Add Partition” panel in HCD (see z/OS HCD User’s Guide for
more information).

v The partition name specified on the RESOURCE or CHPID statement that is input to the I/O
configuration program (IOCP).

This optional filter parameter identifies a segment of LOADxx that may contain IODF, SYSCAT,
SYSPARM, SYSPLEX, IEASYM, PARMLIB, NUCLEUS and NUCLST statements that will be used if
the specified HWNAME matches the name of the processor and the specified LPARNAME matches
the actual LPAR logical partition in which OS/390 is executing. When LPARNAME is specified, it resets
VMUSERID to its default value. The LPARNAME parameter is used as a filter to define value
parameters for a specified partition of a processor.

LOADxx

460 z/OS V1R4.0 MVS Initialization and Tuning Reference

Column Contents

1-8 LPARNAME

10-17 A required logical partition name as defined to LPAR. A blank entry indicates an
OS/390 image not running in LPAR mode. The default of matching the system being
IPLed is set indirectly by specifying the HWNAME parameter.

MTLSHARE
The MTLSHARE statement enables a full-support MTL system to treat manual tape library defined
devices as stand-alone devices when the Y(es) parameter is specified. Specifying Y also implies that
the cartridge loader on MTL defined devices should not be indexed. For complete details please see
OS/390 V2R10.0 DFSMS Migration (SC26-7329), and OS/390 V2R10.0 DFSMS OAM Plan,
Installation Guide, and Administration Guide for Tape Library (SC35-0392).

Column Contents

1-8 MTLSHARE

10 Y indicates that the system is to run in its coexistence mode, that is, treat MTL defined
tape drives as stand-alone drives, and do not index the cartridge loaders on such
drives.

N indicates that the system is to run in its full function mode. MTL defined drives are
treated as MTL resident drives, and cartridge loaders on such drives are indexed per
MTL rules.

Default: N

NUCLEUS
The NUCLEUS statement identifies the IEANUC0x member of SYS1.NUCLEUS that your system is to
use. If the operator specified a nucleus identifier on the LOAD parameter, OS/390 ignores the
NUCLEUS statement.

Column Contents

1-7 NUCLEUS

10 A one-digit suffix appended to “IEANUC0” to select a member of SYS1.NUCLEUS.

Default: 1

Note: When you specify an alternate nucleus, the proper architectural extension of
the nucleus must also exist. For example, if you request IEANUC05 and you
run in ESA/390 mode, nucleus extension IEANUC15 must also exist. See page
456 for information about architectural extensions to the nucleus.

NUCLST
The NUCLST statement:

v Identifies the NUCLSTxx parmlib member that your system is to use.

v Specifies whether the system is to load a wait state if any of the INCLUDE statements in the
NUCLSTxx member specify a member that cannot be found in SYS1.NUCLEUS.

The NUCLSTxx member must reside in the same data set as the LOADxx member. For information
about coding the NUCLSTxx member, see Chapter 63, “NUCLSTxx (Customizing the nucleus region)”
on page 497.

Column Contents

1-6 NUCLST

10-11 A two-character suffix appended to “NUCLST” to select a NUCLST member.

Default: None

LOADxx

Chapter 58. LOADxx (system configuration data sets) 461

13 The character ‘Y’ indicates that a wait state is to be loaded if any of the INCLUDE
statements in the NUCLSTxx member specify a member that cannot be found in
SYS1.NUCLEUS. If any other character is specified, the system does not load a wait
state.

Note: Upper case ‘Y’ is required. Lower case ‘y’ indicates that a wait state is not to
be loaded.

Default: Do not load a wait state.

PARMLIB
Specifies a data set that will be included in the logical parmlib concatenation. The parmlib
concatenation consists of up to 10 PARMLIB data sets and SYS1.PARMLIB. When there is more than
one PARMLIB statement, the statements are concatenated and SYS1.PARMLIB, as cataloged in the
Master Catalog, is added at the end of the concatenation, unless it was specified in a parmlib. The
parmlib concatenation is established during IPL and is used by Master Scheduler Initialization.
Programs can access members in the logical parmlib concatenation using the IEFPRMLB macro (see
z/OS MVS Programming: Assembler Services Guide). Each additional PARMLIB statement adds
another data set to the logical parmlib concatenation.

Column Contents

1-7 PARMLIB

10-53 A required valid data set name. There is no default value.

55-60 A optional valid volume name.

If a volume name is specified, IPL processing will attempt to locate the specified data
set on the specified volume.

If ’******’ or ’&SYSR1’ is specified, IPL processing will attempt to locate the specified
data set on the system residence volume.

If ’*MCAT*’ is specified, IPL processing will attempt to locate the specified data set on
the master catalog volume.

If nothing is specified, IPL processing will attempt to locate the specified data set first
in the master catalog and, if it is not located there, on the system residence volume.

Note: &SYSR1 is the only system symbol that can be specified in the logical parmlib concatenation.

Default: If you do not specify at least 1 PARMLIB statement, the parmlib concatenation will consist of
only SYS1.PARMLIB and Master Scheduler processing will use the IEFPARM DD statement, if there is
one in the Master JCL. If there are no parmlib statements in the parmlib concatenation and there is no
IEFPARM DD statement, Master Scheduler processing will use SYS1.PARMLIB.

Example 1: The following example shows the definition of a parmlib concatenation consisting of
MYDSN1.PARMLIB, MYDSN2.PARMLIB, MYDSN3.PARMLIB. SYS1.PARMLIB, as cataloged in the
master catalog, will automatically be concatenated as the last data set in the parmlib concatenation.
----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
PARMLIB MYDSN1.PARMLIB
PARMLIB MYDSN2.PARMLIB VOL123
PARMLIB MYDSN3.PARMLIB VOL456

Example 2: The following example shows the definition of a parmlib concatenation consisting of
MYDSN1.PARMLIB, MYDSN2.PARMLIB, SYS1.PARMLIB on volume VOL234, MYDSN3.PARMLIB
and, additionally, SYS1.PARMLIB, as cataloged in the master catalog, which will be concatenated as
the last data set in the parmlib concatenation.

LOADxx

462 z/OS V1R4.0 MVS Initialization and Tuning Reference

----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
PARMLIB MYDSN1.PARMLIB
PARMLIB MYDSN2.PARMLIB VOL123
PARMLIB SYS1.PARMLIB VOL234
PARMLIB MYDSN3.PARMLIB VOL456

Example 3: The following example shows the definition of a parmlib concatenation consisting of
MYDSN1.PARMLIB, MYDSN2.PARMLIB, SYS1.PARMLIB as cataloged in the master catalog and
MYDSN3.PARMLIB. SYS1.PARMLIB is not concatenated as the last data set in this case since it was
already specified on a PARMLIB statement without a volume serial number and is, thus, the
SYS1.PARMLIB cataloged in the master catalog.
----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
PARMLIB MYDSN1.PARMLIB
PARMLIB MYDSN2.PARMLIB VOL123
PARMLIB SYS1.PARMLIB
PARMLIB MYDSN3.PARMLIB VOL456

In all of the above examples, if none of the data sets specified on the PARMLIB statements could be
located, the parmlib concatenation would consist of only SYS1.PARMLIB.

SYSCAT
Identifies the master catalog. The operator can override the value specified on this parameter, using
the LOAD parameter on the system console with an appropriate initialization message suppression
indicator (IMSI). For more information, see the section on loading the system software in z/OS MVS
System Commands.

Column Contents

1-6 SYSCAT

10-15 The volume serial of the device that contains the master catalog.

16 A blank if it is a VSAM catalog, or the character “1” if the master catalog is an
integrated catalog facility catalog. A “2” indicates that SYS% to SYS1 conversion is
active and the master catalog is an integrated catalog facility (ICF) catalog.

17 Alias name level of qualification.

Value Range: 1 - 4

Default: 1

18-19 CAS service task lower limit.

Value Range: X'18' - X'B4'

Default: X'3C'

If you want to specify the CAS service task lower limit, specify the value with EBCDIC
characters, for instance, hexadecimal B4 is specified as C'B4' or X'C2F4'.

20-63 The 44-byte data set name of the master catalog.

64-71 The 1 to 8 character high level qualifier of the tape volume catalog.

Default: SYS1

Default: If you do not specify a SYSCAT statement, the system prompts the operator to specify the
SYSCATxx member of SYS1.NUCLEUS.

SYSPARM
The SYSPARM statement identifies one or more IEASYSxx members of the parmlib concatenation that
the system is to use (in addition to IEASYS00). To display the contents of IEASYSxx at the operator
console when the system processes each member, specify ,L anywhere after the first suffix and
enclose the values in parentheses. For example, specify (01,L) on SYSPARM to tell the system to

LOADxx

Chapter 58. LOADxx (system configuration data sets) 463

process IEASYS01 and display the contents of that member at the operator console. The system
ignores the SYSPARM statement if the operator specifies on the LOAD parameter that the system
should prompt for system information. The operator can accomplish this by specifying an A, P, S, or T
IMSI character on the LOAD parameter on the system console. For details about IMSI characters, see
the section on loading the system software in z/OS MVS System Commands.

Note: The suffixes of IEASYSxx members can also be specified:

v On the SYSPARM parameter in the IEASYMxx parmlib member.

v By the operator, in response to message IEA101A SPECIFY SYSTEM PARAMETERS.

During system initialization, NIP first processes the IEASYS00 parmlib member to establish
parameters. Then it determines, from the suffixes specified on the SYSPARM statement in LOADxx,
the SYSPARM parameter in IEASYMxx, or by the operator, which IEASYSxx members are to be used.
See “Step 2. Determine where to specify system parameters” on page 33 for a description of how the
system determines which IEASYSxx members are to be used.

To specify one IEASYSxx parmlib member, code SYSPARM as follows:

Column Contents

1-7 SYSPARM

10-11 A 2-character suffix appended to “IEASYS” to select the member.

Example: The following example shows a SYSPARM statement that tells the system to use the
IEASYS01 parmlib member:
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
SYSPARM 01
*

To specify one IEASYSxx parmlib member and display the contents of IEASYSxx at the operator
console, code SYSPARM as follows:

Column Contents

1-6 SYSPARM

10 A left parenthesis.

11-12 A 2-character suffix appended to “IEASYS” to select the member.

13-14 The following characters: ,L

15 A right parenthesis.

Example: The following example shows an SYSPARM statement that tells the system to use the
IEASYS01 parmlib member and display the contents of IEASYSxx at the operator console.
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
SYSPARM (01,L)
*

To specify more than one IEASYSxx parmlib member, code SYSPARM as follows:

Column Contents

1-7 SYSPARM

10 A left parenthesis.

11-71 A list of 2-character suffixes appended to IEASYS to select members of
SYS1.PARMLIB. To display the contents of IEASYSxx at the operator console when

LOADxx

464 z/OS V1R4.0 MVS Initialization and Tuning Reference

the system processes each member, specify ,L anywhere after the first suffix and
enclose the values in parentheses, as shown in the example below.

Default: If you do not specify a SYSPARM statement, the system prompts the operator to specify the
IEASYSxx members of SYS1.PARMLIB.

Example: The following example tells the system to use IEASYSxx members IEASYS01 and
IEASYS02 and display their contents:
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
SYSPARM (01,02,L)
*

SYSPLEX
The SYSPLEX statement specifies the name of the sysplex in which the system participates. It is also
the substitution text for the &SYSPLEX system symbol. Specify a sysplex name that is different from
the names of all the systems that participate in the sysplex.

Note: The sysplex name must match the name specified in both of the following places:

v The SYSPLEX parameter of the XCF couple data set format utility. See z/OS MVS Setting Up a
Sysplex for information about the data set format utility.

v The SYSPLEX parameter in the COUPLExx parmlib member. LOADxx defines the substitution text
for &SYSPLEX early in system initialization so other parmlib members can use it. Therefore, if you
plan to use the &SYSPLEX system symbol in parmlib, specify the sysplex name in LOADxx. To
ensure that the name in COUPLExx matches the one in LOADxx, specify the &SYSPLEX system
symbol on the SYSPLEX parameter in COUPLExx. (See the description of COUPLExx in this book
for more information.)

Value Range:

Column Contents

1-7 SYSPLEX

10-17 The sysplex name. It can consist of 1 to 8 characters, left-justified in the column. Valid
characters are alphanumeric (A-Z and 0-9) and national (@,#,$).

Default: If you do not specify a SYSPLEX statement, the system uses the value LOCAL until it
processes the COUPLExx parmlib member; then it uses the name specified in COUPLExx. In this
case, the system substitutes LOCAL for the &SYSPLEX system symbol in all parmlib members that
are processed before COUPLExx.

Example: The following example specifies that OURWORLD is the sysplex name.
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
SYSPLEX OURWORLD
*

VMUSERID
Specifies the userid of a VM/ESA system under which an OS/390 image is running as a guest. This
optional filter parameter identifies a segment of LOADxx that may contain IODF, SYSCAT, SYSPARM,
SYSPLEX, IEASYM, PARMLIB, NUCLEUS and NUCLST statements that will be used if the specified
HWNAME matches the name of the processor, the specified LPARNAME matches the actual LPAR
logical partition in which OS/390 is executing, and the specified VMUSERID matches the actual userid
of the VM/ESA guest machine in which OS/390 is executing.

Column Contents

1-8 VMUSERID

LOADxx

Chapter 58. LOADxx (system configuration data sets) 465

10-17 A required userid name as defined to VM/ESA. A blank indicates an image not running
under VM. The default of matching the system being IPLed is set indirectly by
specifying the HWNAME or LPARNAME parameter.

Example of parmlib concatenation
This example creates a parmlib concatenation with five data sets.

The first PARMLIB statement indicates that data set dsn1 is included in the parmlib concatenation.

The second PARMLIB statement indicates that data set dsn2, residing on volume vol2, is included in the
parmlib concatenation.

The third PARMLIB statement indicates that data set dsn3, residing on the sysres volume, is included in
the parmlib concatenation.

The fourth PARMLIB statement indicates that data set dsn4, residing on the master catalog volume, is
included in the parmlib concatenation.

SYS1.PARMLIB is automatically added to the bottom of the parmlib concatenation.
*
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
PARMLIB dsn1
PARMLIB dsn2 vol2
PARMLIB dsn3 ******
PARMLIB dsn4 *MCAT*
*
*
SYSCAT volserxycsdsname
*
* The first SYSPARM parameter specifies one IEASYSxx parmlib member.
* The second SYSPARM parameter specifies multiple IEASYSxx parmlib
* members. xx, yy, and zz are suffixes for IEASYS.
*
SYSPARM xx
SYSPARM (xx[,yy,zz....,L])
*
* In the SYSPLEX parameter, plexname is the sysplex name.
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
SYSPLEX plexname
*
*
* VMUSERID v1 specifies that the LOADxx statements that follow the
* VMUSERID statement are used only if the vm userid being used is v1.
*
*---+----1----+----2----+----3----+----4----+----5----+----6----+----7--
VMUSERID v1
*
**

LOADxx

466 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 59. LPALSTxx (LPA library list)

Use the LPALSTxx member to add your installation’s read-only reenterable user programs to the pageable
link pack area (PLPA). Placing programs in the PLPA allows them to be shared among users of the
system.

Use one or more LPALSTxx members to concatenate your installation’s program library data sets to
SYS1.LPALIB. The system uses this concatenation, which is referred to as the LPALST concatenation, to
build the PLPA.

The modules in the data sets that you define in LPALSTxx must meet the same requirements as the
modules defined in SYS1.LPALIB. For example, these modules must be reentrant and executable.

During NIP, the system opens and concatenates each data set specified in LPALSTxx in the order in which
the data set names are listed, starting with the first-specified LPALSTxx member.

The LPALST concatenation can have up to 255 extents. If you specify more data sets than the
concatenation can contain, the system truncates the LPALST concatenation and issues messages that
indicate which data sets were not included in the concatenation.

If one or more LPALSTxx members exist, and the system can open the specified data sets successfully,
the system uses the LPALST concatenation to build the PLPA (during cold starts and IPLs that include the
CLPA option). Otherwise, the system builds the PLPA from only the modules named in SYS1.LPALIB.

As of MVS Version 4.3, it is no longer necessary for the data sets in the LPALST to be APF-authorized.

Data sets to be concatenated to SYS1.LPALIB must be cataloged in the system master catalogor a user
catalog identified in the LPALSTxx member. (The system does not check OS CVOLs and only checks user
catalogs when a data set name and pack VOLSER are listed in LPALSTxx.)

You cannot use PDSEs in the LPALST concatenation.

To identify which LPALSTxx members the system is to use, specify the member suffixes on the LPA
parameter in IEASYSxx or as a parameter entered during IPL.

Parameter in IEASYSxx (or supplied by the operator):
LPA= {aa }

{(aa,bb,...[,L])}

The two characters (A-Z, 0-9, @, #, or $), represented by aa (or bb, and so forth), are appended to
LPALST to form the name of the LPALSTxx parmlib member(s). If the L option is specified, the system
displays (at the operator’s console) the names of the data sets successfully concatenated to
SYS1.LPALIB.

The LPA parameter is only effective during cold starts, or during IPLs in which you specify the CLPA
option. The LPA parameter does not apply to modules requested through the MLPA option.

Syntax rules for LPALSTxx
The following rules apply to the creation of LPALSTxx:

v On each record, place a string of data set names separated by commas.

© Copyright IBM Corp. 1991, 2002 467

v If a data set is not cataloged in the system master catalog but is cataloged in a user catalog, specify in
parentheses immediately following the data set name the one to six-character VOLSER of the pack on
which the data set resides.

v Indicate continuation by placing a comma followed by at least one blank after the last data set name on
a record.

v Be careful not to specify the same data set name more than once in the LPALSTxx members. This
applies to data sets with and without a VOLSER specified. The same data set name is concatenated as
many times as it appears in all specified LPALSTxx members. Specifying the data set name more than
once can cause additional processing during IPL, when the CLPA processes.

v If a module exists in more than one library in the concatenation, the first occurrence of the module is
placed in the PLPA. Later occurrences are ignored.

v The LPALIB data set is always the first data set in the concatenation (see “Using the SYSLIB
statement” on page 505). Unless overridden by a SYSLIB statement in PROGxx, the LPALST
concatenation begins with SYS1.LPALIB. If you do not use SYSLIB and place the LPALIB data set
name on any record in any LPALSTxx member, the name is ignored.

Syntax format of LPALSTxx
IEASYSxx: ...,LPA=(nn,nn,nn,...)
LPALSTxx: {data-set-name },{data-set-name },...

{data-set-name(volser)} {data-set-name(volser)}

Syntax example of LPALSTxx
The following applies to both examples: DBLUE.U30LIB is a user-cataloged data set on VOLSER
U30PAK. All other data sets are cataloged in the system master catalog.
IEASYSxx: ...,LPA=(00,01,02,03)
LPALST00: SYS1.CMDLIB,SYS1.TSORTNS,SYS1.BTAMLIB
LPALST01: SYS1.U30LIB,SYS2.U30LIB,DBLUE.U30LIB(U30PAK),SYS1.LPALIB
LPALST02: SYS1.AUXLIB,SYS1.JES3
LPALST03: SYS1.TEST

v Example 1:

PROGxx does not include a SYSLIB LPALIB statement. The following data sets are concatenated to
SYS1.LPALIB:
– SYS1.CMDLIB
– SYS1.TSORTNS
– SYS1.BTAMLIB
– SYS1.U30LIB
– SYS2.U30LIB
– DBLUE.U30LIB
– SYS1.AUXLIB
– SYS1.JES3
– SYS1.TEST

Because the SYSLIB statement with the LPALIB option was not used in PROGxx, the specification of
SYS1.LPALIB (in LPALST01) is ignored.

v Example 2:

PROGxx includes the following:
SYSLIB LPALIB(SYS2.LPALIB)

The following data sets are concatenated to SYS2.LPALIB:
– SYS1.CMDLIB
– SYS1.TSORTNS
– SYS1.BTAMLIB
– SYS1.U30LIB

LPALSTxx

468 z/OS V1R4.0 MVS Initialization and Tuning Reference

– SYS2.U30LIB
– DBLUE.U30LIB
– SYS1.LPALIB
– SYS1.AUXLIB
– SYS1.JES3
– SYS1.TEST

IBM-supplied default for LPALSTxx
There is no default LPALSTxx member. If the installation does not create an LPALSTxx member (and
therefore no data sets are concatenated to SYS1.LPALIB), the system uses only SYS1.LPALIB to build the
PLPA.

Statements/parameters for LPALSTxx
Not applicable.

LPALSTxx

Chapter 59. LPALSTxx (LPA library list) 469

470 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 60. MMSLSTxx (MVS message service list)

MMSLSTxx contains information that the MVS message service (MMS) uses to define the languages that
are available for message translation at your installation. Through the use of the LANGUAGE, DEFAULTS,
and EXIT statements, you:

v Identify the languages available into which U.S. English messages can be translated.

v Specify the default language into which U.S. English messages can be translated.

v Specify the installation exits that get control either before or after the translation occurs.

Selecting an MMSLSTxx member
You can select a particular MMSLSTxx parmlib member in one of the following ways:

v Specifying the MMS keyword on the INIT statement in the CONSOLxx parmlib member. CONSOLxx is
used at system initialization.

v Issuing the SET MMS command after system initialization.

Two alphanumeric characters are appended to MMSLST to form the name of the MMSLSTxx parmlib
member. After initialization, you can issue the SET MMS command to change the MMSLSTxx member;
however, this change is temporary. At the next IPL, the system uses the MMSLSTxx member specified in
the CONSOLxx. For information on CONSOLxx, see Chapter 17, “CONSOLxx (Console configuration
definition)” on page 165. For descriptions of the SET command, see z/OS MVS System Commands.

Parameter in IEASYSxx:
None.

Sample MMSLSTxx member
IBM provides a sample MMS member, CNLLSTXX, in SYS1.SAMPLIB.

Syntax rules for MMSLSTxx
These rules apply to the creation of MMSLSTxx:

v Each record is 80 characters long. The system ignores columns 72 through 80 and leading blanks.

v Begin comments with /* in any column. It is best to end the comment with a */. If, however, you do not
include the end delimiter, the system recognizes the next statement.

v Specify one DEFAULTS statement only.

v Specify one or more LANGUAGE statements including U.S. English.

v Optionally, specify one or two EXIT statements.

Syntax format of MMSLSTxx

DEFAULTS LANGCODE(langcode)

LANGUAGE LANGCODE(langcode) DSN(langdsn) CONFIG(membername) [NAME(langname)]

[EXIT NUMBER(exitnum) ROUTINE(exitname)]

© Copyright IBM Corp. 1991, 2002 471

Syntax example for MMSLSTxx
DEFAULTS LANGCODE(FRC)
LANGUAGE LANGCODE(ENU) DSN(SYS1.MSG.NLSMSENU) CONFIG(CNLENU01) NAME(AMERICAN)
LANGUAGE LANGCODE(ENG) DSN(SYS1.MSG.NLSMSENG) CONFIG(CNLENG01)
LANGUAGE LANGCODE(FRC) DSN(SYS1.MSG.NLSMSFRC) CONFIG(CNLFRC01)

NAME(FRENCH) NAME(FRANCAIS)
LANGUAGE LANGCODE(ESP) DSN(SYS1.MSG.NLSMSESP) CONFIG(CNLESP01)
EXIT NUMBER(1) ROUTINE(NLSEXIT1)
EXIT NUMBER(2) ROUTINE(NLSEXIT2)

IBM-supplied default for MMSLSTxx
None.

Statements/parameters for MMSLSTxx
DEFAULTS

Specifies the default language your installation uses for translation. If MVS system messages or
application-generated messages are available in this language, the messages will be displayed to the
operator in this specified language.

LANGCODE(langname)
Specifies the three-character code for the default system language. You must code a LANGUAGE
statement corresponding to the default language specified here. For a list of valid language codes
see Table 19 on page 473.

LANGUAGE
Specifies information pertaining to all languages your installation uses for translation, including the
language specified on the DEFAULTS statement. You must code one language statement per
language supported at your installation.

LANGCODE(langcode)
Specifies the three-character code for the language whose message skeletons are contained in
the run-time message file identified by DSN(langdsn).

At least one LANGUAGE statement must have a LANGCODE(langcode) of “ENU” for U.S.
English. For a list of valid language codes see Table 19 on page 473.

DSN(langdsn)
Specifies the data set name of the run-time message file containing the message skeletons for the
specified language. See z/OS MVS Programming: Assembler Services Guide for information about
creating run-time message files.

CONFIG(membername)
Specifies the member of SYS1.PARMLIB that contains information about the date and time
formats of messages translated into the specified language. The name of the member must be in
the form of CNLcccxx, where:

ccc The appropriate three-character language code.

xx Any two characters that uniquely identify the member.

See Chapter 12, “CNLcccxx (Time and date format for translated messages)” on page 143 for
information about coding the CNLcccxx parmlib member.

NAME(langname)
Specifies a 1-24 byte name by which the installation can optionally refer to the language specified
through the LANGCODE parameter. Language names must be unique within any one MMSLSTxx
member. You can specify more than one NAME parameter on a LANGUAGE statement.

MMSLSTxx

472 z/OS V1R4.0 MVS Initialization and Tuning Reference

The language can be a quoted string containing mixed case characters as well as shift-in and
shift-out characters to delineate double-byte character set (DBCS) characters.

EXIT
Specifies an installation exit that is to get control either before or after the translation occurs. See z/OS
MVS Installation Exits for more information about the MMS pre-processing and post-processing exits.

NUMBER(exitnum)
Specifies the number of the exit to get control. The possible values are 1 and 2. Exit 1 gets control
before message translation occurs and exit 2 gets control after translation.

ROUTINE(exitname)
Specifies the 1 to 8 character name of the MMS pre-processing or post-processing installation exit.

Table 19. Language Codes

Code Language Name Country/Region

CHT Traditional Chinese Taiwan

CHS Simplified Chinese People’s Republic of China

DAN Danish Denmark

DEU German Germany

DES Swiss German Switzerland

ELL Greek Greece

ENG UK English United Kingdom

ENP US English (upper case) United States

ENU US English (mixed case) United States

ESP Spanish Spain

FIN Finnish Finland

FRA French France

FRB Belgian French Belgium

FRC Canadian French Canada

FRS Swiss French Switzerland

ISL Icelandic Iceland

ITA Italian Italy

ITS Swiss Italian Switzerland

JPN Japanese Japan

KOR Korean Korea

NLD Dutch Netherlands

NLB Belgian Dutch Belgium

NOR Norwegian Norway

PTG Portuguese Portugal

PTB Brazil Portuguese Brazil

RMS Rhaeto-Romanic Switzerland

RUS Russian Russia

SVE Swedish Sweden

THA Thai Thailand

TRK Turkish Turkey

MMSLSTxx

Chapter 60. MMSLSTxx (MVS message service list) 473

MMSLSTxx

474 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 61. MPFLSTxx (message processing facility list)

MPFLSTxx contains information that the message processing facility (MPF) uses to control:

v Message presentation

On certain devices, messages can appear with highlighting, in color, or with added intensity.

v Message management

Message management refers to message suppression, message retention, and message processing.

– Message suppression

A suppressed message does not appear at a console but is written to the hard-copy log.

– Message retention

The action message retention facility (AMRF) keeps action messages in a buffer area, allowing the
operator to request that any action message not acted on be recalled to the screen. In MPFLSTxx,
you can identify certain action messages that AMRF is not to retain.

– Message processing

Use MPFLSTxx to identify messages to be processed either using a message automation subsystem
(for example, NetView or using installation-written exits.

v Command Processing

You can specify installation exits that will get control each time a command is issued.

This description of the MPFLSTxx parmlib member has the following order:

v General information including syntax rules and selecting MFPLSTxx members.

v Controlling message presentation using MPFLSTxx, in “Controlling message presentation through
MPFLSTxx” on page 476.

v Controlling message management using MPFLSTxx, in “Controlling message management” on
page 480.

v Controlling command processing using MPFLSTxx, in “Controlling command processing using
MPFLSTxx” on page 488.

Parameter in IEASYSxx:
None.

Syntax rules for MPFLSTxx
These rules apply to the creation of MPFLSTxx:

v Each record is 80 characters long. The system ignores columns 72 through 80 and leading blanks.

v Each message processing record can contain only one message identifier.

v The message processing record for msgid, .DEFAULT, or MPFHCF cannot have embedded blanks.

v The message processing record for .MSGCOLR and .MSGIDS must have a single blank between the
statement and the operand. Embedded blanks are not allowed anyplace else on the message
processing record.

v Begin comments with /* in any column. It is best to end the comment with a */. If, however, you do not
include the end delimiter, the system recognizes the next statement.

Selecting MPFLSTxx members
You can select a particular MPFLSTxx parmlib member, or a concatenation of MPFLSTxx members (up to
39), in the following ways:

© Copyright IBM Corp. 1991, 2002 475

v Specifying the INIT statement with the MPF keyword in the CONSOLxx parmlib member. CONSOLxx is
used at system initialization.

v Including the SET MPF command in the COMMNDxx parmlib used at system initialization.

v Issuing the SET MPF command after system initialization.

Two alphanumeric characters are appended to MPFLST to form the name of the MPFLSTxx parmlib
member. Multiple members can be specified.

Note: Specify one or more MPFLSTxx parmlib members in either the CONSOLxx member or in the
COMMNDxx member. Do not maintain this selection in both members. After initialization, you can
issue the SET MPF command to change one or more MPFLSTxx members; however, this change
is temporary. At the next IPL, the system uses the MPFLSTxx members specified in the CONSOLxx
or COMMNDxx member. See the information on the CONSOLxx and COMMNDxx parmlib
members.

If you issue the SET MPF=NO command, the system uses the IBM-supplied defaults for message
presentation and for message management. For descriptions of the SET command, see z/OS MVS
System Commands.

IBM-supplied MPFLSTxx member
None.

Controlling message presentation through MPFLSTxx
Message presentation refers to color, highlighting, and intensity attributes that the system uses when
displaying messages on an operator console. You can specify these attributes on the .MSGCOLR
statement in the MPFLSTxx member; of course, the console must support the attributes you specify. On
the .MSGCOLR statement, you can indicate the display attributes that the system is to use in one of the
following ways:

v IBM-supplied defaults (DEFAULT).

v Attributes specified in the previously used MPFLSTxx member or concatenation of MPFLSTxx members
(NOCHANGE).

v Color (c), highlighting (h), and intensity (i) attributes specified within MPFLSTxx for a message area
(msgarea).

Syntax for controlling message presentation
The syntax for the .MSGCOLR statement is:

{DEFAULT }[/*comments*/]
.MSGCOLR {NOCHANGE }

{msgarea(c,h[,i])[,msgarea(c,h[,i])]...}

IBM-supplied defaults for .MSGCOLR
If you do not specify a .MSGCOLR statement, the system uses IBM-supplied defaults. See the following
description on the .MSGCOLR statement for these defaults.

If you specify a .MSGCOLR statement with no operands, the system defaults to NOCHANGE.
NOCHANGE indicates that the color, highlighting, and intensity attributes are to be the same as those
specified in the previously used MPFLSTxx member (or concatenation of MPFLSTxx members).

MPFLSTxx

476 z/OS V1R4.0 MVS Initialization and Tuning Reference

Displaying the message presentation attributes for the current
MPFLSTxx
You can use the DISPLAY MPF command to list the current color intensity and highlighting specifications
for a specific console or for all consoles. For a description of the DISPLAY MPF command, see z/OS MVS
System Commands.

MPFLSTxx parameters for controlling message presentation
.MSGCOLR

.MSGCOLR indicates the beginning of a statement that defines the display attributes for messages.

DEFAULT
DEFAULT causes the system to use the IBM-supplied color, highlighting, and intensity defaults.
See the following description on msgarea. (Table 20 on page 479 lists the defaults.) If you need to
specify a .MSGCOLR DEFAULT statement, specify only one.

If the first .MSGCOLR statement in the MPFLSTxx concatenation specifies DEFAULT, the system
ignores any later .MSGCOLR statements, issues an error message, and continues processing any
remaining statements.

NOCHANGE
NOCHANGE indicates that the color, highlighting, and intensity attributes are to be the same as
those specified in the previously used concatenation of MPFLSTxx members. If you need to
specify a .MSGCOLR NOCHANGE statement, specify only one. If the MPFLSTxx concatenation
does not contain a .MSGCOLR statement, the system defaults to NOCHANGE.

If the first .MSGCOLR statement specifies NOCHANGE, the system ignores any later .MSGCOLR
statements, issues an error message, and continues processing any remaining statements. The
system uses the color, highlighting, and intensity attributes specified in the previously used
concatenation of MPFLSTxx members.

msgarea(c,h[,i])
msgarea specifies the message area (message type or field) and contains the accepted values
and the defaults for msgarea. This operand allows you to specify the color (c), highlighting (h), and
intensity (i) attributes for a message area.

Color attributes (c) are specified as follows:
R-Red
W-White
G-Green
B-Blue
P-Pink
Y-Yellow
T-Turquoise

Highlighting attributes (h) are specified as follows:
N-Normal (colored characters on a black background)
B-Blinking
R-Reverse video (black characters on a colored background)
U-Underscored characters

Intensity attributes (i) are specified as follows:
N-Normal intensity
H-High intensity

If you specify a msgarea, you must specify the color and highlighting attributes. If you do not, or if
the system detects an error in any specified value, it issues an error message, stops checking the

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 477

statement in error, and continues processing any later statements. The intensity attribute, however,
is optional. If you do not specify the intensity attribute, the system uses the IBM-supplied defaults.

If you specify multiple .MSGCOLR statements for the same msgarea, the system uses the last
valid statements.

These attributes can be overridden by the extended message highlighting options in IEAVMXIT or
the MPF exit routines. For more information on coding these exit routines, see z/OS MVS
Installation Exits.

MPFLSTxx

478 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 20. Values for msgarea

Values for msgarea Meaning and Use Defaults (c,h,i)

ENTRYARA Specifies attributes for the entry area. (G,N,N)

EVETACTN Specifies attributes for eventual action messages (issued with a
descriptor code of 3).

(G,N,N)

GENMSG Specifies attributes for general system messages (issued with a
descriptor code other than 1, 2, 3 or 11).

(G,N,N)

IMEDACTN Specifies attributes for immediate action messages (issued with a
descriptor code of 2 or WTOR messages).
Note: For a device with limited image capability (such as the 3290),
the reverse video highlighting attribute applies only to the action
characters (* or @) that precede the message identifier.

(W,N,H)

INSTRERR Specifies attributes for error messages that appear in the instruction
line.

(W,N,H)

OOLCNTL Specifies attributes for the control line text of an out-of-line status
display, not including the selector pen detectable fields on the
control line. The console id and area id, cca, in the control line are
displayed using these attributes.

(T,N,N)

OOLDATA Specifies attributes for the data lines of an out-of-line status display. (G,N,N)

OOLLABEL Specifies attributes for the label lines of an out-of-line status display. (T,N,N)

PPMSG Specifies attributes for non-action messages issued by a problem
program (issued with a descriptor code other than 1, 2, 3, or 11).

(G,N,N)

SELPEN Specifies attributes for fields that are selector pen detectable, such
as:

in the control line of an out-of-line display -
F
E

in the control line of a TRACK display -
U
PT
H

in the control line of an in-line display -
C

(B,N,N)

URGATTN Specifies attributes for urgent attention messages (issued with a
descriptor code of 1 for system failure or 11 for critical eventual
action).
Note: For a device with limited image capability (such as the 3290),
the reverse video highlighting attribute applies only to the action
characters (* or @) that precedes the message identifier.

(R,N,H)

WARNLGEN Specifies attributes for the left half of the warning line for general
messages such as:

IEE163I MODE=R
IEE163I MODE=RD
IEE161I WARNING-CON=N, DEL=Y

(B,N,N)

WARNRGEN Specifies attributes for the right half of the warning line for general
messages such as:

IEE160I UNVIEWABLE MESSAGE

(B,N,N)

WARNRURG Specifies attributes for the right half of the warning line for urgent
attention messages such as:

IEE159E MESSAGE WAITING

(R,B,H)

Note: If you specify EVETACTN, GENMSG, OOLDATA, OOLLABEL, or PPMSG for a device with limited image
capability (such as the 3290), the system ignores the reverse video highlighting attribute.

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 479

Controlling message management
MPFLSTxx allows you to specify how you want to process WTO/WTOR messages. Message
management refers to message suppression, message retention, message automation eligibility, and the
use of installation-supplied WTO/WTOR exit routines.

Message suppression means that the message is logged in the hard-copy log, but it does not appear at an
MVS operator’s console.

Message retention means that action messages are saved by the action message retention facility (AMRF)
on the action message retention queue. Retention allows the operator to view the message later. If you
choose not to retain a message, the system will not add it to the action message retention queue.

Message automation eligibility means that you are using an automation subsystem to process particular
WTO/WTOR messages in a pre-determined way. The automation subsystem (such as NetView) allows the
installation to program the processing for a particular message. For example, your installation may be
using an automation subsystem to:

v Modify the text of a message.

v Re-route a message to a different operator’s console or to a different system for processing.

v Record some information contained in the message text for future use.

v Respond to the message.

An automation subsystem can look at the message text and the message attributes and perform the
programmed action. You can use MPFLSTxx to identify whether you want a message to be eligible for
automation processing. The automation subsystem must then select and process the messages. You can
also use MPFLSTxx to indicate information to pass to an automation subsystem. Messages that are
eligible for automation processing can also be suppressed or retained. Message suppression and retention
are functions separate from automation. Beginning with NetView Release 2, the NetView subsystem
recognizes the message automation eligibility specifications in MPFLSTxx. For more details, see
Automated Operations Planning Guide and NetView Administration Reference.

Your installation might have installation-written exit routines to handle WTO/WTOR messages. Through
MPFLSTxx, you can specify which messages are to go to which exit routine. The exit routine can examine
the message text and the message attributes and decide whether to suppress, retain, or take other actions
on the message. The exit routine can also examine and modify the token.

Specifying message management
For the messages that you specify in MPFLSTxx, you can indicate that the system is to:

v Suppress specific messages or all messages that begin with a particular prefix. SUP(YES/NO) provides
this option.

v Retain action messages (descriptor codes 1, 2, 3, 11) using the action message retention facility
(AMRF). The RETAIN parameter allows you to selectively retain certain types of action messages
(immediate, eventual, or critical eventual).

v Allow an automation subsystem, such as NetView, to respond to the WTO/WTOR message(s) that you
specify. AUTO(YES/NO/token) allows you to identify whether a message is eligible for automation
processing and to pass information (a token) to the automation subsystem.

v Pass control to an installation-supplied WTO/WTOR exit routine to process the message(s). The
USEREXIT option allows you to identify the exit routine.

v Assign installation-supplied defaults for specific messages that are identified in the MPFLSTxx member.
The .DEFAULT statement allows you to change the system-assigned message processing defaults for
any message you specify.

MPFLSTxx

480 z/OS V1R4.0 MVS Initialization and Tuning Reference

v Assign installation-supplied defaults for messages that are not identified in the MPFLSTxx member. The
.NO_ENTRY statement allows you to indicate how the system is to handle messages that are not
specified in the MPFLSTxx member.

v Indicate or flag the beginning of particular messages that are written to the JES3 hard-copy log. The
MPFHCF statement allows you to specify the character you want to use as an indicator.

Syntax for controlling message management
To control message management, MPFLSTxx recognizes one parameter, msgid , and four statements:
(.DEFAULT , .NO_ENTRY, MPFHCF, and .MSGIDS)

v msgid allows you to specify a particular message id or prefix. This specification is also called the
message processing record.

v .DEFAULT allows you to specify the defaults for groups of messages listed in the MPFLSTxx parmlib
member.

v .NO_ENTRY allows you to specify the default processing you want for messages that are NOT
identified in any of the active MPFLSTxx parmlib members. (Note that you must code the underscore
(_) in the statement.)

v MPFHCF allows you to indicate or flag messages that JES3 writes to the hard-copy log. Note that this
statement does not begin with a period (.).

v .MSGIDS NOCHANGE allows you to specify that the messages identifiers and the message processing
are to be the same as those specified in the previously used concatenation of MPFLSTxx members.

The syntax of the message processing record (msgid) is:
msgid [,AUTO [(YES)] ,RETAIN [(YES)] ,SUP [(YES)]]

[[(NO)] [(NO)] [(ALL)]]
[[(TOKEN)] [(I,E,CE)] [(NO)]]
[]
[[,USEREXIT(exitname)][/*comments*/]]

The syntax of the .DEFAULT statement is:
.DEFAULT [,AUTO [(YES)] ,RETAIN [(YES)] ,SUP [(YES)]]

[[(NO)] [(NO)] [(ALL)]]
[[(TOKEN)] [(I,E,CE)] [(NO)]]
[]
[[,USEREXIT(exitname)][/*comments*/]]

The syntax of the MPFHCF statement is:
MPFHCF=[x/&]

The syntax for the .MSGIDS statement is:
.MSGIDS NOCHANGE

The syntax of the .NO_ENTRY statement is:
.NO_ENTRY [,AUTO [(YES)] ,RETAIN [(YES)] ,SUP[(YES)]]

[[(NO)] [(NO)] [(ALL)]]
[[(TOKEN)] [(I,E,CE)] [(NO)]]
[]
[[/*comments*/]]

For descriptions of these statements and parameters, see “Statements/parameters for MPFLSTxx” on
page 482.

IBM-supplied defaults for message management
v If you have msgid (message processing) statements in the MPFLSTxx member, the defaults vary and

are described in the syntax and parameter descriptions for the msgid, .DEFAULT, and .NO_ENTRY
statements.

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 481

v If you do not specify an MPFLSTxx member, the defaults are AUTO(YES), RETAIN(YES), and
SUP(NO). The system considers all messages eligible for automation processing, it retains action
messages, and displays all messages.

Listing the message processing attributes for the current MPFLSTxx
You can use the DISPLAY MPF command to list the results of the current MPFLSTxx member. The
DISPLAY MPF command displays:

v The messages being suppressed by MPF.

v The action messages not being retained by the action message retention facility.

v The installation exits that receive control for selected messages.

v The status of the general-use WTO installation exit, IEAVMXIT.

For descriptions of the DISPLAY command, see z/OS MVS System Commands.

Note: The DISPLAY MPF command will not display whether a message is eligible for automation
processing. The hard-copy log, however, will contain the automation tracking indicator.

To diagnose MPF processing, you can also use the hard-copy log to determine the message processing
options used for a message.

Using other methods to suppress messages
WTO/WTOR messages can be suppressed through an MPFLSTxx member and by other methods. When
an installation uses more than one method, message suppression is performed in the following order:

1. The message processing facility (MPF) itself suppresses messages.

2. An installation-supplied WTO/WTOR installation exit (either IEAVMXIT or an exit routine you name on
the USEREXIT parameter in MPFLSTxx) can suppress messages. (Note that the exit routine can also
override MPF suppression. That is, the exit can prevent MPF from suppressing a message.)

3. An active subsystem (such as JES2, JES3, or NetView) can suppress messages.

4. CONTROL V command can suppress messages by specifying only the message levels that are to be
displayed at a console. The LEVEL keyword on the CONSOLE statement in the CONSOLxx member
of SYS1.PARMLIB controls the message levels for the console.

Statements/parameters for MPFLSTxx
msgid

Identifies a message or group of messages to be processed. msgid consists of either:

v A complete message identifier of one to ten characters. This is known as a specific message
identifier.

v A message prefix, which is a portion of the message identifier, followed by an asterisk(*). This is
known as a generic message identifier.

v A single quote (’) is not a valid character in a message identifier.

A message identifier begins with the first non-blank character of the message text and continues until
the next blank.

Note: The system might insert a character, such as a + or *, preceding the message identifier. This
character is not a part of the message identifier. Do not add it to the msgid specification.

You can specify only one msgid per record. If a msgid is repeated within an MPFLSTxx member, the
system uses the options specified on the first record and ignores the duplicates.

MPFLSTxx

482 z/OS V1R4.0 MVS Initialization and Tuning Reference

If you want MPF to process a specific message, you must specify the complete message id, for
example IEF124I.

If you want MPF to process all messages that begin with a specific prefix, you can specify the prefix
and an asterisk, for example, IEF24*. Use the message prefix with an asterisk carefully. Too wide a
suppression, such as IEF*, could suppress many messages that you need for effective system
operation.

With one exception (see note below), specific message definitions take precedence over generic
message definitions. For example, if you specify both a specific entry for IEF638I, and a generic entry
that includes IEF638I (such as IEF63*), the system uses the specific entry to process IEF638I.

In situations where a message is included by more than one generic message definition, such as
IEF6* and IEF63*, the most specific definition takes precedence. In this example, the system uses
the entry for IEF63* for message IEF638I, if no specific entry exists.

Note: A msgid that consists of only a single asterisk (‘*’) does not mean “all messages,” but rather
messages that have a single asterisk as their message identifier.

,AUTO(YES/NO/token)
Specifies whether the message (msgid) is eligible for processing by an automation subsystem,
such as NetView. AUTO(YES) makes the message eligible for automation processing. AUTO(NO),
which is the system default, makes the message ineligible for automation processing.

If you specify msgid and do not specify the AUTO option, the system defaults to NO. If, however,
you do not specify any message processing statements for a message, the system considers the
message eligible for automation processing AUTO(YES). To change the system default, use the
.DEFAULT or the .NO_ENTRY statement.

The token value is available for MPF installation exit processing and for processing by an
automation subsystem. Specifying a token indicates that the message is eligible for processing by
the automation subsystem. The token value must be 1 to 8 alphanumeric characters. You may not
use a left parenthesis “(” as part of the token value. Imbedded blanks are allowed in the token
value. For example, if you code an ‘N,O, and a blank’, AUTO(NO), the system takes the “NO” as
a token value.

Note: A message might loop repetitively to an extended MCS console if all of the following are
true:

v AUTO(YES) is specified, and

v The RACF OPERPARM segment specifies AUTO YES for the extended MCS console, and

v The console profile, as defined through TSO/E CONSPROF, specifies YES for the UNSOLDISP
parameter or for the SOLDISP parameter or for both.

,RETAIN(YES/I,E,CE/NO)
If the message identified by the msgid is an action message (immediate, eventual, or critical
eventual), RETAIN specifies whether the message is to be retained by the action message
retention facility (AMRF). AMRF retains action messages only (not WTORs).
v YES indicates that all action messages are to be retained.
v I indicates that immediate action messages are to be retained.
v E indicates that eventual action messages are to be retained.
v CE indicates that critical eventual action messages are to be retained.
v NO indicates that no action messages are to be retained.

You can specify any combination of I, E, or CE.

The system default is RETAIN(YES). You can use the .DEFAULT statement followed by a msgids
to change the system default for the list of messages.

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 483

To view a retained message, use the DISPLAY R command.

,SUP(YES/ALL/NO)
Specifies whether MPF is to suppress the message identified by msgid .

SUP(YES) is the default, and indicates that the system is to suppress messages identified by
msgid , with the following exceptions:

v Command responses where MCSFLAG=RESP was specified on the WTO or WTOR macro.

v Command responses with descriptor code 5 (immediate command response).

Note: This exception does not apply to command responses with descriptor code 5 that are
generated in response to the MONITOR command. SUP(YES) suppresses such
responses.

SUP(ALL) specifies that the system is to suppress all messages identified by mgsid , without
exception.

SUP(NO) specifies that the system should not suppress messages identified by mgsid .

If you specify a msgid without SUP, the system uses the default, SUP(YES), and does not display
the message. If, however, you do not specify any message processing statements for a message,
the system displays the message. To change the system defaults, use the .DEFAULT or the
.NO_ENTRY statement.

,USEREXIT(exitname)
Specifies the name of an installation-supplied WTO/WTOR installation exit routine that is to get
control each time the system issues the message(s). This routine can process the message(s); it
can suppress, retain, or respond to a message. It can make the message eligible for automation
processing, and take other actions on the message.

The exitname , can be from one to eight alphanumeric (A-Z, 0-9) and national characters (&, *, $).
The first character must be alphabetic or numeric. If you do not specify an exitname, the system
uses IEAVMXIT, if it exists. To change the system default, use the .DEFAULT statement.

For more information on the WTO/WTOR installation exits, see Chapter 17, “CONSOLxx (Console
configuration definition)” on page 165 and z/OS MVS Installation Exits.

.DEFAULT
.DEFAULT allows you to specify the defaults that you want for the message processing records
(msgids) that follow .DEFAULT. The options you specify on the .DEFAULT statement override the
system defaults for messages that you list. On the .DEFAULT statement, you can specify that the
message is eligible for automation processing, retention, and/or suppression, and the installation exit
that is to process the message. Through AUTO(token), you can also specify information to be passed
to the automation subsystem. .DEFAULT with no options, results in the message being ineligible for
automation processing, and indicates that the system is to suppress and retain any listed action
messages. IEAVMXIT, if it exists, receives that message.

You can use the .DEFAULT statement multiple times within an MPFLSTxx member. Each group of
messages following a .DEFAULT statement should have common option values. This allows you to
control attributes assigned by default to each message id without having to change every message
processing record.

On a particular message record (msgid statement) that follows a .DEFAULT statement, you can
specify specific operand values that override, for that message, the .DEFAULT values.

If there are multiple occurrences of a message id listed under one .DEFAULT statement, the system
uses the options for the first occurrence and ignores the others.

If an MPFLSTxx member contains multiple .DEFAULT statements, the system uses the values on the
.DEFAULT statement that precedes the first message record (msgid statement) in that group.

MPFLSTxx

484 z/OS V1R4.0 MVS Initialization and Tuning Reference

,AUTO(YES/NO/token)
Specifies whether a message or a list of messages following the .DEFAULT statement is eligible
for processing by an automation subsystem, such as NetView. AUTO(YES) makes the message(s)
eligible for automation processing. AUTO(NO) (the system default for the .DEFAULT statement)
makes the subsequent message(s) ineligible for automation processing.

The token value is available for MPF installation exit processing and for processing by an
automation subsystem. Specifying a token indicates that the message is eligible for processing by
the automation subsystem. The token value must be 1 to 8 alphanumeric characters. You may not
use a left parenthesis “(” as part of the token value. Imbedded blanks are allowed in the token
value. For example, if you code an ‘N,O, and a blank’, AUTO(NO), the system uses the “NO” as a
token value.

Notes:

1. If you specify a .DEFAULT and omit the AUTO option, the system will not consider the
message(s) eligible for automation processing. If, however, you do not specify any message
processing statements for a message, the system considers the message eligible for
automation processing.

2. A message might loop repetitively to an extended MCS console if all of the following are true:

v AUTO(YES) is specified, and

v The RACF OPERPARM segment specifies AUTO YES for the extended MCS console, and

v The console profile, as defined through TSO/E CONSPROF, specifies YES for the
UNSOLDISP parameter or for the SOLDISP parameter or for both.

,RETAIN(YES/I,E,CE/NO)
RETAIN specifies which subsequent action messages are to be retained by the action message
retention facility (AMRF).
v YES indicates that all action messages are to be retained.
v I indicates that immediate action messages are to be retained.
v E indicates that eventual action messages are to be retained.
v CE indicates that critical eventual action messages are to be retained.
v NO indicates that no action messages are to be retained.

You can specify any combination of I, E, or CE.

The default is RETAIN(YES).

To view a retained message, use the DISPLAY R command.

,SUP(YES/ALL/NO)
Specifies whether MPF is to suppress subsequent messages.

SUP(YES) is the default, and indicates that the system is to suppress subsequent messages, with
the following exceptions:

v Command responses where MCSFLAG=RESP was specified on the WTO or WTOR macro.

v Command responses with descriptor code 5 (immediate command response).

Note: This exception does not apply to command responses with descriptor code 5 that are
generated in response to the MONITOR command. SUP(YES) suppresses such
responses.

SUP(ALL) specifies that the system is to suppress all subsequent messages, without exception.

SUP(NO) specifies that the system should not suppress subsequent messages.

If you specify a .DEFAULT statement without SUP, the system uses the default, SUP(YES), and
suppresses subsequent messages.

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 485

If you specify a .DEFAULT statement with one of the SUP options, and then specify SUP on a
subsequent message record, the system uses the SUP value specified on that particular message
record.

If you do not specify any message processing statements for a message, the system displays the
message, regardless of any SUP value that might have been specified on a preceding .DEFAULT
statement.

,USEREXIT(exitname)
Specifies the name of an installation-supplied WTO/WTOR installation exit routine that is to get
control each time the system issues one of the indicated messages. This routine then processes
the message(s).

The exitname , can be from one to eight alphanumeric (A-Z, 0-9) or national characters (@, $, *).
The first character must be alphabetic or numeric. If you do not specify an exitname the system
defaults to IEAVMXIT, if it exists.

For more information on the WTO/WTOR installation exits, see the CONSOLxx member of
SYS1.PARMLIB in this book, and z/OS MVS Installation Exits.

MPFHCF=[x/&]
If JES3 writes the messages to the hard-copy log, this statement specifies the indicator (x) used to
identify suppressed messages in the hard-copy log. (JES2 ignores this statement.) The indicator can
be any character, including a blank. If x specifies an indicator that is not a printable character, the
indicator is translated to a blank. When MPFHCF is not specified, the default character is an
ampersand (&).

Note: This statement does NOT begin with a period (.).

.MSGIDS

NOCHANGE
.MSGIDS NOCHANGE specifies that the message identifiers are to be the same as those
specified in the previously used concatenation of MPFLSTxx members (the one the system was
previously using). Use this statement with the .MSGCOLR statement.

The .MSGIDS NOCHANGE statement should not be specified in an MPFLSTxx member that
includes message identifiers. If syntactically correct message identifiers (msgid statements)
precede the .MSGIDS NOCHANGE statement, the system ignores the statement, issues an error
message, and continues processing the remaining statements. If a valid .MSGIDS NOCHANGE
statement precedes message identifiers, the system ignores the message identifiers, issues an
error message, and continues processing the remaining statements.

If multiple .MSGIDS NOCHANGE statements occur in one MPFLSTxx member, or a concatenation
of MPFLSTxx members, the system processes each statement as though it were the first
statement.

.NO_ENTRY
.NO_ENTRY specifies the message processing options for all messages that are NOT specified in
MPFLSTxx members. The options you specify on the .NO_ENTRY statement override the system
defaults for messages that are not specified in this member. On the .NO_ENTRY statement, you can
specify whether all messages not specified in the MPFLSTxx member are to be considered eligible for
automation processing, retained, and suppressed.

.NO_ENTRY is a very powerful statement and should be used with care.

Note: .NO_ENTRY requires the underscore (_) in the syntax. You might not, however, be able to print
the underscore character on your printer.

MPFLSTxx

486 z/OS V1R4.0 MVS Initialization and Tuning Reference

If you specify a .NO_ENTRY statement with no options, the system considers the messages that are
not specified in the MPFLSTxx member to be eligible for automation processing, it retains action and
WTOR messages, and it displays all messages (AUTO(YES) RETAIN(YES) SUP(NO)). These options
are the same defaults that the system uses when no message processing record is specified in an
MPFLSTxx member for a particular message.

.NO_ENTRY checks the syntax and then ignores the USEREXIT(exitname) statement. IEAVMXIT
receives control, if it exists.

Specify only one .NO_ENTRY statement in an MPFLSTxx member. If there is more than one
occurrence of a .NO_ENTRY statement in an MPFLSTxx member, the system checks the syntax of
the duplicate and uses the options on the first .NO_ENTRY statement. If there is more than one
occurrence of a .NO_ENTRY statement in a concatenation of MPFLSTxx members, the system uses
the options on the first valid .NO_ENTRY statement in the concatenation.

,AUTO(YES/NO/token)
For messages that are not identified in MPFLSTxx, AUTO indicates whether the message is
eligible for processing by an automation subsystem, such as NetView. AUTO(YES), the system
default, makes the messages eligible for automation processing. AUTO(NO) makes the messages
ineligible for automation processing. (Specifying AUTO without either YES or NO results in a
syntax error.)

The token value is available for MPF installation exit processing and for processing by an
automation subsystem. Specifying a token indicates that the message is eligible for processing by
the automation subsystem. The token value must be 1 to 8 alphanumeric characters. You may not
use a left parenthesis “(” as part of the token value. Imbedded blanks are allowed in the token
value. For example, if you code an ‘N,O, and a blank’, AUTO(NO), the system uses the “NO” as a
token value.

Notes:

1. IEAVMXIT, if it exists, gets control for all messages whose message ids are not specified in the
MPFLSTxx member.

2. A message might loop repetitively to an extended MCS console if all of the following are true:

v AUTO(YES) is specified, and

v The RACF OPERPARM segment specifies AUTO YES for the extended MCS console, and

v The console profile, as defined through TSO/E CONSPROF, specifies YES for the
UNSOLDISP parameter or for the SOLDISP parameter or for both.

,RETAIN(YES/I,E,CE/NO)
For all action messages (immediate, eventual, or critical eventual) not identified in MPFLSTxx,
RETAIN specifies which messages are to be retained by the action message retention facility
(AMRF).
v YES indicates that all action messages are to be retained.
v I indicates that immediate action messages are to be retained.
v E indicates that eventual action messages are to be retained.
v CE indicates that critical eventual action messages are to be retained.
v NO indicates that no action messages are to be retained.

You can specify any combination of I, E, or CE.

The default is RETAIN(YES).

To view a retained message, use the DISPLAY R command.

,SUP(YES/ALL/NO)
Specifies whether MPF is to suppress messages that are not specified in MPFLSTxx members.

SUP(YES) indicates that the system is to suppress messages, with the following exceptions:

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 487

v Command responses where MCSFLAG=RESP was specified on the WTO or WTOR macro.

v Command responses with descriptor code 5 (immediate command response).

Note: This exception does not apply to command responses with descriptor code 5 that are
generated in response to the MONITOR command. SUP(YES) suppresses such
responses.

SUP(ALL) specifies that the system is to suppress all messages, without exception. SUP(NO)
specifies that the system should not suppress messages.

Attention: SUP(ALL) causes the system to suppress all messages that are not identified in the
active MPFLSTxx member. This setting might result in most or all messages being
suppressed from the MCS console. Suppression of all messages is useful in certain
situations, such as a remote system, but it can be detrimental if an operator is
expecting these messages.

Controlling command processing using MPFLSTxx
Besides message management, MPFLSTxx allows you to specify up to six names of command installation
exits that let you modify commands to be processed.

You can do the following in the command installation exits:
v Change the text of commands.
v In a sysplex, change the destination of commands by routing them to a different system for execution.
v Modify a console’s authority to use a particular command. That is, you can use the exit to:

– Authorize the command from a console that normally would not have the authority to issue the
command.

– Reject the command from a console that normally would not have the authority to issue the
command.

v Execute commands.
v Suppress commands.

The command exits receive control every time a command is issued.

For more information on the command installation exit, see z/OS MVS Installation Exits.

MPFLSTxx parameters for controlling command processing
.CMD

.CMD allows you to specify the installation exit(s) that modifies a command issued in a system or
sysplex. These installation exits allow you to modify how commands are issued, the command text, or
the MCS command authority of the console that is to issue the command.

You can have only one .CMD statement in an MPFLSTxx member. If more than one .CMD statement
appears in an MPFLSTxx member (or a concatenation of MPFLSTxx members), the system uses the
first occurrence of the .CMD statement.

For more information on the command installation exit, see z/OS MVS Installation Exits.

USEREXIT(exitnam1[,exitnam2],...)
USEREXIT specifies the names of one or more command installation exits. Each name can be
from one to eight alphanumeric characters.

The command installation exit specified by exitname receives control when an MVS command is
issued. Each installation exit is invoked in the order specified on this statement. You can code up
to six unique 8-character command installation exit names on a statement, separating the names
with one or more commas or blanks.

MPFLSTxx

488 z/OS V1R4.0 MVS Initialization and Tuning Reference

NOCHANGE
NOCHANGE specifies that the command installation exits are to be the same as those specified in
the previously used concatenation of MPFLSTxx members.

The system processes either the .CMD NOCHANGE statement or the installation command exit
names (.CMD USEREXIT) depending on which is coded first in MPFLSTxx. The system ignores
the second one.

NOCHANGE is the default.

If comments are used on the .CMD statement, at least one blank must separate them from the
rest of the data on the statement.

Deactivating a command exit
There are times when you might want to deactivate a command exit routine, perhaps because its function
is not required at particular times or because you want to modify the routine. You can deactivate a
command exit routine in either of two ways:

v Specify, on the .CMD statement of the appropriate MPFLSTxx member, the name of a command exit
that does not exist in SYS1.LINKLIB, such as ‘USEREXIT(NONE)’. Enter the SET MPF=xx command to
refresh the MPFLSTxx member.

This action effectively deactivates any command exits that were enabled during the prior MPFLSTxx
activation. The system issues an informational message that can be ignored in this case.

v Enter the SET MPF=NO command to disable all active MPFLSTxx members. Remove the exit name
from the .CMD statement of the appropriate MPFLSTxx member and enter the SET MPF=xx command
to resume MPF processing.

Attention: Entering the SET MPF=NO command causes all installation-specified MPF options to be
deactivated. IBM-supplied defaults are used until the installation re-activates its MPFLSTxx
members.

Approaches to message suppression using MPFLSTxx
You can use MPFLSTxx for message suppression conservatively or aggressively. In a conservative
environment, you would suppress messages by identifying the complete ids. You would suppress,
however, only messages regarded from an operator’s perspective as useless.

In an aggressive environment, you would suppress messages through the conservative approach and you
would possibly choose to suppress all messages from certain components. If you decide to suppress all of
the messages from a specific component, make sure that none of the messages have any vital importance
to the operator. (Suppressing a message does not affect processing by the NetView subsystem.) In an
aggressive approach, you could also choose to suppress messages that rarely are important to the
operator.

Five lists of suppressible messages are shown below. They are examples that you should review
according to the environment in which you might use them. Make sure that you review each message and
determine whether your installation should suppress it or not. Notice that the list of message(s) that are
considered suppressible in a conservative environment are identified by the full message identifier. In the
list of the ‘more aggressive’ approach to message suppression, the messages are identified by the
message prefix followed by an asterisk.

The five lists are:
v Conservative set of non-JES or system messages.
v Aggressive set of non-JES or system messages.
v Conservative set of JES2 messages.
v Aggressive set of JES2 messages.
v Conservative set of JES3 messages.

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 489

The decision to designate a message eligible for automation processing is independent of the decision to
suppress the message. You may want the message suppressed but not processed by automation. The two
processes occur independently according to their individual specifications.

The following lists are concerned with suppression, not automation processing.

Conservative list of suppressible non-JES messages
The following are examples. Review each message according to the environment in which it might be
used. Make sure that you review each message and determine whether your installation should suppress
it or not.
ARC0100I SETSYS COMMAND COMPLETED HSM
ARC0200I TRAP IN MODULE XXX
ARC0208I TRAP FOR ERROR CODE XX
ARC0503I ALLOCATION ERROR, RETURN CODE=XX
ARC0728I VTOC FOR VOLUME XX COPIED TO DATA SET
ARC0734I ACTION=MIGRATE FRVOL=XX TOVOL=XX TRACKS
CSV003I MODULE NOT FOUND
CSV011I FETCH FAILED
CSV300I PROBABLE INVALID RECORD COUNT
DFS035I BATCH INITIALIZATION COMPLETE
DFS092I IMS/VS LOG TERMINATED
DFS627I IMS/VS RESOURCE CLEANUP COMPLETED OR FAILED FOR JOB
DFS629I IMS TCB ABEND IMS|SYS
DFS2207I IMS/VS LOG(S) BLOCKSIZE=XXX,BUFNO=YYY
DFS2208I XXXX LOGGING IN EFFECT ON IMS/VS ZZZZ
DFS2500I *MDA00 DATABASE/DATASET ALLOCATED/UNALLOCATED
DSI090I NCCF LOAD FAILED MSG DURING STARTUP
IAT4801 JOB JJJ EXPRESS CANCELLED BY INTERPRETER DSP
ICB402I VOLUME XXX NOT FOUND IN MSVC INVENTORY
ICB411I UNABLE TO RESTORE BASE VOLUME XX RECORD
ICH70001I LAST ACCESS AT HH.MM.SS ON YY.DDD
IEA848I NO DUMP PRODUCED FOR THIS ABEND ...
IEA989I SLIP TRAP MATCHED
IEA995I SYMPTOM DUMP OUTPUT
IEC070I (VSAM EOB ERROR)
IEC130I DD STATEMENT MISSING
IEC141I 013-RC (open error)
IEC331I ABEND MESSAGES
IEC161I VSAM OPEN ERROR MESSAGES.
IEC705I TAPE ON device IS label_type
IEC801I LNA THRESHOLD TRANS= ...
IEC999I IFG0TC0A...
IEE043I SYSTEM LOG DATA SET HAS BEEN QUEUED
IEE400I THESE MESSAGES CANCELLED - XX
IEF097I USERID ASSIGNED
IEF125I LOGGED ON
IEF126I LOGGED OFF
IEF170I (53 BYTES OF WTP TEXT)
IEF176I WTR DDD WAITING FOR WORK
IEF188I PROBLEM PROGRAM ATTRIBUTES ASSIGNED
IEF196I ALLOCATION
IEF202I STEP sss WAS NOT RUN BECAUSE OF cde
IEF236I ALLOCATION FOR job
IEF237I ALLOCATED TO
IEF287I DSN DISP VOL SER NOS =
IEF288I dsn SYSOUTIEF403I job STARTED
IEF404I job ENDED
IEF450I JOB ABEND
IEF452I JOB NOT RUN JCL ERROR
IEF453I JOB FAILED JCL ERROR
IEF677I WARNING MESSAGE(S) FOR JOB JOBNAME ISSUED
IEF722I JOB FAILED - SECURITY REASON
IEF861I FOLLOWING RESERVED DATA SET NAMES UNAVAILABLE TO JOB
IEF863I DSN=DSNAME

MPFLSTxx

490 z/OS V1R4.0 MVS Initialization and Tuning Reference

IKJ144I UNDEFINED USER(S) XXX
IKJ572I USER(S) XXX NOT LOGGED ON
IKJ605I USER(S) XXX NOT LOGGED ON
IKJ606I USERID ALREADY LOGGED ON
IKT100I USERID CANCELLED DUE TO UNCONDITIONAL LOGOFF
IKT108I USERID RECEIVE ERROR,RPLRTNCD=XX ETC.
IOS050I CHANNEL DETECTED ERROR
IOS071I (MIH message)
IST234I I/O ERROR ON TERMINAL XXX
IST259I INOP RECEIVED FOR NODENAME
IST521I GBIND QUEUED FOR COS ETC
IST522I ERNN ACTIVATION FAILED ...
IST523I REASON =
IST530I GBIND PENDING MESSAGE
IST532I EVENT ID MESSAGE
IST619I ID FAILED - RECOVERY IN PROGRESS
IST621I RECOVERY SUCCESSFUL FOR NETWORK NODE

Aggressive list of suppressible JES2 messages
For a more aggressive approach to message suppression of JES2 messages, you might chose to add the
following messages to the preceding conservative list.

The following are examples. Review each message according to the environment in which it might be
used. Make sure that you review each message and determine whether your installation should suppress
it or not.
$HASP150 OUTGRP ON device
$HASP308 jobname - ESTIMATED TIME EXCEEDED
$HASP373 jobname STARTED - INIT xx
$HASP375 jobname ESTIMATE EXCEEDED BY
$HASP406 jobname WAS EXECUTING

Conservative list of suppressible JES3 messages
With JES3, there is no particular category of messages that are generally suppressible. Therefore, the list
contains only specific messages identified by complete message identifiers.

The following are examples. Review each message according to the environment in which it might be
used. Make sure that you review each message and determine whether your installation should suppress
it or not.
IAT1600 LINES EXCEEDED
IAT2000 JOB SELECTED
IAT2002 LSTOR= ALLOC= ...
IAT2003 MPAINIT= DI= ...
IAT2006 PREMATURE JOB TERM
IAT2007 GMS CONNECT - JOB JOBNO ...
IAT5200 JOB IN SETUP ON MAIN
IAT5918 MAIN JES3 V (VERIFY DESCRIPTION)
IAT6101 JOB IS PRTY (job read in)
IAT6108 JOB (NOTIFY TEXT)
IAT6118 CARDS FLUSHED
IAT6160 JOB NET DJNET NOW ENTERING SYSTEM
IAT6201 JOB JOBNO=JJJ JOBS ...
IAT6306 JOB IS DSPNAME
IAT7001 JOB IS ON WRITER
IAT7007 JOB IS ON WRITER, PURGED
IAT7100 (INTERCOM cmd from dsp)
IAT7120 IO ERROR ON CONSOLE
IAT7310 NEW DJNET HAS COMPLETED
IAT7450 JOB PURGED
IAT7530 IO ERROR ON LINE
IAT9123 DATA RECEPTION ACTIVE ON LINE

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 491

IAT9124 JOB RECEPTION ACTIVE ON LINE
IAT9127 JOB IS FROM NODENAME
IAT9190 JOB IS BEING SENT ON LINE
IAT9191 JOB SENT TO NODE

Examples of MPFLSTxx members
The contents of MPFLSTxx depend on the goals of your specific installation. The following five examples
show possible contents of MPFLSTxx.

Example 1

Assume that you want to create a parmlib member named MPFLST7C to:

v Suppress some frequently issued JES2, MONITOR, and general messages that are of no interest to the
operator or to automation processing.

v Set the color and highlighting attributes of messages to display eventual action messages in pink and
non-action messages issued by problem programs in yellow.

The contents of MPFLST7C would be:
$HASP100
$HASP101
$HASP150
$HASP165
$HASP200
$HASP250
$HASP309
$HASP373
$HASP375
$HASP395
IEC130I
IEC705I
IEF125I
IEF126I
IEF165I
IEF170I
IEF236I
IEF237I
IEF403I
IEF404I
.MSGCOLR EVETACTN(P,N),PPMSG(Y,N)

The SET MPF=7C command establishes this list of messages as those that are to be suppressed and
ignored by an automation subsystem, and also sets the color and highlighting attributes for eventual action
and non-action messages. The system uses the IBM-supplied defaults for all other message types or
console fields.

Example 2

Assume that you want to create a parmlib member named MPFLSTDF to:

v Reset the color, highlighting, and intensity attributes to the IBM-supplied default values.

v Suppress, retain, and mark eligible for automation processing the same messages as specified in the
previously active concatenation of MPFLSTxx parmlib members.

The contents of MPFLSTDF would be:
.MSGCOLR DEFAULT
.MSGIDS NOCHANGE

Example 3

MPFLSTxx

492 z/OS V1R4.0 MVS Initialization and Tuning Reference

Assume that you want to create a parmlib member named MPFLSTRV to:

v Display all messages in reverse video (that is, the characters are to appear in black on a colored
background).

v Display eventual action messages in pink and non-action messages issued by problem programs in
yellow.

v Suppress, retain, and mark eligible for automation processing the same messages as specified in the
previously active concatenation of MPFLSTxx parmlib members.

The contents of MPFLSTRV would be:
.MSGCOLR URGATTN(R,R),IMEDACTN(W,R),EVETACTN(P,R)
.MSGCOLR GENMSG(G,R),PPMSG(Y,R),SELPEN(B,R)
.MSGCOLR INSTRERR(W,R),ENTRYARA(G,R),WARNLGEN(B,R)
.MSGCOLR WARNRGEN(B,R),WARNRURG(R,R),OOLCNTL(T,R)
.MSGCOLR OOLLABEL(T,R),OOLDATA(G,R)
.MSGIDS NOCHANGE

Example 4

Assume that you want to create a parmlib member named MPFLST18 to:

v Display all messages of the form IECxxxx and have control pass to an installation-supplied WTO/WTOR
installation exit routine each time the system prepares to issue such a message.

v Suppress certain IEFxxxx messages and have control pass to an installation-supplied WTO/WTOR
installation exit routine each time the system prepares to issue one of the messages.

v Allow action message IEE601E to be displayed at the operator console but not be retained by the
action message retention facility.

The contents of MPFLST18 would be:
IEC*,SUP(NO),USEREXIT(usrexit1) /*usrexit1 handles IEC messages*/
IEF170I,SUP(YES),USEREXIT(usrexit2)
IEF236I,SUP(YES),USEREXIT(usrexit2)
IEF237I,SUP(YES),USEREXIT(usrexit2)
IEF403I,SUP(YES),USEREXIT(usrexit2)
IEE601E,SUP(NO),RETAIN(NO) /*display only*/

Example 5

Assume that you want to create a parmlib member named MPFLST02 to:

v Specify that messages not identified in this member are not eligible for automation processing.

v Establish the default for specific messages so that they will be eligible for automation processing,
suppressed, retained, and passed to an installation exit. Override this default for one particular message
and have it displayed.

v Establish the default for specific messages so that they will be eligible for automation processing,
suppressed and retained. Display one specific message.

v Establish the default for specific messages so they will not be retained. They will be displayed and
passed to an installation exit for processing. The installation exit must turn off automation processing
and use the token to select a console to reroute the message to.

v The last .DEFAULT statement with no options specified sets the defaults for the subsequent list of
messages to AUTO(NO) RETAIN(YES) and SUP(YES) and the messages will be passed to IEAVMXIT,
if it exists.

The contents of MPFLST02 would be:
/*
/* DO NOT AUTOMATE THOSE MESSAGES NOT SPECIFIED IN MPFLST
/*
.NO_ENTRY,AUTO(NO)

MPFLSTxx

Chapter 61. MPFLSTxx (message processing facility list) 493

/*
/* AUTOMATE CONSOLE BUFFERS AND USE MPF EXIT
/*
.DEFAULT,AUTO(YES),USEREXIT(COMMTASK)
IEA405E /*WTO BUFFER SHORTAGE - 80% FULL*/
IEA404A,SUP(NO) /*SEVERE WTO BUFFER SHORTAGE - 100% FULL

ALSO TELL OPER WHY JOBS IN WAIT*/
IEA406I /*TO BUFFER SHORTAGE RELIEVED*/
/*
/* AUTOMATE PRODUCTION JOB STATUS MESSAGES
.DEFAULT,AUTO(YES)
IEF402I,SUP(NO) /*JJJ FAILED IN ADDRESS SPACE X

SYSTEM ABEND SXXX REASON - RC
NOTIFY OPER OF FAILURE /*

IEF403I /*JJJ-STARTED */
IEF404I /*JJJ-ENDED */
/*
/* REROUTE THE TAPE MESSAGES
/*
/* - AUTO TOKEN USED BY EXIT TO SELECT CONSOLE FOR MESSAGE
/* - EXIT MUST TURN OFF AUTOMATION (IMPLIED BY TOKEN USE)
/* - REROUTE EXIT WILL SEND MESSAGE TO PROPER CONSOLE
/*
.DEFAULT,RETAIN(NO),USEREXIT(REROUTE),AUTO(TAPEPOOL),SUP(NO)
IEF233* /* M DDD,SER,LABEL,JJJ,SSS,DSN */
IEF234E /* K/D/R DDD,SER PVT/PUB/DTR, JJJ,SSS,SPACE*/
IEC400A /* M DDD,SER/DSN*/
IEC401A /* F DDD,SER/DSN*/
IEC402D /* F DDD,SER/DSN*/
IEC403A /* M DDD,SER*/
IEC501* /* M DDD,SER,LABEL,DENSITY,JJJ,SSS,DSN*/
IEC507D /* E DDD,SER,JJJ,SSS,DSN*/
IEC509A /* F DDD,SER,JJJ,SSS,DSN*/
/*
/* RESET DEFAULT FOR OLD LIST
/* (FROM A DIFFERENT MPFLSTxx MEMBER)
.DEFAULT
IEC*
IEF170I
IEF236I
IEF237I
IEF403I
IEE601E

MPFLSTxx

494 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 62. MSTJCLxx (master scheduler JCL)

The MSTJCLxx parmlib member contains the master scheduler job control language (JCL) that controls
system initialization and processing. You can place the master scheduler JCL in MSTJCLxx as an
alternative to keeping it in the MSTJCLxx module in SYS1.LINKLIB.

The advantage to placing the master JCL in the MSTJCLxx parmlib member is that it is easier to make
changes to the master JCL. If you specify the master JCL in the MSTJCLxx module in linklib, you must
reassemble the module and link-edit it into the system each time a change is made. Specifying the master
JCL in parmlib eliminates the need to reassemble and link-edit the module.

If the system finds a MSTJCLxx parmlib member, it uses the JCL in that member to start the master
scheduler address space. If the system does not find a MSTJCLxx parmlib member, it uses the JCL in the
MSTJCLxx module in linklib.

For more information about how to change the master JCL or specify alternate versions of the master JCL
data set, see “Understanding the master scheduler job control language” on page 9.

Parameter in IEASYSxx (or supplied by the operator):

MSTRJCL=(xx[,L])

The two characters (A-Z, 0-9, @, #, or $), represented by xx, are appended to MSTJCL to identify one of
the following:

v The MSTJCLxx member of SYS1.PARMLIB.

v The MSTJCLxx module in SYS1.LINKLIB.

If the MSTRJCL parameter is not specified, the system uses the MSTJCL00 parmlib member. If the
system does not find the MSTJCL00 parmlib member, it uses the default master JCL in the MSTJCL00
module in SYS1.LINKLIB.

Performance implications
None.

Support for system symbols
You can specify symbols in MSTJCLxx. Keep in mind that the system does not process symbols in
MSTJCLxx in the same way that it processes symbols in parmlib members. Because MSTJCLxx contains
JCL, the system processes symbols in MSTJCLxx during JCL processing. The results of symbolic
substitution reflect the substitution rules that are in effect during JCL processing.

For details about using system symbols and JCL symbols in JCL, see z/OS MVS JCL Reference.

Syntax rules for MSTJCLxx
The syntax rules for the MSTJCLxx parmlib member are the same as for the master JCL in the MSTJCLxx
module in linklib. For details about the syntax of the master JCL, see “Writing your own master scheduler
JCL” on page 12.

© Copyright IBM Corp. 1991, 2002 495

The following example shows how the IBM-supplied IEESMJCL member of SYS1.SAMPLIB might appear
in the MSTJCLxx module in linklib:

The following example shows how IEESMJCL might appear in the MSTJCLxx parmlib member:

Note: The only Brodcast data set name that TSO/E recognizes on the SYSLBC DD statement is
SYS1.BRODCAST.

Comments are indicated by characters ″//*″ in columns 1, 2, and 3. Code the comments in columns 4
through 80. Do not continue a comment statement using continuation conventions. Instead, code additional
comment statements. The following example shows how a comment is coded:

IBM-supplied default for MSTJCLxx
There is no default MSTJCLxx parmlib member. The default master JCL resides in the IBM-supplied
MSTJCL00 module in SYS1.LINKLIB.

Statements/parameters for MSTJCLxx
The JCL statements in MSTJCLxx are described in “Writing your own master scheduler JCL” on page 12.

MSTJCL05 CSECT
DC CL80’//MSTJCL05 JOB MSGLEVEL=(1,1),TIME=1440’
DC CL80’// EXEC PGM=IEEMB860’
DC CL80’//STCINRDR DD SYSOUT=(A,INTRDR)’
DC CL80’//TSOINRDR DD SYSOUT=(A,INTRDR)’
DC CL80’//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR’
DC CL80’//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR’
DC CL80’//SYSUADS DD DSN=SYS1.UADS,DISP=SHR’
DC CL80’//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR’
DC CL80’/*’
END

//MSTJCL05 JOB MSGLEVEL=(1,1),TIME=1440
// EXEC PGM=IEEMB860
//STCINRDR DD SYSOUT=(A,INTRDR)
//TSOINRDR DD SYSOUT=(A,INTRDR)
//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=SYS1.BRODCAST,DISP=SHR

//* THE COMMENT STATEMENT CANNOT BE CONTINUED.
//* BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW
//* A COMMENT STATEMENT WITH MORE COMMENT STATEMENTS.

MSTJCLxx

496 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 63. NUCLSTxx (Customizing the nucleus region)

The NUCLSTxx member allows you to load installation-supplied modules into the system’s DAT-ON
nucleus region at IPL-time.

You can use NUCLSTxx to:
v Add your installation’s modules to the nucleus region.
v Delete nucleus-resident modules and replace them with alternate versions of the modules.

NUCLSTxx saves you from having to link-edit your installation’s nucleus-resident routines (such as
installation-written SVCs) into the IEANUC0x member of SYS1.NUCLEUS.

Adding and deleting modules
The modules to be added to the nucleus region, or deleted from it, must reside in members of
SYS1.NUCLEUS. To add or delete modules, simply specify the members on INCLUDE or EXCLUDE
statements in NUCLSTxx.

On each INCLUDE statement, specify one member of SYS1.NUCLEUS to be included in the nucleus
region at IPL-time. Use INCLUDE for code that needs to reside in the nucleus region, such as device
support routines, and installation-defined SVCs.

On each EXCLUDE statement, specify one member of SYS1.NUCLEUS to be excluded from the nucleus
region at IPL-time. Use EXCLUDE statements to exclude members that you are replacing with INCLUDE
statements. You can also use the EXCLUDE statement to exclude modules specified in nucleus module
lists (NMLs) or module list tables (MLTs).

You cannot specify more than one member name for each INCLUDE or EXCLUDE statement. However,
you can specify multiple INCLUDEs and EXCLUDEs in NUCLSTxx, in any order.

If you use INCLUDE and EXCLUDE statements to replace a member of SYS1.NUCLEUS in the nucleus
region with another member, the new member must have a unique name.

Contradictory specifications
If you specify for the same member name both an INCLUDE and an EXCLUDE statement, the system
uses the EXCLUDE statement.

Restrictions
Note the following restrictions when using NUCLSTxx:

v Multiple CSECT load modules must be link-edited with the scatter (SCTR) attribute of the linkage editor
before they can be added to the nucleus region. If this is not done, the system enters a non-restartable
wait state at system initialization.

v Do not use NUCLSTxx to load or delete an alternate nucleus (IEANUC0x). You can select an alternate
nucleus member by specifying the suffix identifier of the alternate IEANUC0x member on either the
NUCLEUS statement in the LOADxx member of SYS1.PARMLIB, or on the LOAD parameter during
system initialization. For more information, see “Specifying an alternate nucleus” on page 8.

NUCLSTxx compared with NMLDEF
NUCLSTxx is provided as an alternative to the NMLDEF macro. With NMLDEF, you identify modules to be
added to the nucleus by creating a set of tables, called nucleus module lists (NMLs). You can use either
NUCLSTxx or NMLDEF to customize the nucleus. However, you might prefer to use NUCLSTxx for the
following reasons:

© Copyright IBM Corp. 1991, 2002 497

v NUCLSTxx is easier to code than NMLDEF.

v NUCLSTxx resides in SYS1.PARMLIB (or SYSn.IPLPARM — wherever LOADxx resides). NMLs must
reside in SYS1.NUCLEUS.

v You can use different NUCLSTxx members to load different SYS1.NUCLEUS members into the nucleus
region. Therefore, NUCLSTxx provides you with greater flexibility than NMLDEF in customizing the
nucleus.

For information on the NMLDEF macro, see z/OS MVS Programming: Authorized Assembler Services
Guide.

Relationship to the LOADxx member

Placement of NUCLSTxx
The NUCLSTxx member must reside in the same data set as the LOADxx member. This member can
reside in either SYS1.PARMLIB or SYSn.IPLPARM, depending on how the installation defined its I/O
configuration.

For information about the SYSn.IPLPARM data set, see z/OS MVS System Data Set Definition.

NUCLSTxx specification in LOADxx member
In LOADxx, code a NUCLST statement to specify the NUCLSTxx member to be used. On the NUCLST
statement, you can optionally specify whether the system loads a wait state if any of the INCLUDE
statements in the NUCLSTxx member specify a member that cannot be found in SYS1.NUCLEUS. The
system does not load a wait state by default and continues to IPL.

For information on installing LOADxx, and on specifying the NUCLST statement in LOADxx, see
Chapter 58, “LOADxx (system configuration data sets)” on page 451.

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax rules for NUCLSTxx
The following syntax rules apply to NUCLSTxx:

v Each record consists of 80 columns, although columns 73 through 80 are ignored.

v The fields are column-dependent , as shown in the “Statements/Parameters” section. Columns not
shown to contain data must contain blanks.

v Comments must be preceded by an asterisk in column 1.

v Blank lines are ignored.

Syntax format of NUCLSTxx

IBM-supplied default for NUCLSTxx
None.

INCLUDE
EXCLUDE

NUCLSTxx

498 z/OS V1R4.0 MVS Initialization and Tuning Reference

Statements/parameters for NUCLSTxx
INCLUDE

The INCLUDE statement specifies the name of a member of SYS1.NUCLEUS that is to be loaded into
the nucleus region at IPL-time.

INCLUDE statements for members that are already included in the nucleus region through other
means, such as via NMLs, are ignored.

Column Contents

1-7 INCLUDE

10-17 The name of a member of SYS1.NUCLEUS to be loaded into the nucleus region at
IPL-time.

Default: None

EXCLUDE
The EXCLUDE statement specifies the name of a member of SYS1.NUCLEUS that is to be excluded
from the nucleus region at IPL-time.

Informational messages are issued for all members that are excluded. You might want to review these
messages to ensure that you have not excluded any members that are needed. Although the
messages are not displayed on any console, you can read them by checking the IPL WTO buffer.

You can use the EXCLUDE statement to override INCLUDEs provided through NMLs and MLTs. The
EXCLUDE statement must name a member of SYS1.NUCLEUS; otherwise, the EXCLUDE statement
is ignored.

You cannot use the EXCLUDE statement to exclude a CSECT that was previously linked into
IEANUC01 by the linkage editor. You must use the linkage editor to replace or remove the CSECT by
re-linking IEANUC01, using the REPLACE keyword and the SCTR attribute.

Column Contents

1-7 EXCLUDE

10-17 The name of a member of SYS1.NUCLEUS to be excluded from the nucleus region at
IPL-time.

Default: None

Example of replacing modules
You can replace nucleus members by using a combination of INCLUDE and EXCLUDE statements. To
replace one member with another, do the following:

1. In NUCLSTxx, code an INCLUDE statement for the SYS1.NUCLEUS member to be used, and an
EXCLUDE statement for the member to be replaced, as shown:
EXCLUDE oldmod
INCLUDE newmod

where oldmod is a member of SYS1.NUCLEUS that was to be included through either an MLT or an
NML, and newmod is a modified copy of oldmod and also is a member of SYS1.NUCLEUS. Note that
a different member name is used for the modified copy specified on the INCLUDE statement.

2. IPL the system.

NUCLSTxx

Chapter 63. NUCLSTxx (Customizing the nucleus region) 499

NUCLSTxx

500 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 64. PFKTABxx (program function key table definition)

The PFKTABxx is an installation-created member of Parmlib. In this member, you define one or more
program function key (PFK) tables. In another installation-created member of parmlib, CONSOLxx, you
define the console configuration for the installation and specify which PFK member is to be used with that
configuration. By using the CONSOLxx and PFKTABxx members together, the system can automatically
initialize the console configuration with the related PFK table(s) during IPL. This processing reduces the
number of operator responses, and eliminates the need to define manually the PF key settings.

Parameter in IEASYSxx (or entered by the operator):
None.

Syntax rules for PFKTABxx
The following rules apply to the creation of PFKTABxx:

v You may define multiple PFK tables in a member.

v Data must be contained in columns 1-71; the system ignores columns 72-80.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v The first statement type in a member must be PFKTAB TABLE(tablname).

v Code the statement type as the first data item on a record.

v For each PFK table, define each program function key only once.

v One or more blanks must follow the statement types; you must code at least one blank between the
statement type and the keyword.

v Keyword values must be set off by parentheses. If you code multiple values on a keyword, separate the
values with a blank or a comma.

v Do not use blanks, commas or comments in the middle of a keyword, between the keyword and the left
parenthesis before the value, or in the middle of a value.

v A statement type continues to the next statement type in the member or until the end of the member.
Therefore, there is no continuation character.

A Syntax Example:
PFKTAB TABLE(nnnnnnnn)

[[{CMD({"cccccc[;cccccc]..."})}]]
[PFK(xx) [{ {’cccccc[;cccccc]...’} }][CON({Y})]]
[[{ }][{N}]]
[[{KEY(kk[,kk]...) }]]

Using the display command
Once the PFKTABxx member has been invoked through the SET PFK command, you may use the
DISPLAY command to view the contents of that specific PFKTABxx member. For the correct syntax, see
z/OS MVS System Commands.

IBM-supplied default for PFKTABxx
The IBM-supplied default member of SYS1.PARMLIB is PFKTAB00.

© Copyright IBM Corp. 1991, 2002 501

Statements/parameters for PFKTABxx
PFKTAB

TABLE (tablname)

PFKTAB indicates that a new PFK table is being defined. PFKTAB must be the first definition in a
PFKTABxx member. (tablname) indicates the name associated with this PFK table. tablname must
be 1-8 alphanumeric characters. The value you specify for tablname here is the value you specify
for PFKTAB(tablname) in the CONSOLxx parmlib member.

PFK(xx)

Indicates the program function key that is being defined. (xx) is a decimal value from 1 through 24.
Each xx value must be unique within a table.

CMD {(‘command[;command]...’)}
{(‘command[;command]...’)}

CMD indicates that the PFK is to have a command or commands associated with it. command
specifies the command. Multiple commands on a CMD line must be separated with a semi-colon.
The maximum length of the commands including the single quotes is 126 characters. If a
command contains a single quote, surround the command with double quotes. If the command
contain double quotes, surround the command with single quotes. If a command contains an
underscore, define the key as conversational CON(Y). When the system displays the command,
the cursor will be under the character immediately to the right of the underscore. The system will
not display the underscore. IBM recommends that you specify the complete command rather than
take any parameter defaults, since the defaults might change. See z/OS MVS System Commands
for details. JES3 commands must have an asterisk (*) for a prefix or an alternate prefix as
specified on the CONSTD statement of the JES3 initialization deck.

If you want an underscore to appear in the command, use two underscores. They are treated as
one underscore, and are not used for cursor placement.

KEY {(xx) }
{(xx,xx...)}

KEY indicates that the PFK being defined is to be associated with another key or a list of PF keys.
xx indicates the PFK to be processed when the PFK being defined is pressed. xx is a decimal
number between 1-24 and can not be the same value as on the PFK(xx). For example, do not
define PFK(10) KEY(10). You may code a maximum of 62 keys in a key list.

CON {(Y)}
{(N)}

Specifies whether the PFK being defined is to be conversational or nonconversational. If the PFK
is conversational, CON(Y), the system will display the command so you can modify it before
executing it. If the PFK being defined is associated with a list of keys, and the PFK is
conversational, the system displays the command associated with each key in the key list so you
can make modifications. If a PFK is nonconversational, the system automatically executes the
command when the PFK is pressed. If you do not specify CON, the default is nonconversational;
the command will not be displayed before executing.

Note: If a command contains a single underscore used to place the cursor, you must specify
CON(Y).

PFKTABxx

502 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 65. PROGxx (Authorized program list, exits, LNKLST
sets and LPA)

The PROGxx parmlib member contains the following optional statement types:

v APF, which defines the format and contents of the APF-authorized program library list. (See “Using the
APF statement”.)

v EXIT, which controls the use of exits and exit routines. (See “Using the EXIT statement” on page 504.)

v SYSLIB, which allows for the definition of alternate data sets for the system defaults (SYS1.LINKLIB,
SYS1.MIGLIB, SYS1.CSSLIB, and SYS1.LPALIB) at the beginning of the LNKLST and the LPALST
concatenations. (See “Using the SYSLIB statement” on page 505.)

v LNKLST, which controls the definition and activation of a LNKLST set of data sets for the LNKLST
concatenation. (See “Using the LNKLST statement” on page 506.)

v LPA, which defines the modules to be added to, or deleted from, LPA after IPL. (See “Using the LPA
statement” on page 510.)

Using the APF statement
Use the APF statement to specify the following:
v The format (dynamic or static) of the APF-authorized library list.
v Program libraries to be added to the APF list.
v Program libraries to be deleted from the APF list.

The system automatically adds SYS1.LINKLIB and SYS1.SVCLIB to the APF list at IPL.

If you specify a dynamic APF list format in PROGxx, you can update the APF list at any time during
normal processing or at initial program load (IPL). You can also enter an unlimited number of libraries in
the APF list.

If you specify a static APF list format in PROGxx, you can define the list only at IPL, and are limited to
defining a maximum of 255 library names (SYS1.LINKLIB and SYS1.SVCLIB, which are automatically
placed in the list at IPL, and up to 253 libraries specified by your installation).

Defining aliases in the APF list
Usually, you do not need to define aliases in the APF list because IBM’s data management services (for
example, OPEN processing) map aliases to the actual library names. Defining an alias in the APF list is
necessary only when the alias is to be used as input to the CSVAPF QUERY macro request, or on the
SETPROG APF or DISPLAY PROG,APF operator commands.

Notes:

1. If you currently specify APF-authorized libraries in the IEAAPFxx parmlib member, you can convert the
format of IEAAPFxx to PROGxx using the IEAAPFPR REXX exec provided by IBM. For information on
how to perform this conversion, see “Using the IEAAPFPR exec” on page 504.

2. Except for concatenations opened during system initialization, an unauthorized library concatenated to
any authorized libraries will cause the system to consider all the concatenated libraries unauthorized.

3. If you allow storage management subsystem (SMS) to manage a library, the system may move the
library to a different volume during normal SMS processing. To ensure that the library retains
authorization, specify SMS on its APF statement.

4. When LNKAUTH=APFTAB is specified, the system considers SYS1.MIGLIB and SYS1.CSSLIB to be
APF-authorized when they are accessed as part of the concatenation (even when they are not
included in the APF list).

5. Adding only the alias data set authorizes neither the real nor the alias data set. A real data set must be
included.

© Copyright IBM Corp. 1991, 2002 503

Using the IEAAPFPR exec
If you haven’t yet converted IEAAPFxx parmlib members to PROGxx parmlib members, you can do it
using the following procedure:

Place the IEAAPFPR exec in a data set that is accessible to ISPF and PDF edit macros. If you specify the
EXECUTIL SEARCHDD(YES) command, or if you have modified the TSO/E installation parameters to
search SYSEXEC automatically, place IEAAPFPR in a data set allocated to SYSEXEC. Otherwise, place
IEAAPFPR in a data set allocated to SYSPROC.

To invoke IEAAPFPR:

1. Make sure that the IEAAPFxx member to be converted is valid and syntactically correct.

2. Edit a PROGxx parmlib member.

3. Copy the IEAAPFxx member into the PROGxx member.

4. Enter
IEAAPFPR

on the edit command line. Press ENTER. The system places the modified member in the edit buffer.

5. Save the new PROGxx member.

Note: After you add PROG=xx to IEASYSxx, remove APF=xx from IEASYSxx and IEASYS00 to avoid
duplication of processing.

Using the EXIT statement
Use the EXIT statement type to specify statements that:
v Add exit routines to an exit.
v Modify exit routines for an exit.
v Delete exit routines from an exit.
v Undefine implicitly defined exits.
v Change the attributes of an exit.

You can use the PROGxx EXIT statement to define exits to the dynamic exits facility at IPL. You can use
multiple ADD statements to add more than one exit routine to a particular exit.

Previously defined exit definitions can be modified with the PROGxx EXIT statement, the SET PROG=xx
operator command, or the SETPROG EXIT operator command through the following methods:

v The EXIT statement of the PROGxx parmlib member. The PROGxx EXIT statement interacts with the
PROG=xx parameter of IEASYSxx and the SET PROG=xx command. At IPL, operators can use
PROG=xx to specify the particular PROGxx parmlib member the system is to use. During normal
processing, operators can use the SET PROG=xx command to set a current PROGxx parmlib member.

v The SETPROG EXIT operator command. This command performs the same functions as the EXIT
statement of the PROGxx parmlib member. See z/OS MVS System Commands for information about
the SETPROG EXIT command.

v The CSVDYNEX macro. The CSVDYNEX macro can be used to define exits to the dynamic exits
facility, control their use within a program, and associate one or more exit routines with those exits. It
can also be used to associate exit routines with the existing SMF and allocation exits, which have been
defined to the dynamic exits facility.

An installation can use any of these methods to control dynamic exits. For example, an exit routine can be
associated with an exit using the CSVDYNEX ADD request, the SETPROG EXIT,ADD operator command,
or the EXIT statement of PROGxx.

PROGxx

504 z/OS V1R4.0 MVS Initialization and Tuning Reference

Notes:

1. If you currently specify exits in the EXITxx parmlib member, IBM recommends that you convert the
format of EXITxx to PROGxx using the IEFEXPR REXX exec provided by IBM. For information on how
to perform this conversion, see the “Initialization and Tuning” chapter in z/OS MVS Migration.

2. Exits that are currently specified in the SMFPRMxx parmlib member can also be specified in the
PROGxx parmlib member. See 549 for an example of how to use the EXIT ADD statement to specify
SMF exits in PROGxx parmlib members.

3. Exit definitions are not replaced by the SET PROG=xx or SETPROG EXIT commands. They are
modified as specified in the command.

Using the SYSLIB statement
Use the SYSLIB statement at IPL when you want to change the default system data sets that are placed
at the the beginning of the LNKLST concatenation or LPALST concatenation. The system recognizes the
following:

v LINKLIB data set (which defaults to SYS1.LINKLIB)

v MIGLIB data set (which defaults to SYS1.MIGLIB)

v CSSLIB data set (which defaults to SYS1.CSSLIB)

v LPALIB data set (which defaults to SYS1.LPALIB)

The system always places the LINKLIB, MIGLIB, and CSSLIB data sets at the beginning of the LNKLST
concatenation and the LPALIB data set at the beginning of the LPALST concatenation. SYSLIB can be
used only at IPL.

Use the SYSLIB LINKLIB statement to change the LINKLIB data set. Use the SYSLIB MIGLIB statement
to change the MIGLIB data set. Use the SYSLIB CSSLIB statement to change the CSSLIB data set. Use
the SYSLIB LPALIB statement to change the LPALIB data set.

When you use SYSLIB statements to change the defaults, you must ensure that SYS1.LINKLIB,
SYS1.MIGLIB, and SYS1.CSSLIB are defined to the LNKLST concatenation and that SYS1.LPALIB is
defined to the LPALST concatenation for the system.

You can use SYSLIB statements in PROGxx when you want to override system code, either for testing or
as part of customization. Use the LINKLIB, MIGLIB, and CSSLIB options of the SYSLIB statement to place
the data sets you define at the beginning of the LNKLST concatenation. Use the LPALIB option of the
SYSLIB statement to place the alternate data set you define at the beginning of the LPALST
concatenation. Using these alternate system data sets, you can override system code supplied in LINKLIB,
MIGLIB, CSSLIB, and LPALIB to test fixes or make exits or other vendors code available to the system
without having to modify the system code itself.

If you use SYSLIB statements for testing, you can re-IPL after testing with the regular system libraries
appearing first in the link list and LPA list concatenations. You can specify SYSLIB statements in PROGxx
and use either PROGxx with LNKLST statements or LNKLSTxx members to define and activate the
remainder of the LNKLST concatenation.

Some system exits and tables reside in their own load modules and, for some of them, default exits are
supplied in LPALIB and LINKLIB by IBM. Some products, from IBM and other vendors, supply exits meant
to replace IBM’s default exits. Some vendors ship replacement modules meant to replace IBM-supplied
modules. Your installation might have exits and tables that replace LINKLIB and LPALIB at the beginning
of the link and LPA lists. This allows you to override these modles rather than replacing them, while
keeping the IBM-supplied default modules available for recovery and for use on different system images,
and keeping other vendors code separated from IBM’s code. This makes it easier to share software
among images with different requirements or software licenses and can reduce the time required to install
new levels of software.

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 505

For examples of specifying SYSLIB statements, see “Example of the SYSLIB statement” on page 517 and
“Examples of the LNKLST statement” on page 522.

Using the LNKLST statement
A LNKLST set consists of an ordered list of data sets for processing as the LNKLST concatenation. Every
LNKLST set contains the LINKLIB, MIGLIB, and CSSLIB data sets as the first data sets in the LNKLST
concatenation. Unless overridden by SYSLIB statements, every LNKLST set begins with:
v SYS1.LINKLIB
v SYS1.MIGLIB
v SYS1.CSSLIB

The system automatically adds these data sets to the beginning of the LNKLST set that you define. If
these data sets are not available to the system at IPL, a wait state occurs.

Use the LNKLST statement:
v To define the LNKLST set.
v To add a data set to the LNKLST set.
v To delete a data set from the LNKLST set.
v To remove the definition of a LNKLST set from PROGxx (valid only after IPL).
v To test for the location of a routine associated with one of the data sets in the LNKLST set (valid only

after IPL).
v To associate a job or address space with the current LNKLST set (valid only after IPL).
v To indicate that a LNKLST set is to be activated.

You can add a data set to any LNKLST set that you define and specify the position of the data set in the
list. You cannot add the data set before any of the system default data sets in the concatenation; that is,
you can only concatenate the data set after the CSSLIB data set in the LNKLST set. To change the
system default data sets placed at the beginning of the LNKLST concatenation, see “Using the SYSLIB
statement” on page 505.

Using PROGxx instead of LNKLSTxx
You can use LNKLST statements in PROGxx instead of using LNKLSTxx to define the LNKLST
concatenation. At IPL, ensure that you have a LNKLST ACTIVATE statement for the LNKLST set that you
have defined, and specify PROG=xx instead of LNK=xx. To convert a LNKLSTxx member to PROGxx
format, use the CSVLNKPR REXX exec. For information, see z/OS MVS Migration.

Using LNKLST processing
You can define multiple LNKLST sets, but only one LNKLST set is current in the system at any time. Any
job or address space that is started after the current LNKLST set is activated is associated with the current
LNKLST set. The job or address space continues to use the current LNKLST set until the LNKLST set for
the job or address space is updated. (See the parameter description for LNKLST UPDATE.)

Changing the current LNKLST set
You can change the current LNKLST set dynamically through the SET PROG=xx and SETPROG LNKLST
commands.

A LNKLST set remains allocated until there are no longer any jobs or address spaces associated with it. If
the current LNKLST set is dynamically changed, any job or address space associated with the previous
LNKLST set continues to use the data sets until the job or address space finishes processing. Thus, a
previously current LNKLST set might be active or in use by a job or address space even though a new
current LNKLST set has been activated. Jobs or address spaces that are started after the new current
LNKLST set is activated use the new current LNKLST set.

PROGxx

506 z/OS V1R4.0 MVS Initialization and Tuning Reference

An active LNKLST set cannot be modified. Once the last job or address space associated with a LNKLST
set terminates, the LNKLST set is no longer active. The only other way to deactivate a LNKLST set is with
LNKLST UPDATE. See “Removing or compressing a data set in an active LNKLST set” on page 509 for
more information about LNKLST UPDATE.

Through SET PROG=xx and SETPROG LNKLST, you can also remove the definition of a LNKLST set
from the system, associate a job or address space with the current LNKLST set, or locate a specific
module associated with a data set in the LNKLST set. See z/OS MVS System Commands.

Concatenating data sets to the LNKLST concatenation
The number of data sets you can concatenate to form the LNKLST concatenation is limited by the total
number of DASD extents the data sets will occupy. The total number of extents must not exceed 255. You
must have DFSMS/MVS 1.3 or later installed to support this limit of 255 extents for the LNKLST
concatenation. A partitioned data set extended (PDSE) counts as one extent.

The system concatenates as many of the data sets as possible until the limit of 255 extents is reached.
The system ignores the remaining data sets. When the limit has been exceeded, the system writes error
message IEA328E to the operator’s console. This message is issued whether the concatenation is defined
by LNKLSTxx or by PROGxx.

Allocating a PDS or PDSE for use with LNKLST
When using PDSEs, you can allocate LNKLST data sets with secondary extents.

When using partitioned data sets (PDSs), however, allocate LNKLST data sets with primary extents only.
Otherwise, updates to a LNKLST data set might cause the data set to expand into an extent that did not
exist when the LNKLST set was defined. A subsequent attempt to access a member in the new extent
causes the requesting program to abend with an I/O error.

If a LNKLST PDS has expanded into a secondary extent since the most recent IPL, a program can use
either of the following methods to access a member in the secondary extent:

1. Accessing the member as part of a joblib, steplib, or tasklib. This method causes the data set to lose
its authorized program facility (APF) authorization for the duration of the job, step, or task, unless the
data set is specified in the APF list (through the PROGxx or IEAAPFxx member). Note that SETPROG
APF or SET PROG may be used to dynamically update the APF table.

OR

2. Dynamic LKNLST processing may be used to define a new current LNKLST. The following is one way
this could be accomplished:

a. Define a new LNKLST set with the same data sets (including the one that has gone into a new
extend) as are in the current LNKLST set.

SETPROG LNKLST,DEFINE,NAME=new,COPYFROM=CURRENT

b. Activate the new LNKLST set, making it the current LNKLST.

SETPROG LNKLST,ACTIVATE,NAME=new

Now all address spaces that start while this new LNKLST set is current will be able to access
modules in the new extent. Note that address spaces that existed prior to this new LNKLST set
becoming current will still not be able to access modules in the new extent.

c. The SETPROG LNKLST,UPDATE option may be used to force pre-existing address spaces to use
the new current LNKLST.

SETPROG LNKLST,UPDATE,JOB=*

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 507

There is some risk associated with this command (ABEND106 errors could result) and therefore it
is recommended that this command be used only when necessary to prevent an IPL. Please see
the SETPROG command in z/OS MVS System Commands for more important information about
this option.

APF authorization for LNKLST data sets
SYS1.LINKLIB in the LNKLST concatenation is APF-authorized by default. And, if you accept the default
for the LNKAUTH system parameter (LNKAUTH=LNKLST) or specify this value through an IEASYSxx
member or as a response to the ‘SPECIFY SYSTEM PARAMETERS’ message at IPL time, data sets that
are concatenated to SYS1.LINKLIB by default (like SYS1.MIGLIB and SYS1.CSSLIB) are automatically
APF-authorized when accessed as part of the LNKLST concatenation.

For more information, see the description of the LNKAUTH parameter in Chapter 47, “IEASYSxx (system
parameter list)” on page 335.

Cataloging LNKLST data sets
Data sets in the LNKLST concatenation must be cataloged in either the system master catalog or in a user
catalog. When cataloged in the master catalog, LNKLST data sets can be either PDSs or PDSEs.

LNKLST data sets processed during IPL must be either cataloged in the master catalog or have their
volume serials specified.

You can add PDSEs that are cataloged in a user catalog to the LNKLST concatenation by placing their
LNKLST statements in a PROGxx member not specified for IPL, and issuing a SET PROG=XX command
after IPL to add them to the LNKLST.

Note: The volume specification is not intended to get LNKLST to manage a data set that is not cataloged.
It is designed to let the user put a user-cataloged data set in the LNKLST. Since user catalog
support is not available when IPL is processing LNKLST, the volume must be specified to let
LNKLST processing know where the data set resides. If a volume is specified, LNKLST processing
will not try to locate the data set in the Master Catalog.

If you catalog a LNKLST data set in the system master catalog, the system will find the data set
automatically during IPL.

If you plan to use a user catalog, you should be aware that the system will not find the data set unless you
specify both the name of the data set and the volume serial number (VOLSER) of the DASD volume on
which the data set resides. (This restriction also applies if you are defining the LNKLST concatenation in
LNKLSTxx.)

Also, be aware that the system does not search OS CVOLs for LNKLST data sets.

Modifying the contents of LNKLST data sets
If you update members in LNKLST data sets, be sure to refresh LLA’s directory table after completing the
updates if you want to have the changes take effect immediately. You can refresh LLA in the following
ways:

v To update specific entries in LLA’s directory table, enter the MODIFY LLA UPDATE command.

v To refresh all entries in LLA’s directory table, enter the MODIFY LLA REFRESH command.

v Recycle (stop and restart) LLA.

For more information about these commands, see z/OS MVS System Commands.

PROGxx

508 z/OS V1R4.0 MVS Initialization and Tuning Reference

Removing an XCFAS ENQ
The XCFAS address space has an ENQ on each LNKLST data set. These ENQs provide serialization on
the LNKLST data sets. An ENQ on a LNKLST data set prevents that data set from being altered as long
as it is a member of an active LNKLST. There is no connection between sysplex processing and LNKLST
processing.

There are times when you may want to remove the XCFAS ENQ; for example, when you want to update a
data set of the same name on a different volume. Use the LNKLST UNALLOCATE statement, described
on page 519, or the SETPROG LNKLST,UNALLOCATE system command, described in z/OS MVS System
Commands, to remove the ENQ.

LLA also holds an ENQ on each LNKLST data set. You can remove this ENQ by updating LLA to
REMOVE the data set from LLA management, or by stopping LLA. See Chapter 19, “CSVLLAxx (library
lookaside (LLA) list)” on page 205. For more information about an LLA-managed data set, see “Removing
Libraries from LLA Management” in the z/OS MVS Initialization and Tuning Guide.

Removing or compressing a data set in an active LNKLST set
It is sometimes necessary to remove a data set from the active LNKLST set. Perhaps the data set is no
longer needed, is causing a problem, or needs to be compressed. Use LNKLST DELETE to remove a
data set. The data set cannot be removed while a LNKLST set is active (in use by at least one active
address space). Use the following procedure to assure the data set being removed is not part of an active
LNKLST set:

1. Define a new LNKLST set identical to the one from which the data set is to be removed.

2. Remove the appropriate data set from the new LNKLST set.

3. Activate the new LNKLST set. This makes the new LNKLST set CURRENT on the system.

4. Update all currently running jobs to use the current LNKLST set.

The following example shows how to remove a data set from an active LNKLST set:
LNKLST DEFINE NAME(NEWLLSET) COPYFROM(OLDLLSET)
LNKLST DELETE NAME(NEWLLSET) DSNAME(data set.to.be.removed)
LNKLST ACTIVATE NAME(NEWLLSET)
LNKLST UPDATE JOB(*)

Note: Using UPDATE to switch LNKLST sets for an active job could result in fetch failures. IBM
recommends that you do this only when necessary.

When a new LNKLST set is made current, data sets that are no longer part of an active LNKLST continue
to be managed by LLA. If you want LLA to no longer manage and to drop its allocation of a data set you
have dynamically removed for all LNKLST sets, you must issue a MODIFY LLA,UPDATE=xx pointing to a
CSVLLAxx member specifying the REMOVE keyword for the library removed from the LNKLST. Although
stopping and starting LLA after the dynamic LNKLST removal of the data set causes LLA to drop its
management and allocation of the data set, this also slows system performance. To avoid slowing system
performance, use the MODIFY LLA command to change the library indexes.

Placement of SYSLIB and LNKLST statements in PROGxx
You can place LNKLST statements for a LNKLST set in different PROGxx members. For example, you
can specify PROG=(01,02,03) and place the LNKLST DEFINE statement in PROG01, LNKLST ADD
statements in PROG02, and the LNKLST ACTIVATE statement in PROG03.

SYSLIB statements must always appear before any LNKLST statements in PROGxx. If you specify
multiple PROG=xx members, define any SYSLIB statements ahead of LNKLST statements. For example,
if you specify PROG=(01,02) during IPL, consider the following:

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 509

v If PROG01 has a LNKLST statement, ensure that no SYSLIB statement appears after the LNKLIB
statement, or in PROG02.

v If only PROG02 has a LNKLST statement, ensure that no SYSLIB statement appears after the LNKLST
statement in PROG02.

Using the LPA statement
Use the LPA statement to specify:

v Modules that are to be added to the LPA following IPL.

v Modules that are to be deleted from the LPA following IPL.

v Threshhold values for minimum amounts of CSA storage that must still be available after an ADD
operation.

You can also initiate a change to LPA from a program via the CSVDYLPA macro, or by an operator using
the SETPROG command. The PROG system parameter can be used to specify CSA threshhold values,
but not to request ADD or DELETE operatons.

You can exercise certain controls over the modules to be loaded:

v You specify a data set from which the system is to load the modules. You must be authorized to make
the request.

v You can request that the modules be placed into fixed common storage.

v You can request that only the full pages within a load module be page-protected. This does leave the
likelihood of the beginning and/or end of a load module not being page protected. By default, each
module is individually page-protected. This is, however, wasteful of common storage, as each module
needs then to occupy a whole number of 4096-byte pages. In all cases the module will be in key 0
storage.

LPA module alias names are not automatically handled. If a module has aliases, the module name and all
associated aliases must be specified within the same request. Otherwise, one of the following outcomes
could occur, depending upon the initial state of the system:

v The module name or alias will not be found

v A duplicate copy of the same module will be loaded

v A previous copy of the module will be used.

LPA modules are considered as coming from an authorized library. As part of its LPA search, the system
finds modules that were added dynamically. A module added dynamically is found before one of the same
name added during IPL.

The LPA statement is intended to replace modules only in cases where the owning product verifies the
replacement. Otherwise, replacement could result in partial updates, or if the module address has already
been saved by its owning product, an LPA search will not be done and the updated module will not be
found.

It is sometimes necessary to re-IPL to replace LPA modules. For example, many service updates of LPA
modules will require a re-IPL.

Considerations for msys for Setup
msys for Setup requires you to code parentheses around the MODNAME parameter module list on LPA
ADD or LPA delete statements. For example, the following MODNAME statements are valid for msys for
Setup:

v MODNAME(modname,...,modname)

v MODNAME=(modname,...,modname)

PROGxx

510 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

|
|
|

|

|

This syntax is not valid for msys for Setup: MODNAME=modname,...,modname

Parameter in IEASYSxx (or specified by the operator):
PROG=xx

The two-character identifier xx is appended to PROG to identify the PROGxx parmlib member. xx can be
any two alphanumeric characters (A-Z, 0-9) or (@, #, or $).

You can also specify multiple PROGxx members on this parameter. For example, you can specify two
active members using the form PROG=(01,02).

Regardless of whether you specify the PROG=xx parameter, the system always places the following
libraries in the APF list:

v SYS1.LINKLIB and SYS1.SVCLIB (and SYS1.LPALIB, during IPL only).

v If the APF=xx system parameter is specified, the libraries contained in IEAAPFxx.

PROG=xx and APF=xx
If you specify both the PROG=xx and the APF=xx parameters, then the system places into the APF list the
libraries listed in IEAAPFxx, followed by the libraries listed in the PROGxx member or members.

The system will process IEAAPFxx and PROGxx parameters if both are specified. If you decide to use
PROGxx only , convert the format of IEAAPFxx to PROGxx and then remove APF=xx system parameters
from IEASYSxx and IEASYS00.

PROG=xx and EXIT=xx
The system will process first PROGxx and then EXITxx parameters if both are specified. If you decide to
use PROGxx only, convert the format of EXITxx to PROGxx and then remove EXIT=xx system parameters
from IEASYSxx and IEASYS00.

PROG=xx and LNK=xx
You can specify PROG=xx instead of LNK=xx for the LNKLST concatenation. Whether you use PROGxx
or LNKLSTxx to define the LNKLST concatenation, the system always places the LINKLIB, MIGLIB, and
CSSLIB data sets (either the system defaults or the data sets specified on SYSLIB statements) first in the
concatenation.

If you use PROGxx and do not use LNKLST statements, the system uses LNKLSTxx, if specified, on
LNK=xx to define the LNKLST concatenation.

If you define a LNKLST set to be activated through PROGxx and specify both PROG=xx and LNK=xx, the
system uses the definitions in PROGxx and issues message CSV487I:

LNK IPL PARAMETER HAS BEEN IGNORED. LNKLST SET lnklstname IS BEING USED

IBM-supplied default
None.

Syntax rules for PROGxx
These rules apply to the creation of PROGxx:

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 511

|

v Enter data only in columns 1 through 71. Do not enter data in columns 72 through 80; the system
ignores these columns.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

Syntax format of the APF statement
APF FORMAT(DYNAMIC|STATIC)
APF ADD | DELETE

DSNAME(dsname)
SMS | VOLUME(volname)

Statements/parameters for the APF statement
APF

Statement type indicating that an action is to be performed on the APF list.

FORMAT(DYNAMIC|STATIC)
Specifies that the format of the APF list is dynamic or static. Before you change the format of the APF
list to dynamic, validate programs and vendor products are converted to use dynamic APF services
(see Chapter 32, “IEAAPFxx (authorized program facility list)” on page 265), and that the proper
program products are installed (see z/OS and z/OS.e Planning for Installation).

Example: FORMAT(DYNAMIC)

Default Value: None

ADD|DELETE
Indicates whether you want to add or delete a library from the APF list.

Default Value: None

DSNAME(dsname)
The 44-character name of a library that you want to add or delete from the APF list. DSN, LIB, and
LIBRARY are accepted synonyms for this parameter.

Example: DSNAME(SYSTEM.ACCT.DATA)

Default Value: None

SMS|VOLUME(volname)
The identifier for the volume containing the library specified on the DSNAME parameter, which is one
of the following:

v SMS, which indicates that the library is SMS-managed.

v A six character identifier for the volume

v ******, which indicates that the library is located on the current SYSRES volume

v *MCAT*, which indicates that the library is located on the volume containing the master catalog.

VOL is an accepted abbreviation for the VOLUME parameter.

Example: VOLUME(874932)

Default Value: None

Example of the APF statement
The following example shows a PROGxx parmlib member that sets the format of the APF list to dynamic,
and adds the following libraries to the APF list:
v SYS1.SUPER.UTILS on volume 614703
v SYS1.ACCTG.RECRDS on the current SYSRES volume
v SYS1.COMPU.DATA, an SMS-managed library.

PROGxx

512 z/OS V1R4.0 MVS Initialization and Tuning Reference

APF FORMAT(DYNAMIC)
APF ADD

DSNAME(SYS1.SUPER.UTILS)
VOLUME(614703)

APF ADD /* Accounting records */
DSNAME(SYS1.ACCTG.RECRDS)
VOLUME(******)

APF ADD
DSNAME(SYS1.COMPU.DATA)
SMS

Syntax format of the EXIT statements
Syntax Format of EXIT ADD

Syntax Format of EXIT MODIFY

Syntax Format of EXIT DELETE

Syntax Format of EXIT UNDEFINE

Syntax Format of EXIT ATTRIB

Statements/parameters for the EXIT statement
EXIT

Statement type indicating that an action is to be performed on an exit or an exit routine.

ADD
Specifies that an exit routine is to be added to an exit.

Default Value: None

EXIT ADD
EXITNAME(ex)
MODNAME(mmmm)
[STATE({ACTIVE|INACTIVE})]
[DSNAME(dd)]
[JOBNAME(jjj|*)]
[ABENDNUM(n[,CONSEC])]
[FIRST|LAST]

EXIT MODIFY
EXITNAME(ex)
MODNAME(mmmm)
[STATE({ACTIVE|INACTIVE})]
[JOBNAME(jjj|*)]

EXIT DELETE
EXITNAME(ex)
MODNAME(mmmm)
[FORCE({YES|NO})]

EXIT UNDEFINE
EXITNAME(ex)

EXIT ATTRIB
EXITNAME(ex)
KEEPRC(compare,kk)

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 513

MODIFY
Specifies that the state of an exit routine is to be changed to active or inactive, and sets the conditions
under which the exit routine is to be given control.

Default Value: None

DELETE
Specifies that an exit routine is to be deleted from an exit.

Default Value: None

UNDEFINE
Specifies that an implicitly defined exit is to be undefined. You define an exit implicitly if you add exit
routines to it before it has been defined, or if you set attributes for it using the ATTRIB parameter
before it has been defined. You can determine which exits have been implicitly defined by using the
DISPLAY PROG,EXIT,ALL,IMPLICIT command.

Default Value: None

ATTRIB
Specifies that the attributes of an exit are to be changed.

Default Value: None

EXITNAME(ex)
The 1-16 character name of the exit. Names must be unique within the system. You can use
alphanumerics, underscores, periods, and #, $, or @. (but never with the character string ″SYS″).

Default Value: None

MODNAME(mmmm)
The 1-8 character name of the exit routine. You can use alphanumerics and #, $, and @.

If the DSNAME parameter is not specified, the system tries to locate the exit routine using the LPA,
the LNKLST concatenation, and the nucleus. The MODNAME parameter is required for the ADD,
DELETE, and MODIFY requests.

Default Value: None

[STATE({ACTIVE|INACTIVE})]
Indicates the state of the exit routine. ACTIVE indicates that the exit routine is to be given control
when the exit is called. INACTIVE indicates that the exit routine is not to be given control when the
exit is called.

Default Value: The default for the ADD parameter is ACTIVE. The default for the MODIFY parameter
is to leave the current state of the exit routine unchanged.

[DSNAME(dd)]
The 1-44 character data set name of a load library in which the exit routine resides. The data set must
be cataloged.

If the data set has been migrated, the issuer of the command that references PROGxx waits until the
data set has been retrieved before continuing.

If the PROGxx member is specified in the IEASYSxx member, an exit routine fetched from the data
set specified in a DSNAME parameter cannot be given control until the master scheduler is initialized.
In contrast, an exit routine not fetched from the DSNAME-specified data set can be given control once
the LNKLST is opened.

Default Value: If the DSNAME parameter is not specified, the system tries to locate the exit routine
using the LPA, the LNKLST concatenation, and the nucleus.

[JOBNAME(jjj|*)]
The 1-8 character name of the job or jobs for which this exit routine is to be given control. If the exit is
called from another job, this exit routine is not given control. You can use the JOBNAME parameter to

PROGxx

514 z/OS V1R4.0 MVS Initialization and Tuning Reference

restrict the processing of an exit routine to a particular job. To indicate the name of more than one job,
use an asterisk for the last character. A matching jobname is one that matches all the characters
preceding the asterisk.

If you specify JOBNAME=*, you are requesting that the system not check for the jobname.

Default Value: The default for the ADD parameter is JOBNAME=*, which indicates that the exit routine
is to be given control when any job calls the exit. The default for the MODIFY parameter is to use the
jobname or jobnames as specified on the ADD request.

[ABENDNUM(n[,CONSEC])]
Indicates when the system should stop giving control to the exit routine in case of abends.
ABENDNUM(n) indicates that the exit routine is not to be given control after the nth abend.
ABENDNUM=(n,CONSEC) indicates that there must be n consecutive abends before the system stops
giving control to the exit routine. CONSEC is not supported if this exit has FASTPATH processing in
effect and either a PSW key 8 to 15 or ANYKEY processing in effect.

Default Value: The default is to use the ABENDNUM characteristics that were specified (or defaulted)
when the exit was defined, or, if the exit is implicitly defined, the ABENDNUM characteristics specified
when the exit is subsequently defined. The ABENDNUM value must not exceed 8 decimal digits.

[FIRST]
Specifies that the system is to call the exit routine before all other exit routines associated with this
exit, unless another routine, added after it, also specifies the FIRST parameter.

Default Value: If neither the FIRST parameter nor the LAST parameter is specified, the system may
call the exit routine in any order relative to other exit routines associated with this exit.

[LAST]
Specifies that the system is to call the exit routine after all other exit routines associated with this exit,
unless other routines are added after it.

Default Value: If neither the FIRST parameter nor the LAST parameter is specified, the system may
call the exit routine in any order relative to other exit routines associated with this exit.

[FORCE({YES|NO})]
Indicates that the system is to delete the exit routine. The exit routine will no longer be given control.
Specify FORCE(YES) for an exit with FASTPATH processing in effect, and either a PSW key 8 to 15,
or ANYKEY processing in effect. Assuming the exit has FASTPATH processing in effect, and the PSW
key is 8 to 15, or ANYKEY processing is in effect:

v FORCE(NO) changes the state of the exit routine to inactive. The system does not free the storage.

v FORCE(YES) frees the storage of the exit routine immediately. Use FORCE(YES) only if you are
sure that no exit is running that exit routine.

For exits that are non-FASTPATH or whose PSW key is 0 to 7, and not ANYKEY, the system frees the
storage when it determines that no other exits are using the exit routine.

Default Value: FORCE(NO)

KEEPRC(compare,kk)
Specifies a comparison and a return code which, if true, cause the return information produced by this
exit routine to be returned to the exit caller. The valid choices for compare are EQ, NE, GT, LT, GE,
and LE. For example, with KEEPRC(GT,4), if the exit routine produces a return code of 8, the
compare for greater than with 4 is true, and KEEPRC processing causes the information produced by
this exit routine to be returned to the exit caller.

If return codes from more than one exit routine match the conditions specified, the system returns
information from the exit routine that finishes first.

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 515

Default Value: The default is not to perform KEEPRC processing. Do not enter more than 8 decimal
digits when specifying a value for kk. Refer to z/OS MVS Programming: Authorized Assembler
Services Reference ALE-DYN for information about using the KEEPRC parameter.

Examples of EXIT statements
The following example shows a PROGxx parmlib member that does the following:
v Adds exit routine R1 to exit SYS.IEFUJI.
v Modifies exit routine R2 for exit SYS.IEFUSI to be inactive.
v Deletes exit routine R3 from exit SYS.IEFACTRT.
v Defines exit SYS.IEFUTL so that the system will “keep” information for return code 4 should any exit

routine return with that return code.
EXIT ADD EXITNAME(SYS.IEFUJI) MODNAME(R1)
EXIT MODIFY EXITNAME(SYSSTC.IEFUSI) MODNAME(R2) STATE(INACTIVE)
EXIT DELETE EXITNAME(SYSJES3.IEFACTRT) MODNAME(R3)
EXIT ATTRIB EXITNAME(SYSTSO.IEFUTL) KEEPRC(EQ,4)

Syntax format of the SYSLIB statement
Syntax Format of SYSLIB

Statements/parameters for the SYSLIB statement
SYSLIB

Statement type indicating that an alternate data set is to be defined for SYS1.LINKLIB, SYS1.MIGLIB,
and SYS1.CSSLIB in the LNKLST concatenation, and for SYS1.LPALIB in the LPALST concatenation.

IBM recommends that you use different data set names for LINKLIB, MIGLIB, and CSSLIB on all
SYSLIB statements. If the same data set name is used more than once, LLA will not manage the
entire LNKLST set.

LINKLIB(name)
Specifies the name of the LINKLIB data set. If you specify a library other than SYS1.LINKLIB, you
must ensure that SYS1.LINKLIB occurs within the LNKLST concatenation. The system places the
LINKLIB data set first in the LNKLST concatenation.

Default Value: If you do not specify LINKLIB, the system uses SYS1.LINKLIB as the LINKLIB data
set.

MIGLIB(name)
Specifies the name of the MIGLIB data set. If you specify a library other than SYS1.MIGLIB, you must
ensure that SYS1.MIGLIB occurs within the LNKLST concatenation. The system places the MIGLIB
data set after the LINKLIB data set in the LNKLST concatenation.

Default Value: If you do not specify MIGLIB, the system uses SYS1.MIGLIB as the MIGLIB data set.

CSSLIB(name)
Specifies the name of the CSSLIB data set. If you specify a library other than SYS1.CSSLIB, you must
ensure that SYS1.CSSLIB occurs within the LNKLST concatenation. The system places the CSSLIB
data set after the MIGLIB data set in the LNKLST concatenation.

Default Value: If you do not specify CSSLIB, the system uses SYS1.CSSLIB as the CSSLIB data set.

SYSLIB LINKLIB(name)

SYSLIB MIGLIB(name)

SYSLIB CSSLIB(name)

SYSLIB LPALIB(name)

PROGxx

516 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|

LPALIB(name)
Specifies the name of the LPALIB data set. If you specify a library other than SYS1.LPALIB, you must
ensure that SYS1.LPALIB occurs within the LPALST concatenation. The system places the LPALIB
data set first in the LPALST concatenation. (See Chapter 59, “LPALSTxx (LPA library list)” on
page 467.)When the SYSLIB LPALIB statement is used to specify a data set other than SYS1.LPALIB,
and SYS1.LPALIB does not appear within any of the specified LPALSTxx parmlib members, the
system places SYS1.LPALIB at the end of the concatenation used to build the PLPA.

Default Value: If you do not specify LPALIB, the system uses SYS1.LPALIB first in the LPALST
concatenation.

Example of the SYSLIB statement
The following example shows a PROGxx parmlib member to be IPLed in a test environment that is
applying code fixes for the system. The libraries specified on these SYSLIB statements contain no data set
members. Whether you use PROGxx or LNKLSTxx to activate the LNKLST concatenation, the system
places SYS2.LINKLIB, SYS2.MIGLIB, and SYS2.CSSLIB at the start of the LNKLST concatenation. The
system places SYS2.LPALIB at the beginning of the LPALST concatenation. (You must ensure that
SYS1.LINKLIB, SYS1.MIGLIB, and SYS1.CSSLIB appear somewhere in the LNKLST concatenation and
SYS1.LPALIB appears somewhere in the LPALST concatenation.)
SYSLIB LINKLIB(SYS2.LINKLIB)
SYSLIB MIGLIB(SYS2.MIGLIB)
SYSLIB CSSLIB(SYS2.CSSLIB)
SYSLIB LPALIB(SYS2.LPALIB)

Syntax format of the LNKLST statements
Syntax Format of LNKLST DEFINE

Syntax Format of LNKLST ADD

Syntax Format of LNKLST DELETE

Syntax Format of LNKLST UNDEFINE

Syntax Format of LNKLST TEST

Syntax Format of LNKLST ACTIVATE

Syntax Format of LNKLST UPDATE

LNKLST DEFINE NAME(name)
[COPYFROM(name)]
[NOCHECK]

LNKLST ADD NAME(name) DSNAME(dsname)
[VOLUME(name)]
[ATBOTTOM|ATTOP|AFTER(dsname)]
[CONCAT(NOCHECK|CHECK)]

LNKLST DELETE NAME(name) DSNAME(dsname)

LNKLST UNDEFINE NAME(name)

LNKLST TEST NAME(name) MODNAME(modname)

LNKLST ACTIVATE NAME(name)

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 517

Syntax Format of UNALLOCATE

Syntax Format of ALLOCATE

Statements/parameters for the LNKLST statement
LNKLST

Statement type indicating that an action is to be performed for a LNKLST set.

DEFINE
Specifies the definition of a LNKLST set (a set of ordered data sets for the LNKLST concatenation).

Default Value: None

ADD
Indicates that you want to add a data set to the specified LNKLST set.

IBM recommends using the COPYFROM parameter,when feasible, to define a LNKLST set instead of
defining the set and then using LNKLST ADD statements to add individual data sets. The use of
COPYFROM reduces system processing time. Use the LNKLST ADD statement to add a new data set
to a specific LNKLST set.

You cannot add a data set to the current or active LNKLST set. If a data set has been migrated, the
request waits until the data set is available. For information about the maximum number of data sets
you can define to a LNKLST set, see “Concatenating data sets to the LNKLST concatenation” on
page 507.

Default Value: None

DELETE
Indicates that you want to delete a data set from the specified LNKLST set.

You cannot delete a data set from the current or active LNKLST set.

Default Value: None

UNDEFINE
Indicates that you want to remove the definition of the LNKLST set from the system. You cannot
remove the definition of the current LNKLST set, another LNKLST set that is being actively used by a
job or address space, or the LNKLST defined at IPL through LNKLSTxx and the LNK parameter of
IEASYSxx.

Note: You cannot specify this parameter at IPL. It is valid only when you specify SET PROG=xx.

See “Removing or compressing a data set in an active LNKLST set” on page 509 for information on
LLA management of LNKLST sets.

Default Value: None

TEST
Indicates that you want to locate a specific routine associated with a data set in the LNKLST set. If the
system locates the data set, the system indicates the name of the data set. If a data set has been
migrated, the request waits until the data set is available.

Note: You cannot specify this parameter at IPL. It is valid only when you specify SET PROG=xx.

LNKLST UPDATE {JOB(jobname)}
{ASID(asid)}

LNKLST UNALLOCATE

LNKLST ALLOCATE

PROGxx

518 z/OS V1R4.0 MVS Initialization and Tuning Reference

Default Value: None

ACTIVATE
Indicates that you want to activate the specified LNKLST set as the LNKLST concatenation. If you use
SETPROG LNKLST or SET PROG=xx to activate another LNKLST set after IPL, jobs or address
spaces that are still active continue to use the previous current LNKLST set. To associate a job or an
address space with the current LNKLST set after IPL, you can use the UPDATE option on the
SETPROG LNKLST command or the LNKLST UPDATE statement specified in the member for SET
PROG=xx.

If a data set in the LNKLST set has been migrated before the LNKLST set is activated, the request
waits until the data set is available.

When the ACTIVATE request completes, the system issues an event (ENF) signal (event code 52).
Depending on the options specified in SMFPRMxx, whenever a LNKLST set is activated, the system
records SMF record type 90 subtype 29. See Chapter 67, “SMFPRMxx (system management facilities
(SMF) parameters)” on page 537.

You must have a LNKLST ACTIVATE statement defined in PROGxx when you use PROG=xx to
activate the LNKLST set at IPL.

See “Removing or compressing a data set in an active LNKLST set” on page 509 for information on
LLA management of LNKLST sets.

Default Value: None

UPDATE
Indicates that the system is to update an address space or the specified job or jobs to use the current
LNKLST set. Otherwise, if the job is using another LNKLST set when the current LNKLST set is
activated, it will continue to use the previous LNKLST set until it completes operations. When the job
completes and restarts, the job then uses the data sets defined in the new currently active LNKLST
set.

See “Removing or compressing a data set in an active LNKLST set” on page 509 for information on
LLA management of LNKLST sets.

Notes:

1. You cannot specify this parameter at IPL. It is valid only when you specify SET PROG=xx.

2. Be careful when you use UPDATE . Updating jobs in an address space while it is fetching a
module can cause the fetch to fail or result in fetching a copy that is not up-to-date. The system
does not attempt to verify the validity of the data for the update function.

Default Value: None

UNALLOCATE
Indicates that you want to undo all existing allocations obtained while processing active LNKLST sets.
This also releases the SYSDSN ENQ.

Note: Once you have completed everything associated with the UNALLOCATE, you must specify
LNKLST ALLOCATE to re-obtain the remaining ENQs.

Default Value: None

ALLOCATE
Indicates that you want to re-obtain the allocation (and SYSDSN ENQ) for every data set in every
active LNKLST.

You must assure that while the allocations are not in effect the LNKLST data sets are not deleted or
moved.

Default Value: None

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 519

NAME(name)
The name of the LNKLST set that you want to specify. Naming conventions are as follows:

v You can specify from 1 to 16 characters for name.

v You can use alphanumerics, underscores, periods, and #, $, or @.

v Do not use imbedded blanks.

v Do not use the names CURRENT or IPL. The system uses CURRENT to mean the current LNKLST
set and IPL to mean LNKLST information specified in SYS1.PARMLIB member LNKLSTxx.

v Do not begin the name with SYS. SYS is reserved for IBM use.

Example: NAME(MY.LNKLST.SET)

Default Value: None

[COPYFROM(name)]
The name of an existing LNKLST set from which to initialize the LNKLST set you are defining. If you
specify CURRENT for the name, the system uses the current LNKLST set.

Example:
LNKLST DEFINE NAME(MY.LNKLST.SET)
COPYFROM(SYSTEM.ACCT.DATA)

Default Value: If you omit this parameter, the system initializes the LNKLST set with the LINKLIB,
MIGLIB, and CSSLIB data sets in that order.

[NOCHECK]
Indicates that the system does not check to determine if the specified LNKLST set contains
SYS1.LINKLIB, SYS1.MIGLIB, and SYS1.CSSLIB before allocating the LNKLST concatenation.

Note: Use NOCHECK with caution.NOCHECK is available ONLY to allow the creation of a LNKLST
without SYS1.LINKLIB/MIGLIB/CSSLIB. NOCHECK should be used ONLY when needed (such
as if the pack has a problem).

Example:

For the following code to work, you must IPL using the SYSLIB statement to define an alternate
LINKLIB data set. The LINKLIB, CSSLIB, and MIGLIB data sets are all determined during IPL
and can never be changed or removed from the LNKLST. To create a LNKLST without those
data sets, IPL specifying other data sets (empty PDSs can be used) with the PROGxx SYSLIB
statement. The PROGxx statement would contain the following:

SYSLIB LINKLIB(SYS2.LINKLIB)
SYSLIB MIGLIB(SYS2.MIGLIB)
SYSLIB CSSLIB(SYS2.CSSLIB)

Then IPL with prog=(xx) or prog=(xx,00).

You might use NOCHECK after you have modified SYS1.LINKLIB and want to compress
SYS1.LINKLIB. The following procedure is an example:

1. Create a data set that contains a copy of SYS1.LINKLIB.

2. Define a LNKLST set that has the same name as the current LNKLST set but includes the
replacement for SYS1.LINKLIB. Specify NOCHECK when defining this LNKLST.

3. Activate the LNKLST set you have defined with the replacement copy of SYS1.LINKLIB.

4. Stop the library lookaside (LLA) procedure. (See ″Starting LLA″ and ″Modifying LLA″ in z/OS MVS
Initialization and Tuning Guide.)

5. Use SET PROG=xx with LNKLST UPDATE or SETPROG LNKLST UPDATE to specify that jobs
use the LNKLST set. At this point, SYS1.LINKLIB is not active.

PROGxx

520 z/OS V1R4.0 MVS Initialization and Tuning Reference

6. Compress SYS1.LINKLIB.

7. Use SET PROG=xx with LNKLST ACTIVATE or SETPROG LNKLST ACTIVATE to activate the
original LNKLST set that includes SYS1.LINKLIB.

8. Use SET PROG=xx with LNKLST UPDATE or SETPROG LNKLST UPDATE to specify that jobs
use the original LNKLST set and SYS1.LINKLIB.

Default Value: None

DSNAME(dsname)
The 44-character name of a data set or library that you want to add to the specified LNKLST set or
delete from the specified LNKLST set. DSN, LIB, LIBRARY are accepted synonyms for this parameter.

The data set can be a PDS or a PDSE. (IBM recommends that you use PDSEs because of the
limitations on the number of extents for a LNKLST concatenation. See “Concatenating data sets to the
LNKLST concatenation” on page 507.)

Data sets to be added can be SMS-managed or non SMS-managed. After the system determines the
volume and the SMS status of the data set, the following actions result in an error when the system
tries to allocate the LNKLST set:

v If the data set in the LNKLST set changes status from SMS-managed to non SMS-managed, or
from non-SMS managed to SMS-managed.

v If a non SMS-managed data set in the LNKLST set is deleted and moved to another volume.

In either case, to add the data set after the change has occurred, you must first delete the data set
from the LNKLST set and add it again.

Default Value: None

[VOLUME(name)]
The name of the volume on which the data set resides. The data set must be cataloged. If the volume
does not match the name in the catalog, the ADD request fails. The name can be from 1 to 6
characters.

You can use a value of ″******″ to indicate that the data set is located on the current SYSRES volume.
You can use a value of ″*MCAT*″ to indicate that the data set is located on the volume containing the
master catalog.

When the data set is cataloged in a user catalog instead of the master catalog, you can use this
parameter. If a data set is cataloged in a user catalog, but not in the system master catalog, you must
specify the VOLSER of the volume on which the data set resides. See “Cataloging LNKLST data sets”
on page 508.

Default Value: If you omit this parameter, the system uses the volume indicated in the catalog.

[ATBOTTOM|ATTOP|AFTER(dsname)]
Indicates where in the LNKLST set you want to place the data set.

ATBOTTOM indicates that you want to place the data set specified on the DSNAME parameter at the
bottom of the list of data sets in the LNKLST set.

ATTOP indicates that you want the data set specified on the DSNAME parameter to be added to the
beginning of the LNKLST set. The system always places the LINKLIB, MIGLIB, and CSSLIB data sets
in that order at the beginning of every LNKLST set in the LNKLST concatenation. If you use ATTOP,
the system always places the data set after the CSSLIB data set.

AFTER(dsname) indicates that the system places the data set specified on the DSNAME parameter
after the data set specified by dsname. You cannot use this parameter to place a data set after the
LINKLIB, MIGLIB, or CSSLIB data set in the LNKLST set. Instead, use ATTOP if you want to place the
data set immediately after the CSSLIB data set.

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 521

Default Value: If you omit ATBOTTOM, ATTOP, or AFTER, the system adds the data set to the bottom
of the LNKLST set.

[CONCAT(NOCHECK|CHECK)]
Indicates whether to check to see if the concatenation defined by the LNKLST set is full.

NOCHECK indicates that you do not want to check to see if the concatenation is full. If the
concatenation is full, it will be detected when the LNKLST set is activated.

CHECK indicates that you want to check to see if the concatenation is full. This implies that all the
data sets in the LNKLST set must be concatenated. Specification of CHECK causes system
processing to take longer.

Default Value: NOCHECK

MODNAME(name)
MODNAME specifies the name of a routine or module to be located in the LNKLST set. MODULE and
MOD can be used as synonyms for MODNAME.

Example:
LNKLST TEST NAME(MY.LNKLST.SET) MODNAME(MYMODULE)

Default Value: None.

{JOB(jobname)|ASID(asid)}
Specifies the name of the job or address space.

JOB specifies the name of the job or jobs specifed by jobname. You can use wildcard characters (? or
*) for jobname. LNKLST UPDATE updates any job whose name matches the specified criteria. The
system compares jobname to the name of any initiated job or jobs that match, or to the name of the
address space.

ASID specifies the address space id for the job.

Example:
LNKLST UPDATE JOB(MYJOB)

Default Value: None.

Examples of the LNKLST statement
Example 1

This example shows how to define LNKLST set MY.LINKLIST and indicate that MY.LINKLIST is to be
activated at IPL. The resulting LNKLST concatenation consists of the LINKLIB, MIGLIB, and CSSLIB data
sets in that order:
LNKLST DEFINE NAME(MY.LINKLIST)
LNKLST ACTIVATE NAME(MY.LINKLIST)

Example 2

This example shows how to add data sets to the LNKLST set:
LNKLST DEFINE NAME(NEWLLSET) COPYFROM(OLDLLSET)
LNKLST ADD NAME(NEWLLSET) DSNAME(dataset.to.be.added)
LNKLST ACTIVATE NAME(NEWLLSET)

Example 3

This example shows how the concatenation of data sets for LNKLST1 is defined.

PROGxx

522 z/OS V1R4.0 MVS Initialization and Tuning Reference

SYSLIB LINKLIB(SYS2.LINKLIB)
SYSLIB MIGLIB(SYS2.MIGLIB)
SYSLIB CSSLIB(SYS2.CSSLIB)
SYSLIB LPALIB(SYS2.LPALIB)
LNKLST DEFINE NAME(LNKLST1)
LNKLST ADD NAME(LNKLST1) DSNAME(SYS1.LINKLIB) ATTOP
LNKLST ADD NAME(LNKLST1) DSNAME(SYS1.MIGLIB)
LNKLST ADD NAME(LNKLST1) DSNAME(SYS1.CSSLIB)
LNKLST ADD NAME(LNKLST1) DSNAME(SYS1.AUXLIB) VOLUME(U32PAK)
LNKLST ACTIVATE NAME(LNKLST1)

As a result of these PROGxx specifications, the following data sets, in the order specified, are
concatenated at IPL:

SYS2.LINKLIB,SYS2.MIGLIB,SYS2.CSSLIB,SYS1.LINKLIB,
SYS1.MIGLIB,SYS1.CSSLIB,SYS1.AUXLIB

In the example of the LNKLST1 concatenation, note the following:

v The SYSLIB statements specify that SYS2.LINKLIB, SYS2.MIGLIB, and SYS2.CSSLIB replace the
system defaults at the beginning of the LNKLST concatenation.

v SYS2.LPALIB is to appear first in the LPALST concatenation.

v SYS1.LINKLIB, SYS1.MIGLIB, and SYS1.CSSLIB must be defined in the LNKLST concatenation.
SYS1.LINKLIB, SYS1.MIGLIB, and SYS1.CSSLIB are specified, in that order, after SYS2.LINKLIB,
SYS2.MIGLIB, and SYS2.CSSLIB.

v SYS1.AUXLIB is specified at the end of the LNKLST1. VOLUME indicates that SYS1.AUXLIB is
cataloged on VOLSER U32PAK.

v The LNKLST ACTIVATE statement activates LNKLST1 at IPL.

Syntax format of the LPA statements
Syntax Format of LPA ADD

Syntax Format of LPA DELETE

Syntax Format of LPA CSAMIN

Statements/parameters for the LPA statement
LPA

Statement type indicating that an action may be performed on LPA.

Note: LPA ADD and LPA DELETE cannot be used during IPL. They are for use in PROGxx members
pointed to by SET PROG=xx after IPL.

LPA ADD
MODNAME(modname,...) | MASK(mask)
DSNAME(dsname | LNKLST)
[FIXED|PAGEABLE]
[PAGEPROTPAGE]

LPA DELETE
MODNAME(modname,...)
FORCE(YES)
[CURRENT|OLDEST]

LPA CSAMIN
(below,above)

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 523

ADD
Specifies that one or more modules is to be added to LPA.

Default Value: None

DELETE
Specifies that one or more modules is to be deleted from LPA. Only modules added to LPA after an
IPL are eligible for dynamic deletion.

Default Value: None

CSAMIN
Specifies the minimum amount of CSA and ECSA that must remain after a module is added to LPA. If
the requested ADD operation would reduce the CSA or ECSA below the defined minimum, the system
rejects the operation.

Modules added to the system via dynamic LPA processing are placed into CSA or ECSA storage.
Therefore, it is important to ensure that the system CSA and ECSA sizes are adequately defined to
handle the additional consumption of CSA storage resulting from the issuance of the dynamic LPA
request. Further protection can be gained through the use of the CSADMIN parameter.

Default Value: (0,0)

below
The minimum amount of below-16M CSA storage that must remain after the ADD operation,
expressed in the format n|nK|nM, where n is a decimal number, nK is n*1024, and nM is n*1024*1024,

above
The minimum amount of above-16M CSA storage that must remain after the ADD operation,
expressed in the format n|nK|nM, where n is a decimal number, nK is n*1024, and nM is n*1024*1024,

MODNAME(modname,...,modname)
modname is the 1-8 character LPA module name or alias. If the last character of the modname is ″*″,
it will be treated as X’C0’. This lets you directly specify the name of a load module that ends with that
nonprintable character. Wildcard characters are not supported within modname. A maximum of 128
module names can be provided. MOD and MODULE can be used as synonyms of MODNAME.

Default Value: If MODNAME is not specified, MASK must be specified.

MASK(mask)
mask is the 1-8 character mask that is to be applied to all the members of the specified data set. It
can contain wildcard characters ″*″ and ″?″ and all members that match will be processed.

Default Value: If MASK is not specified, MODNAME must be specified.

DSNAME(dsname)
dsname is the 1-44 character data set name that contains the module(s) or alias(es). When
MODNAME is specified, you can specify DSNAME(LNKLST) or DSNAME(LINKLIST) if you want the
system to use its normal search protocol (search LPA then search the lnklst), instead of a particular
data set. The data set must be cataloged. It may be allocated as a PDS or PDSE program library.

The attribute of the CSA for each module is assigned as OWNER=SYSTEM. DSN, LIB, and LIBRARY
can be used as synonyms of DSNAME.

Default Value: None

FIXED | PAGEABLE
Indicates whether the modules are to be placed in fixed or pageable storage. PAGE can be used as a
synonym of PAGEABLE.

Default Value: PAGEABLE

PAGEPROTPAGE
Indicates whether or not to page protect the modules entirely. The default is to page protect the entire
module. Be aware that when that default is taken, storage utilization for the modules increases, as

PROGxx

524 z/OS V1R4.0 MVS Initialization and Tuning Reference

each module gets allocated a number of whole pages (so that they can be page protected), rather
than just the amount of storage that is truly necessary to load the module.

When PAGEPROTPAGE is requested, however, only the whole pages within each load module are
page protected, which keeps the storage use to the minimum amount but which makes it possible that
a storage overlay of the beginning or end of the load module can occur.

PPPAGE and PPP can be used as synonyms of PAGEPROTPAGE.

Default Value: Page protect entire modules.

FORCE(YES)
Confirms that the delete requestor understands the ramifications of deleting a module from LPA, when
the system can have no knowledge of whether any code is currently executing within the specified
module.

Default Value: None. Required parameter.

CURRENT | OLDEST
CURRENT specifies that the current copy is to be deleted. OLDEST specifies that the oldest dynamic
copy other than the current one is to be deleted. CUR can be used as a synonym of CURRENT. OLD
can be used as a synonym of OLDEST.

Default Value: CURRENT

PROGxx

Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA) 525

PROGxx

526 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 66. SCHEDxx (PPT, master trace table, and abend
codes for automatic restart)

Use the SCHEDxx member of parmlib to specify the following:

v Size of the master trace table.

v Abend codes that are eligible for automatic restart.

v Programs that are to be included in the program properties table (PPT) and thus receive special
attributes.

Note: In previous releases of MVS, SCHEDxx allowed you to define attributes for the eligible device table
(EDT) through the EDT statement. As of MVS/SP 5.1, the EDT statement is no longer valid.
Instead, use HCD to define attributes for the EDT in the input/output definition file (IODF). For more
information about defining the EDT, see z/OS HCD Planning.

You can use the following statement types in SCHEDxx:

MT
Defines the size of the master trace table if one exists.

PPT
Allows the installation to specify a list of programs that require special attributes or to change the
attributes of the IBM-supplied default entries in the PPT (see Table 21 on page 534). The system
scans this PPT to determine which, if any, special attributes apply to the program it is initiating.

Notes:

1. Usually, you should not add or change programs in the program properties table (PPT) unless the
instructions for installing a program direct you to do so. If you do add a program to the PPT, or
change an existing entry’s properties, ensure that the program can function with the properties you
have assigned to it. For example, a program designed to run in program protect key 8 might not
be able to run in key 10 because of hardcoded key specifications in the program. If you were to
specify KEY(10) in this case, the program will not function correctly.

2. If the processor that your system runs on does not support program protect key 9, do not assign
key 9 to any programs. For specific processor models, see z/OS and z/OS.e Planning for
Installation.

RESTART
Allows you to add user abend codes to the list of abend codes that are eligible for automatic restart.

NORESTART
Allows you to delete system and user abend codes from the list of abend codes that are eligible for
automatic restart.

Parameter in IEASYSxx (or specified by the operator):

The two characters (A-Z, 0-9, @, #, or $), represented by aa (or bb, etc.), are appended to SCHED to
identify one or more SCHEDxx members of parmlib.

If the L option is specified, either on the SCH= keyword in the IEASYSxx parmlib member or in response
to the ‘SPECIFY SYSTEM PARAMETERS’ prompt, the system displays the contents of SCHEDxx on the
operator’s console during IPL.

SCH={aa }
{(aa,L) }
{(aa,bb,...[,L])}
{(,L) }

© Copyright IBM Corp. 1991, 2002 527

Modifying the PPT between IPLs
You can use the SET SCH command to dynamically modify the contents of the PPT. The SET SCH
command causes the system to replace the current PPT definitions with the IBM-supplied default PPT
definitions, and the PPT definitions from one or more SCHEDxx members that you specify on the
command. The new PPT definitions take effect immediately (that is, without requiring a reIPL of the
system).

For more information about the SET SCH command, see z/OS MVS System Commands.

Syntax rules for SCHEDxx
The following rules apply to the creation of SCHEDxx:

v Use columns 1 through 71. Do not use columns 72-80, because the system ignores these columns.

v Comments may appear in columns 1-71 and must begin with “/*” and end with “*/”.

v A statement type consists of 1-10 characters.

v A statement must begin with a valid statement type followed by at least one blank.

v A statement ends with the beginning of the next valid statement type or EOF.

v A statement can be continued even though there is no explicit continuation character.

v Multiple statement types are accepted.

v Operands must be 60 characters or less and may not span multiple records.

v Operands must be separated by valid delimiters. Valid delimiters are a comma, a blank, or column 71. If
the operand contains parenthesis, then the right parenthesis is accepted as a valid delimiter.

v Multiple occurrences of a delimiter are accepted but treated as one.

IBM-supplied default for SCHEDxx
None.

IBM-supplied sample member SCHEDxx
IBM provides a sample member, named SCHED00, in SYS1.SAMPLIB. SCHED00 contains sample
statements for various programs; these statements are is not necessarily the IBM-supplied values.

To create a SCHEDxx member for your installation, you can copy SCHED00 to a SCHEDxx member and
modify it according to your needs.

Statements/parameters for SCHEDxx
The SCHED statements are described as follows:
MT SIZE{(nnnK)}

{(NONE)}
{(24K) }

Specifies the size (in kilobytes) of the master trace table, which is used by the TRACE command. The
system creates the master trace table during master scheduler initialization. By default, the master
trace table is 24 kilobytes in size.

To specify a different size for the master trace table, specify MT SIZE(nnnK), where nnn is any value
from 16 to 999. You must add the letter ‘K’ for the increments (kilobytes), and enclose the entire value
in parentheses.

SCHEDxx

528 z/OS V1R4.0 MVS Initialization and Tuning Reference

For example, to have the system create a master trace table of 50 kilobytes, specify the following MT
statement in SCHEDxx:
MT SIZE(50K)

If you do not want a master trace table to be created, specify MT SIZE as (NONE), as follows:
MT SIZE(NONE)

No table is created.

If you specify more than one MT statement in a SCHEDxx member, the system will use the first
occurrence and ignore any subsequent MT statements.

Default: MT SIZE(24K)
NORESTART CODES(code,code...)

Specifies which system and user abend codes are to be deleted from the table of abend codes that
are eligible for automatic restart.

RESTART and NORESTART allows the installation to customize the list of abend codes that are
eligible for automatic restart. This list is created by merging the user abend codes specified on the
RESTART statement with the list of IBM-supplied system abend codes. A user abend code cannot
have the same number as a system abend code. The system will ignore a user abend code that is a
duplicate of a system abend code. The IBM-supplied system abend codes are:

001 20A 422 813

031 213 513 837
033 214 514 906
03A 217 613 913
0A3 2F3 614 926
0B0 313 626 937
0F3 314 637 A14
100 317 700 B14
106 32D 714 B37
113 413 717 C13
117 414 737 E1F
137 417 806 E37

Value Range: 0-FFF (Hex)
RESTART CODES(code,code...)

Specifies the user abend codes that are to be eligible for automatic restart. These are to be added to
the system abend codes that are supplied by IBM.

Value Range: 0-FFF (Hex)
PPT

Allows the installation to specify a list of programs that require special attributes.

Sometimes, your application programs will need to possess special properties to run as efficiently and
securely as possible. For example, an application that requires access to fetch-protected system data
will need a system key (0-7) instead of the usual problem program key of 8. Or, for example, an

SCHEDxx

Chapter 66. SCHEDxx (PPT, master trace table, and abend codes for automatic restart) 529

application that cannot run V=R, but must not be swapped out because of real-time considerations, will
need to be identified to the system as nonswappable. Entries for these programs are created in the
program properties table (PPT).
PGMNAME(name)

PGMNAME(name) identifies by name the program, specified in the PGM parameter on the EXEC
statement for a job or step, that requires special attributes. It must consist of an alphabetic or
national (#, @, or $) character followed by 0 to 7 alphanumeric or national characters.
PGMNAME(name)is required on the PPT statement. A program specified in the PPT will obtain
special attributes only if all of the following are true:

v The program is fetched from an authorized library.

v All STEPLIB data sets are authorized if a STEPLIB DD (or concatenation) exist for the step.

v All JOBLIB data sets are authorized if a JOBLIB DD (or concatenation) exists for this job and no
STEPLIB DD exists for this step.

Otherwise, problem program attributes are assigned. All programs described by PPT entries
require APF libraries.

Notes:

1. To override an IBM-supplied entry in the PPT, use the same program name as the
IBM-supplied entry.

2. Although you cannot remove entries from the PPT, you can create the effect of removing an
entry from the PPT by specifying the program name without special attributes.

For example, a JES2 installation might (for auditing purposes) want to “remove’ the IATINTK
entry from the PPT by including the following statement in the SCHEDxx member:
PPT PGMNAME(IATINTK)

This statement overrides the existing IATINTK entry in the PPT, and causes any
APF-authorized program named IATINTK to run with the same attributes as a problem
program.

3. If you specify more than one PPT statement with the same program name, the systems
accepts only the first occurrence of the name and issues error message IEF732I for all
subsequent occurrences of that name.

4. When referring to a DD statement, the system does not honor requests for special properties
as defined in the PPT.

Default: NONE
{CANCEL }
{NOCANCEL}

The program specified on PGMNAME can be cancelled (CANCEL) or cannot be cancelled
(NOCANCEL).

Default: CANCEL
KEY(n)

The program specified on PGMNAME is to have the protection key (n) assigned to it. The range of
values for n is 0 through 15.

A KEY value greater than 8 requires special consideration. Usually, keys greater than 8 are
reserved for V=R programs, and the system assigns these keys dynamically. If the KEY field is

SCHEDxx

530 z/OS V1R4.0 MVS Initialization and Tuning Reference

specified for a V=R program, ensure that no other V=R program runs at the same time with the
same key. A V=V program may run with a KEY value greater than 8 when V=R programs are
running with channel program translation.

Value Range: 0-15

Default: Key 8
{SWAP }
{NOSWAP}

The program specified on PGMNAME is swappable (SWAP) or non-swappable (NOSWAP).

Default: SWAP
{PRIV }
{NOPRIV}

The program specified on PGMNAME is privileged (PRIV), or not privileged (NOPRIV).

Important
Beginning with z/OS V1R3, WLM compatibility mode is no longer available. The information
about using the PRIV keyword in compatibility mode has been left here for reference
purposes, and for use on backlevel systems.

In workload management compatibility mode, PRIV indicates that the address space is managed
in performance group zero unless you assign it to a different performance group in the IEAICSxx
member. The assignment to the non-zero performance group lasts for the life of the address
space.

In goal mode, a task marked PRIV is put in the SYSSTC service class unless it is not explicitly
classified in the WLM classification rules.

Default: NOPRIV
{DSI }
{NODSI}

The program specified on PGMNAME requires data set integrity (DSI) or does not require data set
integrity (NODSI). Data set integrity means that the job holds an ENQ for the data sets it allocates.
The DSI/NODSI option applies to batch allocation only. Dynamic allocation uses its input
parameters to determine whether to enqueue on data sets.

If DSI is specified, the system acquires an ENQ for all data sets requested by the program. The
ENQ is exclusive or shared, depending on the disposition on the DD request.

If NODSI is specified, the system still issues an ENQ for all data sets requested by the program.
However, the ENQ is released before the problem program is started.

Jobs for which NODSI is specified are not started if the job contains either a JOBLIB or STEPLIB,
and both of the following conditions are true:

v The job cannot get the ENQ on the following types of data set names:

– GDG absolute generation data set name (unless the absolute generation data set name is
specified on the JCL).

– Real data set name (when its corresponding alias data set name is specified on the DD
statement in the JCL).

SCHEDxx

Chapter 66. SCHEDxx (PPT, master trace table, and abend codes for automatic restart) 531

v The installation has specified WAITALLOC(NO) on the SDSN_WAIT keyword in the ALLOCxx
member of SYS1.PARMLIB, or has taken the default. For more information on the SDSN_WAIT
keyword, see Chapter 4, “ALLOCxx (allocation system defaults)” on page 57.

Notes:

1. For NODSI, the job must be a one-step job. If the job is not a one-step job, NODSI is nullified
and the system issues message IEF188I. All other properties remain in effect.

2. NODSI is not honored for jobs that use unauthorized JOBLIBs or STEPLIBs. The system
assumes DSI for these jobs.

Default: DSI
{PASS }
{NOPASS}

The program specified on PGMNAME can or cannot bypass security protection (password
protection and RACF). PASS indicates that security protection is in effect; NOPASS indicates that
security protection is not required. PASS is the default.

Jobs that request the bypass-security-protection property will receive the property. However, a
protected data set cannot be deleted via JCL (that is, by coding a disposition of DELETE) without
the password. This is because the bypass-security-protection property is turned off when the job
enters deallocation processing.

Default: PASS
{SYST }
{NOSYST}

The program specified on PGMNAME is a system task and is not timed (SYST) or is not a system
task and is to be timed (NOSYST). For SYST, the program must be a one-step job started by a
START or MOUNT command. If these conditions are not met, SYST is nullified and the system
issues message IEF188I. All other properties remain in effect.

If procedures are multistep or if NOSYST is specified, TIME=1440 may be required to prevent
timeout.

Default: NOSYST
{AFF(a,[b,...])}
{AFF(NONE) }

The program specified on PGMNAME must execute on a specific processor. a, b, ...identifies the
processor number(s) that the program must execute on; for example, 0 responds to processor 0. If
you omit AFF or specify AFF(NONE) the program has no processor affinity. Do not code AFF for a
program that contains either vector instructions or calls to the Integrated Cryptographic Service
Facility/MVS (ICSF/MVS).

Value Range: 0-15

Default: AFF(NONE)
SPREF

The program specified on PGMNAME must have all private area short-term fixed pages assigned
to preferred (nonreconfigurable and non-V=R) storage frames.

Default: None
LPREF

SCHEDxx

532 z/OS V1R4.0 MVS Initialization and Tuning Reference

The program specified on PGMNAME must have all private area long-term fixed pages assigned
to preferred (nonreconfigurable and non-V=R) storage frames.

Default: None
NOPREF

The program specified on PGMNAME does not need to have all private area short-term fixed
pages assigned to preferred storage frames. That is, the program’s short-term fixes are in fact
short-term fixes and can be allowed in reconfigurable storage.

Default: None

Notes on Using SPREF, LPREF, and NOPREF:

1. LPREF is meaningless for programs that issue SYSEVENT TRANSWAP to become
nonswappable.

2. Use of SPREF, LPREF, and NOPREF forces the program’s private area fixed pages and LSQA
pages into preferred storage frames, thus ensuring that they will not prevent taking storage offline.

3. Use SPREF, LPREF, or NOPREF for programs whose fixed pages could prevent the successful
execution of a VARY STOR,OFFLINE command (or could fragment the V=R area) if they were
assigned frames in reconfigurable or V=R storage.

4. SPREF and LPREF are significant for swappable programs(SWAP) that have a special
requirement for preferred frames.

5. SPREF and LPREF are intended for use with authorized swappable programs that issue
SYSEVENT DONTSWAP to become nonswappable for short periods (rather than using NOSWAP).

6. SPREF and LPREF should be specified when the preferred storage requirements for a
nonswappable program are unknown. This will ensure that all fix requests and LSQA requests will
get preferred storage.

7. NOPREF is significant only for users of the SYSEVENT TRANSWAP. This includes V=R job steps,
nonswappable programs, applications using the BTAM OPEN function, and any applications using
a system function that issues SYSEVENT TRANSWAP.

8. For an application program that issues SYSEVENT DONTSWAP, or issues SYSEVENT
REQSWAP followed by a SYSEVENT DONTSWAP, do one of the following:

v List the program in the PPT and specify SPREF and LPREF.

This allows the program to be attached as swappable, but all LSQA and private area fixed
pages will be assigned preferred frames during the entire job step.

v Remove SYSEVENTs REQSWAP and DONTSWAP from the program. List the program in the
PPT as nonswappable (NOSWAP) and do not specify NOPREF.

This allows the program to be attached as nonswappable, and all LSQA and private area fixed
pages will be assigned preferred frames during the entire job step.

9. An I/O device requiring operator intervention can interfere with taking storage offline by fixing
pages in reconfigurable storage. For example, a printer requiring action to be taken, or a tape unit
with a mount pending. Until the required action is completed, the storage associated with the I/O
operation cannot be taken offline. This problem cannot be bypassed by using SPREF, LPREF, or
NOPREF.

Program properties table (PPT)
The program properties table supplied by IBM follows. The program name listed in the table is the PGM
parameter value on the EXEC statement in a cataloged procedure in the SYS1.PROCLIB system library,
The membername specified in the START operator command is the name of the SYS1.PROCLIB member.
See starting a system task from the console in z/OS MVS System Commands for more information.

SCHEDxx

Chapter 66. SCHEDxx (PPT, master trace table, and abend codes for automatic restart) 533

Table 21. IBM-Supplied Program Properties Table (PPT) Values

Program
Name

Program
Description NC NS PR ST ND BP Key

Proc
Affinity 2P 1P NP

AHLGTF GTF x x x 0 NONE x

AKPCSIEP ISP x x x 1 NONE x

ANFFIEP IP Printway x x x 1 NONE

APSPPIEP PSF x x x 1 NONE x

ASBSCHIN APPC/MVS
Scheduler
Address Space
(ASCH)

x x 1 NONE x x

ASBSCHWL APPC/MVS
Message Log
Writer

x 1 NONE

ATBINITM APPC/MVS
Address Space

x x 1 NONE x x

ATBSDFMU APPC/MVS SDFM
Utility

x 1 NONE

AVFMNBLD AVM x x x 3 NONE x

BPXINIT OMVS x x x 0 NONE

BPXPINPR OMVS x x 8 NONE x x

BPXVCLNY OMVS x x x 8 NONE

CBRIIAS OTIS x 5 NONE

CBROAM OAM x x 5 NONE

CNLSSDT MVS Message
Service (MMS)

x x 0 NONE x x

COFMINIT VLF x x x x 0 NONE

COFMISDO DLF x x x x x 0 NONE

CQSINIT0 IMS CQS x x 7 NONE x

CSVLLCRE LLA x x x 0 NONE

CSVVFRCE Virtual Fetch x x 0 NONE

DFSMVRC0 IMS Control
Program

x x 7 NONE

DSNUTILB DB2 Batch 7 NONE

DSNYASCP DB2 x x 7 NONE

DXRRLM00 IMS Manager x x 7 NONE

DWW1SJST CICSVR x x x x 5 NONE x

EPWINIT FFST™ x x x x 0 x

ERBMFMFC RMF x x x 8 NONE

ERB3GMFC RMF x x x 8 NONE

EZAPPAAA NPF x 8

EZAPPFS NPF x 1

EZBREINI CommServer-
Resolver

x x x x 6 None

SCHEDxx

534 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 21. IBM-Supplied Program Properties Table (PPT) Values (continued)

Program
Name

Program
Description NC NS PR ST ND BP Key

Proc
Affinity 2P 1P NP

EZBTCPIP TCP/IP Address
Space

x x x x 6 x x

GDEICASB DFP/DFM x x 5 NONE x

GDEISASB DFP/DFM x 5 NONE x

GDEISBOT DFP/DFM x x 5 NONE x

HASJES20 JES2 x x x x 1 NONE

HHLGTF GTF x x x 0 NONE x

IASXWR00 External Writer x x 1 NONE

IATCNDTK JES3 x x x x 1 NONE

IATINTK JES3 x x x x 1 NONE

IATINTKF JES3 FSS x x x 1 NONE

IDAVSJST SMSVSAM
Address Space

x x x x 5 NONE

IEAVTDSV Dumping Services x x x 0 NONE x x

IEDQTCAM TCAM x 6 NONE x

IEEMB860 Master x x x x x 0 NONE

IEEVMNT2 Mount Command x x 0 NONE

IEFIIC Initiator x x x 0 NONE

IFASMF SMF x x x x x 0 NONE

IFDOLT OLTEP 8 NONE x x

IGDSSI01 SMS x x x x 5 NONE

IGG0CLX0 CAS x x x x x 0 NONE x

IHLGTF GTF x x x 0 NONE x

IKTCAS00 TCAS x x x 6 NONE

IOSVROUT IOS x x x x 0 NONE

IRRSSM00 RACF x x x x 2 NONE

ISFHCTL SDSF x 1 NONE

ISTINM01 VTAM x x x x 6 NONE x

ITTTRCWR CTRACE Writer
Address Space

x x x x x 0 NONE x x

IWMINJST WLM x x x 0 NONE x

IXCINJST XCF x x x 0 NONE x x

IXGBLF00 System Logger
Address Space

x x 0 NONE

IXGBLF01 System Logger
Address Space

x x x 0 NONE x x

IXZIX00 JES Common
Coupling Address
Space

x x x x 1 NONE

MVPTNF TNF Address
Space

x x x x 0

SCHEDxx

Chapter 66. SCHEDxx (PPT, master trace table, and abend codes for automatic restart) 535

Table 21. IBM-Supplied Program Properties Table (PPT) Values (continued)

Program
Name

Program
Description NC NS PR ST ND BP Key

Proc
Affinity 2P 1P NP

MVPXVMCF VMCF Address
Space

x x x x 0

SNALINK SNALINK Address
Space

x x 6

Synonym Meaning SCHEDxx keyword
NC Non-cancelable NOCANCEL
NS Non-swappable NOSWAP
PR Privileged PRIV
ST System task SYST
ND No data set integrity NODSI
BP Bypass password protection NOPASS
Key PSW key for this program KEY(x)
Proc Affinity Processors eligible AFF(y)
2P Second level preferred storage SPREF
1P First level preferred storage LPREF
NP No preferred storage NOPREF

Note: A TCAM message control program (MCP) will not function unless its name is included in the PPT.
Also, TCAM OPEN routines must run in key 6; these routines will abend any caller that is not
running in key 6.

SCHEDxx

536 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 67. SMFPRMxx (system management facilities (SMF)
parameters)

The SMFPRMxx member allows you to control how system management facilities (SMF) works at your
installation.

You can use SMFPRMxx parameters to:

v Identify the system on which SMF is active.

v Specify global values for interval recording and synchronization that SMF, RMF, and other requestors
can use to schedule the execution of their interval functions.

v Specify the data sets to be used for SMF recording.

v Specify the system identifier to be used in all SMF records.

v Select the SMF record types and subtypes SMF is to generate.

v Allow the operator to change the SMF parameters established at IPL.

v Specify the job wait time limit.

v Specify whether SMF is to invoke installation-supplied SMF exit routines.

v Specify whether the SMF dump program is to attempt to recover from abends.

v Specify the system response when SMF has used all of the buffered storage in its address space.

v Specify the system response when the last SMF data set is filled and no other data sets are available
for use.

v Specify the installation default MEMLIMIT.

v Specify whether only registration data and not usage data is to be recorded when using the IFAUSAGE
macro.

Note: The SMF data sets must be cataloged on DASD. If there are no data sets for SMF to use, SMF
buffers data until you specify a data set for SMF to use. If SMF runs out of buffers, there might be
a loss of data.

You can specify SMF parameters in several ways:

v Before the first IPL of a newly generated system by creating an SMFPRMxx parmlib member.

v At each initialization of SMF by entering the parameters at the console.

v During SMF execution, by using the SET SMF command to specify a different SMFPRMxx parmlib
member or by using the SETSMF command to replace one or more previously defined SMF
parameters.

See z/OS MVS System Commands for more information on the commands used with SMF. For
information on setting up and using SMF, see z/OS MVS System Management Facilities (SMF).

Using the SET command
The SET operator command can be used to modify the SMF recording options dynamically by specifying
which SMFPRMxx parmlib member is to be used. Also, if SMF terminates, the SET SMF command can be
used to restart SMF.

Using the SET command, the installation can replace all the existing SMF options. For example, an
installation can activate SMF recording after an IPL in which NOACTIVE is specified by using the SET
command and choosing the parmlib member that contains the ACTIVE option. The SET command,
however, cannot change the SID parameter.

© Copyright IBM Corp. 1991, 2002 537

For each IPL, a maximum of eight subsystems can be defined to SMF (through the SUBSYS parameter).
This is a combined total of those specified at IPL and subsequent SET commands. If the maximum is
reached, no new subsystems may be added. Those subsystems previously specified can be given
different options.

Using the SETSMF command
In contrast to the SET SMF command, which allows an installation to specify a different SMFPRMxx
parmlib member or to restart SMF, the SETSMF operator command allows an installation to:

v Add a SUBPARM parameter value to those SMFPRMxx parameter values already set for this IPL.

v Replace SMFPRMxx parameter values (except ACTIVE, PROMPT, SID, and EXIT) with new ones for
this IPL.

If the SMFPRMxx parameter values set for this IPL include NOPROMPT, the operator cannot use the
SETSMF command.

Parameter in IEASYSxx (or supplied by the operator):
SMF=xx

The two alphanumeric characters, represented by xx, are appended to SMFPRM to identify the
SMFPRMxx member of parmlib. If the parameter is not specified either in IEASYSxx or by the operator,
the system uses parmlib member SMFPRM00. If the parmlib does not contain an SMFPRM00 member,
the system uses the defaults provided by SMF.

Support for system symbols
You can specify system symbols in SMFPRMxx. In addition, you can specify the &SID symbol when
naming SMF data sets (on the DSNAME parameter).

For information about how to use system symbols in shared parmlib members that require unique values,
see Chapter 2, “Sharing parmlib definitions” on page 25. For specific information about using symbols to
name SMF data sets, see the description of the DSNAME and SID parameters in the description of this
parmlib member.

Syntax rules for SMFPRMxx
The following rules apply to the creation of SMFPRMxx:

v Use columns 1 through 72. Do not use columns 73-80, since these columns are ignored.

v Avoid embedded blanks.

v Comments may appear in columns 1-72 and must begin with ″/*″ and end with ″*/″.

v Enter each parameter in the format: keyword (value).

v Indicate continuation by placing a comma after the last entry on a record, followed by a blank before
column 72.

v Limit SMFPRMxx to no more than 897 lines. If you exceed this limit, the system ignores the values
specified in SMFPRMxx and uses default values instead. In addition, the system issues an informational
message to the operator, indicating that SMFPRMxx is too large and that default values are to be used
instead.

Syntax Example:

SMFPRMxx

538 z/OS V1R4.0 MVS Initialization and Tuning Reference

SID(3090),ACTIVE,
DSNAME(SYS1.MANA,SYS1.MANB,SYS1.MANC),
JWT(0030),SYS(TYPE(00:120),NOEXITS,
INTERVAL(004000),DETAIL)

Syntax format of SMFPRMxx
The following is the syntax format of SMFPRMxx:

INTVAL(mm)

SYNCVAL(mm)

ACTIVE|NOACTIVE

DSNAME {(dataset)}

LISTDSN|NOLISTDSN

SID {(xxxx) }
{(xxxx,SYSNAME(sysname)) }
{(xxxx,ser#[,ser#...]) }
{(xxxx,COMBIN(ser#[,ser#...]))}

REC({(ALL) })
{(PERM)}

MAXDORM(mmss)|NOMAXDORM

MEMLIMIT(NOLIMIT)
nnnnnM
nnnnnG
nnnnnT
nnnnnP

STATUS([hhmmss])|NOSTATUS
[SMF[,SYNC|NOSYNC]]

JWT(hhmm)

DDCONS {(YES)}
{(NO) }

PROMPT{IPLR}|NOPROMPT
{LIST}
{ALL }

SYS([TYPE])
[,INTERVAL]
[,EXITS]
[,DETAIL]

TYPE {aa,bb(cc) }
NOTYPE ({aa,bb:zz })

{aa,dd(cc:yy),...}
{aa,bb(cc,...) }

NOINTERVAL|INTERVAL([hhmmss])
[SMF[SYNC|NOSYNC]]

EXITS (exit name,exit name,...)|NOEXITS

NODETAIL|DETAIL

SUBPARM (name(parameter))

SMFPRMxx

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 539

SUBSYS(name,[TYPE])
[,INTERVAL]
[,EXITS]
[,DETAIL]

DUMPABND {(RETRY) }
{(NORETRY)}

NOBUFFS {(MSG) }
{(HALT)}

LASTDS {(MSG) }
{(HALT)}

MULCFUNC|NOMULCFUNC

IBM-supplied default for SMFPRMxx
None.

IBM-supplied sample for SMFPRMxx
IBM provides a sample member, SMFPRM00, in SYS1.SAMPLIB. SMFPRM00 contains the following
parameters:
ACTIVE /*ACTIVE SMF RECORDING*/
DSNAME(SYS1.MANX,SYS1.MANY) /*TWO DATA SETS MANX AND MANY*/
PROMPT(ALL) /*PROMPT THE OPERATOR FOR OPTIONS*/
REC(PERM) /*TYPE 17 PERM RECORDS ONLY*/
MAXDORM(3000) /*WRITE AN IDLE BUFFER AFTER

30 MIN*/
STATUS(010000) /*WRITE SMF STATS AFTER 1 HOUR*/
JWT(0010) /*522 AFTER 10 MINUTES */
SID(3090) /*SYSTEM ID IS 3090 */
LISTDSN /*LIST DATA SET STATUS AT IPL*/
DDCONS(YES) /*DD CONSOLIDATION DEFAULT*/
LASTDS(MSG) /*DEFAULT TO MESSAGE */
NOBUFFS(MSG) /*DEFAULT TO MESSAGE */
SYS(TYPE(0:255),EXITS(IEFU83,IEFU84,IEFU85,IEFACTRT,IEFUJV,IEFUSI,

IEFUJP,IEFUSO,IEFUJI,IEFUTL,IEFU29,IEFUAV),NOINTERVAL,NODETAIL)

/* WRITE ALL RECORDS AS THE SYSTEM DEFAULT, TAKE ALL KNOWN
EXITS. THERE ARE NO DEFAULT INTERVAL RECORDS WRITTEN.
ONLY SUMMARY TYPE 32 RECORDS ARE WRITTEN FOR TSO.*/

SUBSYS(STC,EXITS(IEFU29,IEFU83,IEFU84,IEFU85,IEFUJP,IEFUSO))

/* WRITE ALL RECORDS AS BY SYSTEM DEFAULT, TAKE ONLY THREE
EXITS, NOTE: IEFU29 EXECUTES IN THE MASTER ASID WHICH
IS A STC ADDRESS SPACE SO IEFU29 MUST BE ON FOR STC.
USE ALL OTHER SYS PARAMETERS AS A DEFAULT*/

You should modify this list according to your system requirements. You may place alternate values, plus
additional values, in one or more alternate SMFPRMxx lists.

Considerations for msys for Setup
Although the BUFNUM parameter is no longer supported, your SMFPRMxx parmlib member may still
contain a BUFNUM value. msys for Setup will retain any value you have set for BUFNUM, but you will not
be able to update your BUFNUM settings using msys for Setup. Because the values for BUFNUM and
NOBUFFS may conflict, you will also not be able to use msys for Setup to update your NOBUFFS value if
you have a BUFNUM value specified in SMFPRMxx when you refresh your data in msys for Setup. If you

SMFPRMxx

540 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

|
|
|
|
|

want to use msys for Setup to add or update the NOBUFFS parameter, you will have to remove BUFNUM
from your SMFPRMxx parmlib member before you refresh your data.

Parameters for SMFPRMxx
The statements and parameters of SMFPRMxx are described below.

INTVAL(mm)

Specifies the length of time (in minutes) from the end of an SMF global recording interval to the end of
the next interval. For example, if you specify INTVAL(15), the SMF global recording interval ends every
15 minutes. INTVAL is a global interval value that other requestors, such as RMF, can use to schedule
interval functions to execute in conjunction with the SMF interval function.

Choose a global interval value (INTVAL) that divides evenly into 60 (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30,
and 60). Otherwise, the system can synchronize only the first interval.

Value Range:
01-60

Default:
30

Note: Only SMF records can be controlled by the INTVAL and SYNCVAL parameters. The INTVAL
and SYNCVAL parameters can influence other record types, such as when activated by the
RMF Monitor I ″SYNC(SMF)″ option to write record types 70 through 79.

SYNCVAL(mm)

Specifies the global synchronization value (in minutes) for the SMF global recording interval,
synchronizing the recording interval with the end of the hour on the TOD clock. For example, if you
specify SYNCVAL(15), the global recording interval is synchronized to 15 minutes past the hour. If you
also specify INTVAL(30), SMF global recording intervals end at 15 minutes and 45 minutes past the
hour.

When you specify the SYNCVAL parameter for interval synchronization, specify the global interval
value with the INTVAL parameter (unless you accept the default for INTVAL).

Value Range:
00-59

Default:
00

Note: Only SMF records can be controlled by the INTVAL and SYNCVAL parameters. The INTVAL
and SYNCVAL parameters can influence other record types, such as when activated by the
RMF Monitor I ″SYNC(SMF)″ option to write record types 70 through 79.

ACTIVE
NOACTIVE

Specifies whether SMF recording is to be active.

Default: ACTIVE

DSNAME {(dataset)}

SMFPRMxx

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 541

|
|

Specifies a list of data sets to be used for SMF recording. The maximum length of the data set name
is 44 characters, and must follow standard MVS data set naming conventions.

You can use system symbols and the &SID symbol in SMF data set names. The resolved substitution
text for the &SID system symbol is the system identifier specified on the SID parameter in
SMFPRMxx. &SID can be used only to name resources in SMFPRMxx; you cannot specify &SID in
other parmlib members.

Table 22 shows examples of data set names that use the &SYSNAME system symbol and the &SID
symbol. The table shows the substitution texts for &SYSNAME and &SID, the data set names that
specify the symbols, and the resolved texts for the data set names.

Table 22. Examples of data set Names that Use System Symbols

&SID substitution
text

&SYSNAME
substitution text

Data set name Resolved data set name

WRR1 — SYS1.&SID;DATA SYS1.WRR1DATA

WRR1 — SYS1.SID&SID;.DATA SYS1.SIDWRR1.DATA

WRR1 SP52 SYS1.&SYSNAME;&SID;.DATA SYS1.SP52WRR1.DATA

— SP52 SYS1.&SYSNAME SYS1.SP52

Defaults : SYS1.MANX and SYS1.MANY

Note: The SID parameter can be modified before initialization completes, if the PROMPT(LIST) or
PROMPT(ALL) parameter in SMFPRMxx is specified. If the value of SID changes, any data set
names that specify the &SID symbol will also change (because the value on the SID parameter
is also the substitution text for the &SID symbol).

LISTDSN
NOLISTDSN

Specifies whether the system is to generate SMF data set status messages to the operator at IPL or
SET SMF time. The messages contain the following information for each data set used for SMF
recording:
v data set name
v data set status

– active
– alternate
– closed pending
– error
– dump required

v data set size (in number of VSAM control-interval-sized blocks)
v percentage full

Default: LISTDSN

SID { (xxxx) }
{ (xxxx,SYSNAME(sysname)) }
{ (xxxx,ser#[,ser#...]) }
{ (xxxx,COMBIN(ser#[,ser#...]))}

SMFPRMxx

542 z/OS V1R4.0 MVS Initialization and Tuning Reference

Specifies the system identifier that is used in all SMF records. It is also the substitution text for the
&SID symbol (also known as the SID value). You can specify the &SID symbol only on the DSNAME
parameter in this parmlib member. Do not specify &SID in other system definitions.

You can specify the SID value directly, or you can have the system select from several SID values,
using the processor serial numbers or the SYSNAME value.

For example, suppose SMFPRMxx specifies:
SID(AAAA,012303)
SID(BBBB,012304)

When running on processor 012303, the system selects an SID value of AAAA. When running on
processor 012304, the system selects an SID value of BBBB.

Suppose SMFPRMxx specifies:
SID(AAAA,SYSNAME(PRODSYS))
SID(BBBB,SYSNAME(TESTSYS))

When you IPL the system, the following is specified in IEASYSxx or IEASYMxx:
SYSNAME(TESTSYS)

In this case, the system selects BBBB as the SID value, because the name TESTSYS matches the
name specified in IEASYSxx or IEASYMxx.

When defining the system identifier, you can use:

v System symbols and substrings of system symbols (the resolved substitution texts for the system
symbols must contain 1-4 characters).

The system substitutes text for system symbols before it validates the syntax of the SID parameter.
If errors occur in system symbol notation, the system prompts the operator to respecify the SID
parameter. See “What are system symbols?” on page 25 for information about the syntax of system
symbols.

v The system name specified in IEASYSxx or IEASYMxx.

v Processor serial numbers used at IPL.

v Combinations of processor serial numbers used at IPL.

The preferred way to define the system identifier is to assign the identifier to a system symbol.

The formats for the SID are:

(xxxx)
Specifies a one-to-four-character string that the system is to use as the system identifier.

(xxxx,SYSNAME(sysname))
Selects the specified system identifier when sysname matches the system name specified at IPL.
See “Step 3. Determine where to specify the system name” on page 34 for more information.

(xxxx,ser#[,ser#...])
Selects the system identifier by the processor identifier. The serial numbers must match exactly
with the ID for the processors that are currently initialized.

(xxxx,COMBIN(ser#[,ser#...]))
Selects the system identifier by the processor identifier. If the set of currently initialized processors
matches any possible combination of serial numbers specified in COMBIN, xxxx is used as the
system identifier.

Syntax Examples:

SMFPRMxx

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 543

SID(SYSA)
SID(SYSB,006204,106204)
SID(SYSC,SYSNAME(SYS0001))
SID(&SYSNAME(1:4))
SID(SYSE,COMBIN(006204,106204,206204))

Default

If the SID parameter is not specified, and no other SID specification is available, the system uses the
four-digit processor model number.

Syntax Precedence

It may be possible for more than one SID specification to apply to one system. For example, if a
SMFPRMxx member includes two SID specifications, SID(AAAA) and
SID(BBBB,SYSNAME(SYSBBBB)) and the system is IPLed with a system name of SYSBBBB, both
SID specifications apply. In this case, the following precedence rules apply:

Table 23. SID Parameter Syntax Priority List

Syntax Meaning Priority

SID(xxxx,ser#[,ser#]...) If the serial number ser# matches, the SID is
xxxx.

1

SID(xxxx,SYSNAME(sysname)) If the system name (sysname) matches, the SID
is xxxx.

1

SID(xxxx,COMBIN(ser#[,ser#]...)) If any of the listed serial numbers match, the
SID is xxxx.

1

SID(xxxx) The SID is xxxx. 2

{Default} SID=four-digit processor model number. 3

The lower the number, the higher the priority. For syntax with similar priority numbers, the first
occurrence in the SMFPRMxx parmlib member of a matching SID specification becomes the system
identifier.

Note: These precedence rules do not apply if the SID parameter is modified using the
PROMPT(LIST) or PROMPT(ALL) option. If the SID parameter is modified by using the
PROMPT option, the SID value changes if the modified SID specification applies, regardless of
whether the previous SID syntax had a higher priority than the modified SID syntax.

Assumption: IPL the system as a multiprocessor (006204,106204) with SYSNAME=SYSSYSD.
If SMFPRMAA specified at IPL SID value Option Display (D SMF,0)

contains: SID(SYSA) SYSA SID(SYSA)

If SMFPRMBB specified at IPL
contains:
SID(SYSB,006204,106204) SYSB SID(SYSB,006204,106204)

If SMFPRMCC specified at IPL
contains:
SID(SYSC,SYSNAME(SYSSYSD)) SYSC SID(SYSC,SYSNAME(SYSSYSD))

If SMFPRMDD specified at IPL
contains:
SID(&SYSNAME(4:4)) SYSD SID(SYSD)

SMFPRMxx

544 z/OS V1R4.0 MVS Initialization and Tuning Reference

If SMFPRMEE specified at IPL
contains:
SID(SYSE,COMBIN(006204, SYSE SID(SYSE,006204,106204)

106204,206204))

REC({ (ALL) }
{ (PERM)}

Specifies whether information for type 17 SMF records (scratch data set status) is to be collected for
temporary data sets.

PERM specifies that type 17 SMF records are to be written only for non-temporary data sets.

ALL specifies that type 17 SMF records are to be written for both temporary and non-temporary data
sets.

Note: A temporary data set has a system–generated data set name either from DSN=&&datasetname
or from the absence of any data set name. These system generated names are of the form
SYSyyddd.Thhmmss....

Default: REC (PERM)

MAXDORM (mmss)
NOMAXDORM

Specifies the amount of real time that SMF allows data to remain in an SMF buffer before it is written
to a recording data set, where mm is real time in minutes and ss is seconds. NOMAXDORM specifies
that the data remains in the buffer until the buffer is full.

Value Range: 0001-5959

Default: MAXDORM (3000) This indicates 30 minutes.

STATUS(option)
NOSTATUS

Specifies the time interval between creations of the type 23 SMF record (SMF status).

Default: STATUS

The options are as follows:

hhmmss
Specifies the length of the time interval in hhmmss format, where hh is the hours, mm is the
minutes, and ss is the seconds.

Value Range: 000001-240000

Default: (010000) — Indicates a one-hour interval.

SMF[,SYNC|NOSYNC]

Specifies that SMF is to use the global interval value (specified with the INTVAL parameter) as the
time interval.

Specify SYNC or NOSYNC to indicate whether or not SMF should synchronize the creation of type
23 records with the hour (using the global synchronization value specified with the SYNCVAL
parameter).

SMFPRMxx

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 545

Default: NOSYNC

JWT (hhmm)

Specifies the maximum amount of time that a job or TSO/E user address space is allowed to wait
continuously, where hh is the amount of real time in hours and mm is in minutes.

If the specified time limit expires, the system passes control to the SMF time limit exit, IEFUTL (if
active). IEFUTL either causes the job or TSO/E user address space to end abnormally, or it extends
the wait time.

Note: If TIME=1440 is coded on the JOB or EXEC JCL statement, IEFUTL is not invoked for that job.

Value Range: 0001-2400

Default: JWT (0010) This indicates 10 minutes

DDCONS {(YES)}
{(NO) }

Specifies whether duplicate EXCP entries for type 30 SMF records are to be consolidated. When
DDCONS(YES) is specified, SMF merges the EXCP count for these duplicate entries into one entry if
the following information is the same:
v ddname
v Device class
v Unit type
v Channel address
v Unit address

Long-running jobs might take a long time to end in this case, because of the building of the SMF type
30 records for a long-running job.

DDCONS(NO) requests that this consolidation function be bypassed, which results in a reduction in
the amount of processing required to build the records, and thus a reduction in the amount of time
required to complete the job.

Default: YES

PROMPT (option)
NOPROMPT

Specifies whether the selected SMF parameters are to be displayed on the system console at IPL
time. The system can prompt the operator to supply a reason for the IPL or to modify the parmlib
parameters. The options are as follows:

v IPLR specifies that the operator is to supply a reason for the IPL.

v LIST specifies that the operator is prompted for possible modifications to the SMF parameters.

v ALL specifies that the operator is prompted for the IPL reason and can modify the SMF parameters.

NOPROMPT specifies that the parameters are not listed and the operator is not prompted unless there
is a syntax error in the parmlib member.

Default: PROMPT (ALL)

SMFPRMxx

546 z/OS V1R4.0 MVS Initialization and Tuning Reference

SYS (options)

Specifies the SMF recording options and exits for the entire system. The options are as follows:

TYPE SMF record types and subtypes to be collected.

INTERVAL
Time intervals between recording.

EXITS Exits that are to receive control at various points in SMF processing.

DETAIL
The level of SMF data collection for TSO users and started tasks.

If the same option is specified more than once, the system uses the first valid operator reply.

The following information describes the options in greater detail.

TYPE {aa,bb(cc) }
NOTYPE ({aa,bb:zz })

{aa,dd(cc:yy),...}
{aa,bb(cc,...) }

TYPE specifies the SMF record types and subtypes that SMF is to collect. aa, bb, dd, and zz are the
decimal notations for each SMF record type. cc and yy are the decimal notations for the SMF record
subtypes. A colon indicates the range of SMF record types (bb through zz) to be recorded or the range
of subtypes (cc through yy for SMF record type dd) to be recorded. Subtypes are valid on SMF record
types 0-127.

NOTYPE specifies that SMF is to collect all SMF record types and subtypes except those specified.
aa, bb, and zz are the decimal notations for each SMF record type. cc and yy are the decimal
notations for each subtype. A colon indicates the range of SMF record types (bb through zz) or the
range of subtypes (cc through yy for SMF record dd) that are not to be recorded.

Value Range:
0-255 (SMF record types)
0-32767 (subtypes)

Default: TYPE (0:255) (all types and subtypes)

NOINTERVAL
INTERVAL(suboption)

NOINTERVAL specifies that no interval recording takes place.

INTERVAL requests interval recording and specifies the length of the recording interval. At the end of
each interval, SMF generates a type 30 record. For TSO/E users, SMF can also generate a type 32
record.

Interval recording allows the user to preserve accounting data for long-running jobs or TSO/E
sessions. Because SMF records accounting data for each job or task each time the interval expires,
the data is not completely lost if there is a system failure.

Default: NOINTERVAL

The suboptions are as follows:

SMFPRMxx

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 547

hhmmss
Specifies the length of the time interval in hhmmss format, where hh is the hours, mm is the
minutes, and ss is the seconds.

Value Range: 000001-240000

Default: N/A

SMF[,SYNC|NOSYNC]
Specifies that SMF is to use the global interval value (specified with the INTVAL keyword) as the
time interval.

Specify SYNC or NOSYNC to indicate whether SMF is to synchronize the creation of type 30 and
32 records with the hour (based on the global synchronization value specified with the SYNCVAL
keyword).

Default: NOSYNC

EXITS (exit name, exit name,...)
NOEXITS

EXITS specifies which SMF exits are to be invoked. A maximum of 15 exits is allowed; if an exit is not
specified, it is not invoked. If this parameter is not specified, all SMF system exits are invoked.

NOEXITS specifies that SMF exits are not invoked.

You can specify exits on the SYS and SUBSYS statements of SMFPRMxx. Your choice of SYS or
SUBSYS depends on the scope of work you want to influence (system-wide or subsystem-wide), as
follows:

v On the SYS parameter, specify the exits that are to affect work throughout the system, regardless of
the subsystem that processes the work.

v On the SUBSYS parameter, specify the exits that are to affect work processed by a particular
SMF-defined subsystem (JES2, JES3, STC, ASCH, or TSO).

The SUBSYS specification overrides the SYS specification. Use SUBSYS to make exceptions to your
SYS specification for particular subsystems.

Some SMF exits are not called for particular subsystems. Table 24 shows which exits can be called for
subsystems that are specified on the SUBSYS statement.

Table 24. Which SMF Exits Are Called for This Subsystem?

Exit Point

SUBSYS Value

JES2 JES3 STC ASCH TSO
IEFACTRT Yes Yes Yes Yes Yes
IEFUAV No No No Yes No
IEFUJI Yes Yes Yes Yes Yes
IEFUJP Yes(2) No Yes No No
IEFUJV Yes Yes Yes Yes(1) Yes
IEFUSI Yes Yes Yes Yes Yes
IEFUSO Yes(2) No Yes No No
IEFUTL Yes Yes Yes Yes Yes
IEFU29 No No Yes No No
IEFU83 Yes Yes Yes Yes Yes
IEFU84 Yes Yes Yes Yes Yes
IEFU85 Yes Yes Yes Yes Yes

SMFPRMxx

548 z/OS V1R4.0 MVS Initialization and Tuning Reference

Table 24. Which SMF Exits Are Called for This Subsystem? (continued)

Exit Point

SUBSYS Value

JES2 JES3 STC ASCH TSO
Notes:

1. IBM recommends that you use IEFUAV instead of IEFUJV to validate accounting information for APPC/MVS
transaction programs. For more information, see z/OS MVS Installation Exits

2. The installation can cause this exit to be bypassed on a job class basis, through the JOBCLASS(v) initialization
statement. For more information about the JOBCLASS(v) statement, see z/OS JES2 Initialization and Tuning
Reference.

Specifying SMF Exits to the Dynamic Exits Facility: IBM has defined the SMF exits to the dynamic
exit facility. Through the PROGxx parmlib member, you can associate multiple exit routines with SMF
exits, at IPL or while the system is running.

To define SMF exits to the dynamic exits facility, you must specify the exits in both PROGxx and
SMFPRMxx. The system does not call SMF exits that are defined to PROGxx only. (If you do not plan
to take advantage of the dynamic exits facility, you need only define SMF exits in SMFPRMxx).

Default: All exits are invoked.

Note: The PROGxx parmlib member allows you to specify installation exits and control their use.
Through PROGxx, you can associate multiple exit routines with exits, at IPL or while the system is
running. IBM recommends that you use PROGxx in addition to SMFPRMxx to specify exits, whether or
not you want to take advantage of these functions.

The following example shows how you can specify SMF exits in a PROGxx parmlib member. If you
specify the following in SMFPRMxx,
SYS(...EXITS(IEFU83,IEFU84,IEFUJI)...)
SUBSYS(STC,...EXITS(IEFU83,IEFU85)...)
SUBSYS(TSO,...)
SUBSYS(JES3,...EXITS(IEFUJI)...)

you would add the following to get the equivalent processing in PROGxx:
EXIT ADD EXITNAME(SYS.IEFU83) MODNAME(IEFU83)
EXIT ADD EXITNAME(SYS.IEFU84) MODNAME(IEFU84)
EXIT ADD EXITNAME(SYS.IEFUJI) MODNAME(IEFUJI)
EXIT ADD EXITNAME(SYSSTC.IEFU83) MODNAME(IEFU83)
EXIT ADD EXITNAME(SYSSTC.IEFU85) MODNAME(IEFU85)
EXIT ADD EXITNAME(SYSJES3.IEFUJI) MODNAME(IEFUJI)

v Because the TSO SUBSYS statement did not specify the EXITS parameter, all of the exits defined
within the SYS statement are eligible to be called for the TSO subsystem.

v Because IEFU83 was defined in both the SYS statement and the STC SUBSYS statement, it needs
to be specified on matching EXIT ADD statements for SYS and SYSSTC.

v Because IEFUJI was defined in both the SYS statement and the JES3 SUBSYS statement, it needs
to be specified on matching EXIT ADD statements for SYS and SYSJES3.

When you associate new exit routines with SMF exits through PROGxx or the SETPROG command,
you must use the following naming conventions:

v For exits listed on the EXITS keyword of the SYS statement in SMFPRMxx, each exit will have the
name SYS.yyyy (where yyyy is one of the exits listed).

v For exits listed on the EXITS keyword of the SUBSYS statement of SMFPRMxx, each exit will have
the name SYSxxxx.yyyy (where xxxx is the name of the subsystem and yyyy is one of the exits
listed).

SMFPRMxx

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 549

v Where a SYS statement has been coded that does not contain an EXITS keyword, each exit will
have the name SYS.yyyy (where yyyy is one of the exits listed). The list of exits will be all SMF
system exits.

v Where a SUBSYS statement has been coded that does not contain an EXITS keyword, each exit
will have the name SYSxxxx.yyyy (where xxxx is the name of the subsystem and yyyy is one of the
exits listed). The list of exits will be propagated from the EXITS keyword in the SYS statement. If
the EXITS keyword is not coded in the SYS statement as well, the list of exits will be all SMF
system exits.

For information on using PROGxx to control the use of exits and exit routines, see Chapter 65,
“PROGxx (Authorized program list, exits, LNKLST sets and LPA)” on page 503.

NODETAIL
DETAIL

Specifies the level of SMF data collection for TSO and STC; specifying DETAIL or NODETAIL has no
effect on any other types of work.

For TSO, when DETAIL is specified, type 32 SMF records contain the total count of each TSO/E
command used, CPU time under TCBs and SRBs, and the total number of TGETs, TPUTs, EXCPs
and transactions. When NODETAIL is specified for TSO, type 32 SMF records contain only the total
count of each TSO/E command used.

For STC, specifying DETAIL has no effect. Specifying NODETAIL has an effect only if INTERVAL is
also specified. Specify NODETAIL and INTERVAL to exclude the EXCP sections from SMF type 30
subtype 4 and subtype 5 records collected for started tasks. Otherwise, the EXCP sections for SMF
type 30 subtype 4 and subtype 5 records will be included.

Default: NODETAIL

SUBPARM (name(parameter))

Specifies the information to be passed to a specific subsystem where:

name specifies a one to four character subsystem name. The first character must be alphabetic or
national (#, @, or $), and the remaining characters can be either alphanumeric or national characters.

parameters specifies a 1 to 60 character information SMF does not check the validity of the
information string. The inner set of parentheses marks the beginning and the end of the information
string.

Default: None

MEMLIMIT(NOLIMIT)
nnnnnM
nnnnnG
nnnnnT
nnnnnP

Specifies the default memlimit that will be used by jobs that do not establish a MEMLIMIT in their JCL.
See z/OS MVS JCL Reference. MEMLIMIT is the limit on the use of virtual storage above 2 gigabytes
for a single address space. NOLIMIT means that there is no limit on the use of virtual storage above 2
gigabytes.

MEMLIMIT values are defined with nnnnnM for megabytes, nnnnnG for gigabytes, nnnnnT for
terabytes, or nnnnnP for petabytes. For example, to request 1275 gigabytes, specify
MEMLIMIT(1275G), or to request 15 exabytes, specify MEMLIMIT(15000PB). D SMF,O displays the
current MEMLIMIT.

SMFPRMxx

550 z/OS V1R4.0 MVS Initialization and Tuning Reference

Note: If MEMLIMIT is not specified in SMFPRMxx, the default value for this system default is 0M.

Default value: 0M

For a complete description of MEMLIMIT, and the ways to define it, see z/OS MVS Programming:
Extended Addressability Guide.

SUBPARM (name(parameter))

SUBSYS (name,options)

Specifies the SMF recording options and exits for particular subsystems.

name represents the one to four character name of a subsystem. The first character must be
alphabetic or national (#, @, or $), and the remaining characters can be either alphanumeric or
national characters.

options represents the valid options for SUBSYS. The options are as follows:

TYPE SMF record types and subtypes to be collected.

INTERVAL
Time intervals between recording.

EXITS Exits that are to receive control at various points in SMF processing.

DETAIL
The level of SMF data collection for TSO users and started tasks.

These options are the same as those you can specify for the SYS parameter. When you specify
SUBSYS, any option you omit from the SUBSYS parameter defaults to the value specified for that
option on the SYS parameter. If you omit SUBSYS, SMF uses the values for all of the options on the
corresponding SYS parameter.

Data can be recorded for up to eight subsystems in any IPL, including those specified at IPL and
through subsequent SET commands. When the limit is reached, no additional subsystems can be
added. The SMF-defined subsystems are JES2, JES3, STC, ASCH, and TSO. Other valid subsystems
include IBM-supplied (such as OMVS), vendor-supplied, and user-defined subsystems.The system
assigns work to these subsystems as follows:

v Batch jobs are assigned to the job entry subsystem (JES2 or JES3) that submitted the work to the
system.

v Work started from the operator console is assigned to the STC subsystem.

v APPC/MVS transaction programs initiated by the IBM-supplied APPC/MVS transaction scheduler
are assigned to the ASCH subsystem.

v Logged-on TSO/E users are assigned to the TSO subsystem.

Default: See the description of SYS (options).

DUMPABND { (RETRY) }
{ (NORETRY)}

Specifies whether the SMF dump program attempts to recover in the event an abend occurs.

RETRY specifies that the SMF dump program attempts to recover from abends and continue
processing.

NORETRY specifies that the SMF dump program terminates when an abend occurs.

SMFPRMxx

Chapter 67. SMFPRMxx (system management facilities (SMF) parameters) 551

Note: The SMF dump program will override this parameter and the ABEND parameter (specified on
SMF dumps) if the input data set is to be dumped and cleared, and an ABEND occurs AFTER
the input data set has been cleared. For this case, the SMF dump program will attempt to
recover from the ABEND to prevent the output data set from being deleted and SMF data from
being lost, when the SMF dump program abnormally ends. For more information on the SMF
dump program, see z/OS MVS System Management Facilities (SMF).

Default: RETRY

NOBUFFS { (MSG) }
{ (HALT)}

Specifies the system action when the SMF address space has run out of buffer space.

MSG specifies that the system is to issue a message and continue processing; SMF data is lost until
buffer storage is again available.

HALT specifies that the system is to enter a restartable wait state. HALT means that no SMF data is
lost.

Default: MSG

LASTDS { (MSG) }
{ (HALT)}

Specifies the system action when the last available SMF data set is filled and there are no more
available for SMF use.

MSG specifies that the system is to issue a message and continue processing; SMF data is buffered
until an SMF data set is available. If SMF runs out of buffers, there might be a loss of data.

HALT specifies that the system is to enter a restartable wait state.

Default: MSG

MULCFUNC
NOMULCFUNC

Specifies whether users of the IFAUSAGE service that registered specifying SCOPE=FUNCTION must
use IFAUSAGE with the REQUEST=FUNCTIONxxx parameters.

MULCFUNC indicates that users of the IFAUSAGE service that registered specifying
SCOPE=FUNCTION must use IFAUSAGE with the REQUEST=FUNCTIONxxx parameters. SMF is to
set the CVTMULFN indicator OFF.

NOMULCFUNC indicates that users of the IFAUSAGE service that registered specifying
SCOPE=FUNCTION do not need to use IFAUSAGE with the REQUEST=FUNCTIONxxx parameters.
SMF is to set the CVTMULFN indicator ON. Any measured usage program using SCOPE=FUNCTION,
such as DB2, can record only its registration data only and omit recording the usage data.

Default: MULCFUNC

SMFPRMxx

552 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 68. TSOKEY00 (TSO/VTAM time-sharing parameters)

TSOKEY00 contains TSO/VTAM time-sharing parameters.

Starting TSO/VTAM time sharing activates the terminal control address space (TCAS). The function of
TCAS is to accept TSO/VTAM logon requests and to create an address space for each TSO/E user. TCAS
builds a TCAS table (TCAST) and inserts the parameter values into it. The VTAM terminal I/O coordinator
(VTIOC), which is the interface between TSO/E and VTAM, uses these values to control the time-sharing
buffers, the maximum number of users, and other operational variables.

TSOKEY00 or an alternate member name may be specified by using the MEMBER operand or the
keyword operand (overriding keyword MBR) of the operator START command, or by coding it into the
PARMLIB DD statement of the cataloged procedure evoked by the START command. If a member name
is not specified but a parmlib name is specified (on the PARMLIB DD statement), the system defaults to
TSOKEY00. If neither a member name nor a parmlib name is specified, default values in the TCAS
program are used.

If, during TCAS initialization, an I/O error occurs after some of the values have been read from parmlib,
the default values in the TCAS program supply the remaining parameter values for the TCAS table.

If the specified value for a parameter does not fall within the value range, the default value is used.

Parameter in IEASYSxx (or supplied by the operator):
None

Syntax rules for TSOKEY00
The following rules apply to the creation of the TSO/VTAM time-sharing parmlib member:

v For each record, columns 1 through 71 are valid for data. Columns 72 through 80 are ignored.

v Data may be continued from one record to another by ending a record with a comma and blank in
contiguous data columns, then inserting data in any column of the data area on the next record.

v A parameter must be complete in a record. It may not cross record boundaries. It may not be repeated.

v A comma must separate adjacent keywords.

v Invalid or misspelled parameters are ignored. Default values are substituted, and are listed on the
device specified by the PRINTOUT DD statement of the procedure used to start TSO/VTAM time
sharing, or on the device specified by the device name operand of the operator START command.

IBM-supplied default for TSOKEY00
The default values are internal constants in the TCAS program.

USERMAX=40,RECONLIM=3,BUFRSIZE=132,HIBFREXT=48000,
LOBFREXT=24000,CHNLEN=4,SCRSIZE=480,ACBPW=password (optional - no
default),MODE=NOBREAK,MODESW=NO, RCFBDUMP=xxyyz (optional - no
default),CONFTXT=YES,GNAME=(optional - no default),BASENAME=TSO

Statements/parameters for TSOKEY00
The TSO/VTAM time sharing parameters are as follows:

USERMAX
Meaning and Use: Specifies the maximum number of users that may be logged on to the TSO/VTAM
time sharing system at one time. (Note that because VTAM considers each user to be an application

© Copyright IBM Corp. 1991, 2002 553

program, and because there must be an APPL definition statement that defines each application
program to VTAM during VTAM network definition, this value may not exceed the number of APPL
definition statements.)

Value Range: For z/OS systems, the value range is 0-maximum number of address spaces in the
system. On z/OS.e systems, the maximum number of users is 8. If you set USERMAX to a value
greater than 8 on a z/OS.e system, VTAM will reset USERMAX to 8.

Default: 40 for z/OS systems, 8 for z/OS.e systems.

RECONLIM
Meaning and Use: Specifies the time limit in minutes within which a user may reconnect after his line
has been disconnected (that is, the amount of time an address space remains active in the event of
terminal disconnection).

Value Range: 0-32767

Default: 3

BUFRSIZE
Meaning and Use: Specifies the size in bytes of a VTIOC buffer. Input and output data smaller than
the BUFRSIZE value uses cells equal to the BUFRSIZE value. Input and output data larger than the
BUFRSIZE value is assigned to dynamically allocated buffers (allocated by the GETMAIN macro)
equal to the data size.

Value Range: 4-3,016

Default: 132

HIBFREXT
Meaning and Use: Specifies the maximum amount (in bytes) of virtual storage that can be
dynamically allocated for output data. When this value is reached, no more output requests are
honored until LOBFREXT is reached. (Input requests are rejected only when no virtual storage is
available in the address space.)

Value Range: Maximum size TPUT used at the installation-maximum amount of available virtual
storage

Default: 48,000

LOBFREXT
Meaning and Use: Specifies the minimum number of virtual storage bytes that can be dynamically
allocated for output data. When this value is reached, tasks that are suspended for lack of output
buffers are marked as dispatchable.

Value Range: 0-(HIBFREXT-1)

Default: 24,000

CHNLEN
Meaning and Use: Specifies for output the number of request units (RUs) in each RU chain for IBM
3767 and IBM 3770 terminals. This value determines the maximum size of a chain and, therefore, the
maximum amount of data that can be sent to the terminal in one chain (CHNLEN x 256=data
transmitted). This value also determines the maximum amount of data purged when the CANCEL key
is pressed to stop printing of outbound (host-to-terminal) data.

The CHNLEN value is associated with the values specified on the PACING operand of the LU macro
during network control program definition, and on the VPACING operand of the LU or PU macro during
VTAM definition. Use the CHNLEN default value (4) if the PACING and VPACING default values are
used. Otherwise, calculate CHNLEN by using the formula (2pn-2pm)+(2vn-2vm), where pn and pm are
the PACING n and m values, and vn and vm are the VPACING n and m values. If more than one
network control program is used with TSO/VTAM time sharing, the smallest value found when
calculating the CHNLEN value should be used. Otherwise, the network control program could enter
slowdown mode.

TSOKEY00

554 z/OS V1R4.0 MVS Initialization and Tuning Reference

|
|
|

|

Value Range: 1-10

Default: 4

SCRSIZE
Meaning and Use: Specifies the default screen size of IBM 3270 systems network architecture (SNA)
terminals. The valid values for this parameter are:

Screen Size Value
12 x 40 480
24 x 80 1920
32 x 80 2560
43 x 80 3440
27 x 132 3564
62 x 160 9920

(Use the FEATUR2 operand of the LOCAL or TERMINAL macros to specify non-SNA IBM 3270
screen sizes.) This value affects only those terminals whose sizes were not specified by using the
PSERVIC parameter of the MODEENT macro during VTAM definition.

If an installation has IBM 3270 SNA terminals of only one screen size, SCRSIZE should specify that
size. If the installation has IBM 3270 SNA terminals of both screen sizes, SCRSIZE may be used to
define the more common size, and the PSERVIC parameter may be used to define the less common
size.

Value Range: 480-9920

Default: 480

ACBPW
Meaning and Use: Specifies the optional password associated with all TSO/VTAM ACBs. If a
password is specified on the PRTCT parameter of VTAM’s APPL definition statement, ACBPW must
be specified.

To prevent unauthorized disclosure of the ACB password when the CBPW keyword is specified, do the
following:

Notes:

1. Place the TSOKEY00 member in a password protected data set that is compatible with
SYS1.PARMLIB (for example SYS1.VTAMLST).

2. Modify the parmlib DD statement in the TSO/VTAM start procedure to refer to the password
protected data set. For example:

//PARMLIB DD DSN=SYS1.VTAMLST(&MBR),DISP=SHR,FREE=CLOSE

Value Range: Any 1 to 8 EBCDIC characters

Default: None

MODE
Meaning and Use: Specifies how 3276 and 3278 terminals are to be supported for TSO/VTAM.
BREAK indicates that the terminal keyboard is unlocked whenever possible and does not necessarily
correspond to the issuance of a TGET. NOBREAK indicates that the terminal keyboard is locked
except when a TGET is issued. The BREAKIN option of TPUT applies only when BREAK is specified.

Value Range: BREAK or NOBREAK

Default: NOBREAK

TSOKEY00

Chapter 68. TSOKEY00 (TSO/VTAM time-sharing parameters) 555

MODESW
Meaning and Use: Specifies whether or not the TERMINAL command or the STBREAK macro can be
used to change the mode of operation specified with the MODE parameter.

Value Range: YES or NO

Default: NO

RCFBDUMP
Meaning and Use: Specifies the values of the return code (xx) and the feedback field (yy) for a
RPL-type request. When an abnormal termination occurs that produces a return code and a feedback
value that matches those specified in RCFBDUMP, a dump is taken to the extent specified in z. The
specification z=0, specifies that only the local address space is to be dumped; z=1 specifies a full
storage dump. The RCFBDUMP parameter can be used to request dumps for I/O errors from which
TSO/VTAM can recover.

Value Range: See return code and feedback values in z/OS Communications Server: SNA
Programming.

Default: None

CONFTXT
Meaning and Use: Specifies whether the buffer output is to be confidential. YES indicates that the
buffer output is to be confidential and, as such, not traceable; the data in the VTAM buffers is
overwritten with zeros immediately after it is sent to the terminal.

Value Range: YES or NO

Default: YES

GNAME
Meaning and Use: Specifies a generic name by which one or more TSO/VTAM systems in a sysplex
may be referenced. A generic name can also be specified on the START command to activate
TSO/VTAM. If a generic name is not specified in TSOKEY00, or on the START command, then no
generic name is used. If a generic name is used, TSO/VTAM registers its generic name by issuing the
SETLOGON GNAMEADD macro instruction.

For example, three TSO/VTAM systems in a sysplex could have network names of TSO1, TSO2, and
TSO3 respectively, and each defined with GNAME=TSOGR. A TSO user could logon to the name
“TSOGR” and be transparently assigned to any one of the 3 TSO systems as determined by load
balancing.

Value Range: Any 1 to 8 EBCDIC characters that must be unique from any real resource name in the
network, and may not be “TSO”.

Default: None

BASENAME
Meaning and Use: Specifies a 1 to 4 character prefix to be used for the ACBNAME operand in the
VTAM application program major node. As an example, if you specify BASENAME=tttt, you would use
the names tttt0001, tttt0002, tttt0003, and so forth. See the z/OS Communications Server: SNA
Network Implementation Guide for an example of how to use BASENAME.

Value Range: Any 1 to 4 EBCDIC characters, following the VTAM naming requirement specified in the
z/OS Communications Server: SNA Resource Definition Reference.

Default: TSO

TSOKEY00

556 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 69. VATLSTxx (volume attribute list)

VATLSTxx contains one or more volume attribute lists that predefine the mount and use attributes of direct
access volumes. The mount attribute determines the conditions under which a volume can be demounted.
The use attribute controls the type of requests for which a volume can be allocated.

The system programmer can predefine volume “mount” attributes as permanently resident or reserved,
and can predefine volume “use” attributes as storage, public, or private. Therefore, critical direct access
volumes can be controlled because the “mount” and “use” attributes determine the type of data sets that
can be placed on a volume. During allocation, data sets on volumes marked permanently resident or
reserved are selected first because they require no serialization, thus minimizing processing time.

You can ensure a faster initialization by specifying the volume attribute list(s) efficiently. Do not, for
example, specify a list at a given IPL that contains entries for volumes that will not be mounted.
Un-mounted volumes require operator intervention with resultant delay.

There are two ways to define the use and mount attributes for DASD volumes. You can define them in
individual entries in the VATLSTxx member, one volume to each entry, or you can use one entry to define
a group of volumes. In this second way, you specify generic volume serial numbers and device types for
groups of volumes.

Specifying generic values makes it easier for you to maintain your VATLSTxx members. Give one generic
name to a group of volumes mounted on devices that have the same device type and the same mount
and use attributes. Specify an asterisk (“*”) for the device type when groups of volumes have the same
volume serial numbers, mount attributes, and use attributes, regardless of the devices the volumes are
mounted on. See “Specifying a generic volume serial number” on page 562 and “Specifying a generic
device type” on page 563 for more information.

For JES3, DEVICE and SETRES initialization statements, rather than the VATLST, can be used to specify
permanently-resident volumes. In a JES3 complex, you must assign the same mount attribute to a volume
mounted on every system in the complex. For example, if you use the mount attribute of “permanently
resident” for the system residence volume on one system, you must use the same use attribute on all the
other systems.

If VATLST members are used for volumes resident on devices that are shared among multiple systems,
the mount attributes for a specific volume must be the same on all systems.

Use of 3344 and 3350 Emulated 3330-1 and 3330-11 devices
The category of devices consisting of the 3344 emulated 3340 and the 3350 emulated 3330-1 and
3330-11 must be made permanently resident through VATLSTxx because of a conflict in mount states.
Because volumes on these emulated devices cannot be demounted, as can their real counterparts, the
mount and demount messages that the operating system ordinarily issues for the real devices are
erroneous. To prevent these erroneous messages, you must mark the emulated devices as permanently
resident by so noting them in their respective VATLSTxx entries.

Also, make sure that all emulated devices necessary for a given IPL are ready and available (not held in
reserve by another CPU) at IPL time. Specifically, if another CPU has an emulated device reserved at IPL
time, the operator must reply “WAIT” to message IEA120A.

© Copyright IBM Corp. 1991, 2002 557

Definitions of the mount and use attributes
There are three mount attributes: permanently resident, reserved, and removable. The permanently
resident or reserved attributes may be specified in a volume attribute list. The removable attribute
automatically applies to any volume that VATLSTxx does not designate or default as permanently resident
or reserved.

A permanently resident volume is either one that cannot be physically demounted (that is, a drum, 3344,
or 3350) or one that cannot be demounted until its device is varied offline. Only direct access volumes can
be made permanently resident.

The following volumes are always marked permanently resident by NIP. You should therefore specify only
the use attribute of these volumes in a volume attribute list:

v Volumes that cannot be physically demounted (such as a 3350 volume).

v The system residence volume This volume includes the SYS1.SVCLIB and SYS1.NUCLEUS data sets.

v Volumes that contain these system data sets: SYS1.LINKLIB and data sets concatenated to it,
SYS1.DUMPnn, VIO journaling data set, page data sets, and swap data sets.

Note: Although it is impossible to demount the devices physically, 3344 emulated 3340 devices and 3350
emulated 3330-1 and 3330-11 devices are not automatically marked permanently resident. You
must instead mark their respective VATLSTxx entries yourself.

A reserved volume remains mounted until the operator issues an UNLOAD or a VARY OFFLINE
command. A volume is marked reserved when it is so designated in a volume attribute list, or when the
operator issues a MOUNT command for the volume.

A removable volume can be demounted after its last use in a job, or when the device on which it is
mounted is needed for another volume. Any volume not designated as either permanently resident or
reserved is considered removable. The operator can change a removable volume to a reserved volume by
issuing the MOUNT command for the volume.

The use attribute controls the type of request for which a volume can be assigned:
v a specific volume request.
v a temporary, non-private non-specific volume request.
v a non-temporary, non-private, non-specific volume request.

Three use attributes are used for allocating these types of volume requests, as follows:

v A private volume is allocated only to a specific volume request. For more information about this
attribute, see z/OS MVS JCL Reference.

v A public volume is allocated to a temporary, non-specific volume request (or possibly to a specific
volume request). Thus, a scratch data set would be placed on a public volume.

v A storage volume is allocated primarily to a non-temporary, non-specific volume request. (A storage
volume can also be allocated to a specific volume request or a temporary non-specific volume request.)

Note: A storage volume is required by the SAVE subcommand of EDIT for a newly created data set. If a
storage volume is not available, the SAVE subcommand cannot save the data set.

Processing the VATLSTxx members
The system reads the VATLSTxx members that were specified in the VAL parameter in IEASYSxx. If the
system detects an incorrect VATLSTxx entry, the system issues informational message IEA855I, and
continues processing the remaining entries.

VATLSTxx

558 z/OS V1R4.0 MVS Initialization and Tuning Reference

If an I/O error occurs during the reading, the operator can choose to display informational message
IEA850I, which lists the volumes, device types, and attributes that will be processed. A second message
(IEA853A) allows the operator to choose one of the following recovery options:

v Continue processing any remaining lists.

v Stop the processing of remaining lists.

v Specify a new VATLSTxx member by replying r 0,xx, where xx is the two-character identifier for
VATLSTxx.

v If necessary, reIPL the system.

If an I/O error does not occur during the reading, the system lists the IPL and SYSTEM use attributes in
message IEA168I.

Volume attribute processing compiles a list of all VATLSTxx entries. If a particular volume serial number
appears on more than one entry, the system uses the volume attributes specified in the last entry for that
volume serial.

Mount messages can be issued for unmounted volumes, up to the maximum number of processed entries.
The system can process up to 64000 unique VATLSTxx entries at IPL.

The operator can respond to the mount messages by replying with the device number of the requested
device type (that is, 3330-1). If the operator chooses not to mount a volume, the operator replies ‘U’ or
ENTER.

If the operator enters an incorrect device number, or a path to a device is not available, the operator can
reenter new device numbers.

To indicate that no more volumes will be mounted, enter ‘U’ or ENTER.

When message IEA860A lists the devices that need volumes, the operator should mount the required
volumes on the replied devices. When all devices have become ready (green lights on), the operator
replies ‘U’ or ENTER to message IEA860A. Volume attribute processing then scans for mounted volumes.

If a volume that did not appear in the mount message is mounted on a unit specified by the operator, it is
unloaded. The volume is also unloaded if the operator mounts the requested volume on a device type
other than the one specified in the volume attribute list, or on an un-requested unit.

If all the required devices do not become ready, volume attribute processing issues message IEA893A,
which lists the devices that are not ready. If the operator intends to ready these devices, the operator may
do so before replying ‘U’ or ENTER to the message. If a volume cannot be mounted on a device for some
reason (such as a hardware problem), the operator should reply NO to the message, after all other
required devices have been processed. This response indicates to volume attribute processing that no
more volumes will be mounted.

If the system does not find a volume that matches a generic volume serial number entry, it issues
message IEA166I.

Parameter in IEASYSxx (or supplied by the operator):
VAL={aa }

{(aa,bb,...)}

Two alphanumeric characters (such as, A1 or 30) are appended to VATLST to specify the VATLSTxx
member(s) of parmlib. If the parameter is not specified either in IEASYSxx or by the operator, the default
member VATLST00 is used, if it exists. If the VAL parameter specifies multiple members, the members are

VATLSTxx

Chapter 69. VATLSTxx (volume attribute list) 559

processed in the order specified. If a particular volume serial number appears on more than one entry, the
volume attributes specified in the last entry for that volume serial will be accepted. If the VAL parameter
has an invalid format, or if it specifies a member that doesn’t exist in parmlib, the operator is prompted to
respecify the member or to reply ‘U’ to cause the member to be ignored.

Support for system symbols
You can specify system symbols in VATLSTxx. However, be aware that the fields in VATLSTxx are
column-dependent (except for the VATDEF statement). The resolved substitution texts for the system
symbols must conform to the rules described in “Statements/parameters for VATLSTxx” on page 563.

The following rules apply when you use system symbols in VATLSTxx:

v If a system symbol is used anywhere in the volume serial number, there must be a blank after the entire
volume serial number. This blank delimits the end of the volume serial number, not the end of the
system symbol, and does not become part of the volume serial number when resolved.

v A period at the end of the system symbol delimits the end of that symbol. The period is optional for the
following cases:

– between 2 system symbols. In this case, the & that begins the second system symbol acts as a
delimiter.

– before the blank delimiter at the end of the entire volume serial number.

– before a generic character, such as % or *.

v The volume serial number field in the VATLSTxx entry must be exactly 6 characters long. If a
combination of system symbols resolves to less than 6 characters, you must add blanks to pad the
volume serial number.

Let us assume we have an IEASYMxx member with the following definitions:

v SYMDEF(&SYMB1.=’PA’)

v SYMDEF(&SYMB2.=’GE’)

v SYMDEF(&SYMB3.=’%%’)

With these assumptions, each of the examples that follow will resolve to a volume serial number of
PAGE%%:

&SYMB1.&SYMB2.&SYMB3. ,0,0,3390...
&SYMB1&SYMB2&SYMB3. ,0,0,3390... This example leaves out periods before &.

&SYMB1&SYMB2.%% ,0,0,3390...
&SYMB1&SYMB2%% ,0,0,3390... This example leaves out periods before %.

PAGE&SYMB3. ,0,0,3390...
PAGE&SYMB3 ,0,0,3390... The blank that delimits the end of the

volume serial number also delimits the
end of the system symbol.

Using the same assumptions for the IEASYMxx member, the following VATLSTxx entry would be invalid:
&SYMB1GE%% ,0,0,3390...

Instead of appending ″GE%%″ to the end of &SYMB1, the system would look for a system variable
&SYMB1GE, which does not exist in our example.

For information about how to use system symbols in shared parmlib members that require unique values,
see Chapter 2, “Sharing parmlib definitions” on page 25.

VATLSTxx

560 z/OS V1R4.0 MVS Initialization and Tuning Reference

|

|
|
|

|
|

|
|

|

|

|
|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

Creating a VATLSTxx member
The VATLSTxx member contains an optional VATDEF statement, which specifies a default use attribute,
followed by entries that define the mount and use attributes of DASD volumes.

Use the VATDEF statement in VATLSTxx to specify a default use attribute. If you do not specify VATDEF,
the system assigns a default of public to those volumes that are not specifically assigned a use attribute in
the VATLSTxx member or in a MOUNT command. VATDEF must be the first entry in the first VATLSTxx
member you specify in the VAL= operand; the system ignores any later specifications of VATDEF that
might appear in other VATLSTxx members.

The following is the syntax for the VATDEF statement. Unlike DASD volume entries in VATLSTxx
members, the VATDEF statement is not column-dependent but it also cannot be continued on another line.
VATDEF

{PUBLIC }
IPLUSE({PRIVATE})

{STORAGE}

{PUBLIC }
SYSUSE({PRIVATE})

{STORAGE}

VATDEF
The default for use attributes for DASD volumes. If you specify VATDEF without any operands, the
system uses the operands IPLUSE(PUBLIC) and SYSUSE(PUBLIC).

IPLUSE
The use attribute default that the system applies to permanently resident volumes that are brought
online during IPL (that is, have no VATLST entry, or whose use attribute is not specified correctly
in VATLSTxx).

SYSUSE
The use attribute default that the system applies to volumes that are varied online after IPL and
have no entry in a VATLSTxx member.

PUBLIC
Sets the default use attribute to public. This operand is the default for VATDEF IPLUSE and
VATDEF SYSUSE.

PRIVATE
Sets the default use attribute to private.

STORAGE
Sets the default use attribute to storage.

Example of default use attributes
At an installation where the VATLSTxx members are defined as VAL=(00,05), member VATLST00 contains
the following entries:
VATDEF SYSUSE(PRIVATE)
30565A,0,2,3330 , TSO

The system ignores any VATDEF entry in VATLST05. It uses PRIVATE as the default use attribute for any
volume varied online after IPL and PUBLIC for any volume brought online during IPL. The optional
information TSO appears in installation printouts, but is ignored by VATLST processing.

Syntax rules for VATLSTxx
The following rules apply to the creation of a DASD volume entry in the VATLSTxx member:

v Each record consists of 80 columns, although columns 22 through 80 are ignored.

VATLSTxx

Chapter 69. VATLSTxx (volume attribute list) 561

v The fields are column-dependent, as shown in “Statements/parameters for VATLSTxx” on page 563
(except for the VATDEF statement).

v There are only two required fields: the volume serial number and the device types. All other fields have
defaults.

v Use a comma to separate adjacent fields, except before the optional information field.

v Specify all characters in EBCDIC.

“Statements/parameters for VATLSTxx” on page 563 includes a graphic description of all fields in the
record and their lengths.

The following sections describe how to specify DASD volume entries.

Specifying a generic volume serial number
Generic volume serial numbers allow you to reduce the number of entries in the VATLSTxx members. The
valid generic characters are % and *; you can use any combination of these characters in an entry. If a
volume serial number does not contain any generic characters, it defines only the volume with the
specified volume serial number. Rules for generic volume serial numbers follow, with examples of the
generic numbers and the possible matching numbers.

Rules for Generic Volume Serial Numbers: The character “*” in the generic volume serial number
indicates that any character in that position and all subsequent characters are a match:

Generic Volume Serial Number Matching Volume Serial Numbers
TSO* TSO01, TSO, and TSO123
TSO XABTSO, ABTSO1, and TSO01
P*5 PROD05 and P5
*PROD 12PROD and PROD

The character “%” in the generic volume serial number indicates that any single character within the
volume serial number is a match to that character position:

Generic Volume Serial Number Matching Volume Serial Numbers
TSO% TSO1
%TSO% ATSO1
P%%5 P125
%PROD 1PROD

Both symbols can appear in the same number.

You can enter the generic volume serial numbers in any order. However, if more than one generic
specification can be applied to a particular volume serial, the system will find the attributes specified in the
last entry with such a generic specification.

For example, an installation has the volume serial numbers WK982A and WK9BBB, and the VATLSTxx
has the following entries.
WK982%,1,0,3350 ,N STORAGE VOLUME
WK9%%%,1,1,3350 ,N PUBLIC VOLUME

The system will find the second entry. WK9%%% matches both volume serial number WK982A and
WK9BBB.

Generic Volume Serial Number Matching Volume Serial Numbers
*TSO% TSO1 and XXTSO2

VATLSTxx

562 z/OS V1R4.0 MVS Initialization and Tuning Reference

Generic Volume Serial Number Matching Volume Serial Numbers
P%5* P05PRO

Specifying a generic device type
The character “*” identifies a generic device type, based on which DASD are defined at your installation.
Use the generic device type when you have the same use attribute and the same mount attributes
regardless of the device you want the volumes mounted on.

If you specify a generic volume serial number, you can specify a generic device type. For example, if you
specify the generic volume serial as TSO*, the matching volume serial numbers for this are TSO01, TSO,
and TSO123, as above. TSO01 is on a 3350, TSO is on a 3380, and TSO123 is on a 3390. If you want to
specify the same mount and use attributes for these volumes, regardless of the device types, you can
specify a generic device type and then the mount and use attributes.

Example of setting the generic device type
The following VATLSTxx entry:
TSO* ,0,2,*

Is equivalent to the following three entries:
TSO01 ,0,2,3350
TSO ,0,2,3380
TSO123,0,2,3390

These examples assume that only 3350, 3380, and 3390 DASD are defined.

Notes:

1. Generic device types do not support specifications such as 33%% or 33*

2. A VATLSTxx statement with a specific volume cannot have a generic device type.

Statements/parameters for VATLSTxx
The figure below shows the entries in VATLSTxx members that define the mount and use attributes of
direct access volumes. The fields are column-dependent; they are described in the section that follows.

Examples of VATLSTxx entries
The following examples show the entries in VATLSTxx that define the mount and use attributes.

blank (optional)

mount message

suppression

indicator

(1 character)

Column: 1 7 8 9 10 11 12 20 21 22 23

Vol. serial no.

(up to 6 characters)
S device type

(up to 8 characters)
optional

information

Padded with blanks, at

right, if volume serial

has less than 6

characters. mount

attribute

(1 character)

use attribute (1 character)

Padded with blanks, at

right, if device type has

less than 8 characters.

, , ,

VATLSTxx

Chapter 69. VATLSTxx (volume attribute list) 563

In the first entry in the example, a volume whose serial number is 30565A is to be mounted on a 3330 and
marked permanently resident. The volume’s use attribute is to be private. A mount message is to be
issued if the volume is demounted. The optional information, PAGING VOLUME, appears in installation
printouts but does not affect VATLST processing.

In the second entry in the example, volumes with serial numbers that include the character string “TSO”
are to be mounted on any DASD and reserved. The volumes’ use attribute is to be public. Because you
specified a generic volume serial number, the system does not issue a mount message for un-mounted
volumes. The optional information, TSO, appears in installation printouts but does not affect VATLST
processing.

In the third entry, volumes with serial numbers included in the 305%* specification, are to be mounted on a
3380 and marked permanently resident. The use attribute is to be private.

In the fourth entry, a specific volser name, 30565B, contains an “S” in column 7, indicating that the volser
is specific. However, error message IEA855I will be issued because the volser does not contain either of
the special characters, “%” or “*”. The “S” should only be coded for specific volsers containing special
characters.

Parameter Column Meaning and Use Value Range Default Value

volume serial 1-6 Specifies either the direct access
volume with mount and use
attributes to be set, or a generic
volume serial number. The
volume serial number must begin
at the first character position in
the record.

1 to 6 alphameric
characters plus
special characters %
and *, left justified in
the field and padded
with blanks at right to
occupy six columns.

None

specific vol. ser.
identifier

7 “S” specifies that the entry is a
specific volume serial number,
not a generic one. Code the “S”
only when your volume serial
number has an asterisk or
percent sign in it and you do not
want the system to process it as
a generic entry. Code a comma
when the volser is a specific
volser without the special
characters or the volser is a
generic volser.

S or , None

mount attribute 8 Specifies whether the volume is
to be permanently resident or
reserved. Default is assigned if
any character other than 1 is
specified.

0 specifies permanently
resident.

1 specifies reserved.

0 or 1 0

Columns:

30565A,0,2,3330 , PAGING VOLUME

TSO ,1,1,* , TSO

305%* S0,2,3380

30565BS0,2,3380

: 1 8 10 12 21 23

VATLSTxx

564 z/OS V1R4.0 MVS Initialization and Tuning Reference

Parameter Column Meaning and Use Value Range Default Value

use attribute 10 Specifies whether the volume is
to be defined as storage, public,
or private. The default is
assigned if any character other
than 0, 1, or 2 is specified.

0 specifies storage.

1 specifies public.

2 specifies private.

0-2 1, unless the VATDEF
operand specifies a
different default.

device type 12-19 Specifies the device type, such
as 3380. Up to eight characters
may be specified, but the first
character must start at column
12. Only supported device types
that were defined through HCD
are acceptable. This parameter
indicates the basic device but
does not denote special features,
such as track overflow. An
asterisk “*” in column 12
indicates a generic device type.

Up to 8 characters,
left justified within the
field, and padded with
blanks at the right to
occupy eight columns.

None

mount message
suppression

21 Specifies whether mount
messages should be issued for
the volume if it is not already
mounted. This parameter is
ignored for volumes that are
defined with generic VATLST
entries.

N specifies that mount
messages should be
suppressed.

x where x, which is a blank or
any character except N,
specifies that mount
messages should be issued.

N, blank, or any
character.

Blank, indicating that
mount messages
should be issued.

optional information 23-80 Contains optional,
installation-defined information
(for example, an eye-catcher or
brief comment) to be included in
installation printouts. The system
does not use this information.

Not applicable. None

IBM-supplied default for VATLSTxx
No default member is supplied by IBM. The installation can, however, create its own default member,
named VATLST00.

VATLSTxx

Chapter 69. VATLSTxx (volume attribute list) 565

566 z/OS V1R4.0 MVS Initialization and Tuning Reference

Chapter 70. XCFPOLxx (XCF PR/SM policy)

In a multisystem sysplex on PR/SM, the XCF PR/SM policy provides a way for the installation to obtain
high availability for multisystem applications on the MVS systems in the sysplex. You specify the XCF
PR/SM policy in a parmlib member. IBM recommends naming this member XCFPOLxx, where xx is a
unique 2-character identifier. You activate (or deactivate) the policy with the SETXCF PRSMPOLICY
command, and display the name of the active policy with the DISPLAY XCF,PRSMPOLICY command.

The XCF PR/SM policy allows you to specify the actions that XCF on a system in the sysplex on PR/SM is
to take when a “status update missing” or “system gone” occurs on another system in the sysplex.

Some reasons a status update missing condition might occur are:

v The system has failed and entered a non-restartable wait state.

v The system is in a disabled spin loop.

v The operator stopped or reset the system.

v The system has failed and cannot dispatch normal work.

v The system entered a restartable wait state but the operator has not restarted the system.

A system gone condition occurs after a system reset is confirmed.

The XCF PR/SM policy reduces the need for operator intervention because XCF on a remaining system in
the sysplex on PR/SM can automatically reset the failing system, deactivate the LPAR, and reconfigure
processor storage for use by the remaining system.

Note: The XCF PR/SM policy in an XCFPOLxx parmlib member will not work unless the installation
enables the system to do a reset of an MVS system on an LPAR and deactivate the LPAR on the
PR/SM processor. See the PR/SM Planning Guide for information about the assignment of LPARs
and processor storage.

For more information about using XCF, see z/OS MVS Setting Up a Sysplex.

Parameter in IEASYSxx (or supplied by the operator):
None.

Syntax rules for XCFPOLxx
The following syntax rules apply to XCFPOLxx:

v Use columns 1 through 71. Do not use columns 72 - 80 for data; these columns are ignored.

v At least one delimiter (space or comma) is required between a statement and keyword. Delimiters are
not required between keywords.

v Use at least one delimiter to separate multiple keyword values within parentheses.

v Comments may appear in columns 1-71 and must begin with ″/*″ and end with ″*/″.

© Copyright IBM Corp. 1991, 2002 567

Syntax format of XCFPOLxx

IBM-supplied default for XCFPOLxx
None.

Statements/parameters for XCFPOLxx
NOSTATUS(failsys)

The NOSTATUS statement specifies an action to take when the specified system appears to have
failed (status update missing). You can choose to either reset or deactivate the failed system.

The current system and the failing system must be running in LPAR mode on the same processor. If
the processor is physically partitioned, then both LPARs must be on the same side.

RESETTIME(nnnnn)
Specifies that the failing system is to be reset after the specified number of seconds have elapsed.
If you specify RESETTIME(10), this system will perform a system reset of the failing system 10
seconds after the status update missing condition is detected for the failing system.

If the failing system becomes active before the specified time interval elapses, the system reset is
not performed.

Note: IBM recommends that you specify a time interval of less than 60 seconds, because longer
intervals might cause SETXCF PRSMPOLICY commands to be delayed.

Value Range: 0 - 86400 seconds

DEACTTIME(nnnnn)
Specifies that the logical partition (LPAR) where the failing system resides is to be deactivated
after the specified number of seconds have elapsed. If you specify DEACTTIME(15), this system
will deactivate the LPAR of the failing system 15 seconds after the status update missing condition
is detected for the failing system.

Specifying DEACTTIME(nnnnn) also causes the system to be reset.

If the failing system becomes active before the specified time interval elapses, the LPAR is not
deactivated.

Note: IBM recommends that you specify a time interval of less than 60 seconds, because longer
intervals might cause SETXCF PRSMPOLICY commands to be delayed.

Value Range: 0 - 86400 seconds

SYSGONE(failsys)
Specifies an action to take when the specified system has been reset by the operator or by the policy
specified by the NOSTATUS parameter.

SYSTEM(sysname)
Identifies the system in the sysplex that is to take the following actions when the specified system

NOSTATUS(failsys)
{ RESETTIME(nnnnn) }
{ DEACTTIME(nnnnn) }

SYSGONE(failsys)
SYSTEM(sysname)
DEACTIVATE(othersys|ALL)

[STORE(YES|NO)]
[ESTORE(YES|NO)]

XCFPOLxx

568 z/OS V1R4.0 MVS Initialization and Tuning Reference

(failsys on the SYSGONE statement) failed. The system indicated by sysname is not necessarily
the current system, instead it is the system you are designating to perform the deactivation of the
LPAR. This allows a single XCFPOLxx parmlib member to be used on all systems in the sysplex.

DEACTIVATE(othersys|ALL)
Specifies either that the logical partition (LPAR) where the specified system (othersys) resides is to
be deactivated or all LPARs within the current system’s addressing range are to be deactivated.
The specified system (othersys) must be in the same sysplex as the current system and on the
same processor as the system specified with the SYSTEM(sysname) keyword.

Specifying DEACTIVATE(othersys) where othersys is the same system specified in the
NOSTATUS statement with the RESETTIME keyword has no effect; instead, use the DEACTTIME
keyword. For example,
NOSTATUS(SYS1) DEACTTIME(25)
SYSGONE(SYS1) SYSTEM(SYS2) DEACTIVATE(SYS1)

is a correct use of the policy.

Default: None. This parameter is required.

STORE(YES|NO)
Specifies whether or not the specified system (SYSTEM(sysname)) is to acquire the storage freed
up by the deactivated LPAR(s).

Default: NO

ESTORE(YES|NO)
Specifies whether or not the specified system (SYSTEM(sysname)) is to acquire the expanded
storage freed up by the deactivated LPARs.

Note: ESTOR is not supported in the z/Architecture environment.

Default: NO

XCFPOLxx

Chapter 70. XCFPOLxx (XCF PR/SM policy) 569

570 z/OS V1R4.0 MVS Initialization and Tuning Reference

Part 3. Appendixes

© Copyright IBM Corp. 1991, 2002 571

572 z/OS V1R4.0 MVS Initialization and Tuning Reference

Appendix A. IEFSSNxx (subsystem definitions) - positional
parameter form

Note

This appendix describes the IEFSSNxx parmlib member in the positional parameter form. IBM
recommends that you use the IEFSSNxx parmlib member in the keyword parameter form instead,
which allows subsystems defined in the member to use the dynamic SSI services.

IEFSSNxx is a parmlib member that contains parameters defining the primary subsystem and the various
secondary subsystems that are to be initialized during system initialization. IEFSSNxx allows you to name
the subsystem initialization routine to be given control during master scheduler initialization. IEFSSNxx
also allows you to specify the input parameter to be passed to the subsystem initialization routine. Using
the PRIMARY keyword, you can specify a primary subsystem name. The NOSTART keyword used with
the PRIMARY keyword indicates that the system is not to issue an automatic start for the primary
subsystem.

For information about writing subsystems, see z/OS MVS Using the Subsystem Interface.

The order in which the subsystems are initialized depends on the order in which they are defined in the
IEFSSNxx parmlib member on the SSN parameter. Unless you are starting the Storage Management
Subsystem (SMS), start the primary subsystem (JES) first. Some subsystems require the services of the
primary subsystem in their initialization routines. Problems can occur if subsystems that use the subsystem
affinity service in their initialization routines are initialized before the primary subsystem. If you are starting
SMS, specify its record before you specify the primary subsystem record.

The format of the IEFSSNxx record for SMS is described in “Defining SMS through the IEFSSNxx
member” on page 409.

Parameter in IEASYSxx (or supplied by the operator):
The SSN parameter in IEASYSxx identifies the IEFSSNxx member that the system is to use to initialize
the subsystems, as follows:

SSN {aa }
{(aa,bb,...)}

The two-character identifier, represented by aa (or bb, and so forth) is appended to IEFSSN to identify
IEFSSNxx members of parmlib. If the SSN parameter is not specified, the system uses the IEFSSN00
parmlib member.

The order in which the subsystems are defined on the SSN parameter is the order in which they are
initialized. For example, a specification of SSN=(13,Z5) would cause those subsystems defined in the
IEFSSN13 parmlib member to be initialized first, followed by those subsystems defined in the IEFSSNZ5
parmlib member. If you specify duplicate subsystem names in IEFSSNxx parmlib member, the system
issues message IEE730I to the SYSLOG, the master console, and consoles that monitor routing code 10
messages. For more information, see the section on handling errors in defining your subsystem in z/OS
MVS Using the Subsystem Interface.

© Copyright IBM Corp. 1991, 2002 573

Syntax rules for IEFSSNxx
The following rules apply to the creation of IEFSSNxx:

v Each record in IEFSSNxx defines one and only one subsystem that is to be initialized.

v Parameters begin with the comma following the init-routine and end with the first blank or comma.

v Each record in IEFSSNxx is 80 bytes long and has the following format:

ssname
The subsystem name. The name can be up to 4 characters long; it must begin with an uppercase
alphabetic or national character (#, @, or $), and the remaining characters (if any) can be
alphanumeric or national. The name begins with the first non-blank character in the record and
continues to the first comma or blank. When a blank follows the name, the system assumes that no
initialization routine exists and that only comments (if any) follow.

In general, the subsystem name should be the same as the started procedure name. Some products
(such as IMS and CICS), however, require the subsystem name to be different from the started
procedure name. For more information, refer to the section on coding initialization routines for
subsystem in z/OS MVS Using the Subsystem Interface and the documentation for the particular
product.

init-routine
The name of the subsystem initialization routine. This name can be 1-8 characters long, and the
characters can be alphanumeric or national (#, @, or $). The name begins with the first character
following the first comma after “ssname” and continues to the next comma or blank. When a blank
follows the name, the system assumes that no initialization routine input parameters are supplied and
that only comments (if any) follow.

For information about writing subsystem initialization routines, see z/OS MVS Using the Subsystem
Interface.

parm
Input parameters to be passed to the subsystem initialization routine. The input parameters are
variable in length for the remainder of the 80-byte record (for a maximum of 60 characters); they begin
after the comma that ended the “init-routine” name and end with the first blank. If blanks, commas, or
single quotes are included in the input parameters, then the entire parm field must be enclosed in
single quotes. If the parm field is enclosed in single quotes, a single quote within the field must be
specified as a double quote.

PRIMARY
Parameter indicating the primary subsystem name. The primary subsystem is typically a job entry
subsystem (either JES2 or JES3). This keyword indicates that the subsystem name (ssname) will be
the primary subsystem name. Initialize the primary subsystem before any secondary subsystem(s). If
you specify PRIMARY more than once, the system issues a message.

NOSTART
Parameter indicating that an automatic start is not to be issued. NOSTART indicates that an automatic
start of the primary subsystem is not to be issued. NOSTART cannot be used without the PRIMARY
parameter.

comments
Comments can be specified after the first blank in the record following the input parameters, or
PRIMARY and NOSTART, for as many characters as remain in the 80-byte record.

You can include any number of records in the IEFSSNxx parmlib member.

ssname[,init-routine[,parm]][,PRIMARY[,NOSTART]] comments

IEFSSNxx

574 z/OS V1R4.0 MVS Initialization and Tuning Reference

IBM-supplied default for IEFSSNxx
If you do not specify the SSN system parameter, the system uses the IEFSSN00 parmlib member.
IEFSSN00 specifies JES2 as the primary subsystem.

If you specify a set of IEFSSNxx members that do not identify a primary subsystem, the system issues a
message that prompts the operator to specify the primary subsystem.

Statements/parameters for IEFSSNxx
None.

IEFSSNxx

Appendix A. IEFSSNxx (subsystem definitions) - positional parameter form 575

576 z/OS V1R4.0 MVS Initialization and Tuning Reference

Appendix B. Symbolic Parmlib Parser

The Symbolic Parmlib Parser allows you to verify symbolic substitutions without doing an IPL. The Parser
is in SYS1.SAMPLIB and is activated as follows:

Activation
Enter the following commands to activate the Parser:

EX ’SYS1.SAMPLIB(SPPINST)’ ’’’SYS1.SAMPLIB(SPPPACK)’’’
TSO ex ’myid.PARMLIB.EXEC(SYSPARM)’

where:

myid = your user id.

Once activated, you see a panel similar to the following:

Help is available on all panels by pressing PF1 or typing help on the command line.

Capabilities
The ’myid.PARMLIB.NOTES’ file, member WORKFLOWS, gives an overview of the tool’s capabilities. The
following is an enhanced version of that file.

The Parmlib Processing tool provides several functions.

LOADXX PROCESSING

The tool can be used as a LOADxx processor by specifying:

v ″Member Name″ = desired LOADxx value

v ″Do Symbol Substitution″ = N

v ″LOADxx Member″ = blank

This brings up the LOADxx processing panel, which allows the following types of data validation:

v Syntax Checking

COMMAND ===>

Member Name ===> IEAYSYSTT (Enter ’?’ for supported member list)
Browse, Edit or View ===> V (Optional. Default is VIEW for symbol

substitution, and EDIT otherwise.)
Dsn ===>PARMLIB Dflt:’SYS1.PARMLIB’
Volume of above Dsn ===> (Optional)
SYS1.NUCLEUS Volume ===> (If different from one catalogued)
FMID ===> (Optional. Enter ’?’ for list)

Do Symbol Substitution ===> Y (Y or N)
Symbol Substitution Values:

(Use ’*’ for Current val
LOADxx Member ===> LOADTT Default LOAD00. LOADF1 <===Current
Hardware Name ===> (Optional) PR9672A <===Current
LPAR Name ===> (Optional) AQFT <===Current
VM Userid ===> (Optional) <===Current
SYSRES Volume ===> (Optional) PRIPK5 <===Current
Master Cat Volume ===> (Optional - Substituted for *MCAT*)

© Copyright IBM Corp. 1991, 2002 577

Syntax checking examines the LOADxx parmlib member, looking for data specification errors such as
missing commas and illegal keywords. Syntax checking is performed when an existing supported
LOADxx parmlib member is selected for EDIT or BROWSE mode. Any errors detected are listed before
the EDIT or BROWSE panel is initialized or displayed. Only data that is valid and recognized by the tool
is displayed on the EDIT or BROWSE panel.

v Range and Type Checking

Range and Type checking examines the data that is extracted from the LOADxx parmlib member,
looking for value and type specification errors such as alphabetic characters being used when numerical
data is required and numerical data that is not within a required range. The ISPF Panel and associated
REXX program perform range and type checking. No range or type checking is done during syntax
checking.

v Data Verification

Data verification is performed by typing VERIFY on the command line of the BROWSE or EDIT panels.
Data verification takes the valid data from syntax, range and type checking and examines what they
mean in the current system environment. For example, one of the fields in a LOADxx parmlib member
may contain a pointer the another parmlib member. Data verification checks to see if that member exists
in the specified parmlib.

PARMLIB SYMBOLIC PREPROCESSING

The tool can be used as a parmlib symbolic preprocessor by specifying:

v ″Member Name″ = the name of a parmlib member containing symbolics to be processed

v ″Do Symbol Substitution″ = Y

v ″LOADxx Member″ = Desired LOADxx member. LOADxx is where a Symbol set is specified via the
IEASYM statement.

The tool performs the following steps as a Parmlib Preprocessor:

1. Verifies that the LOADxx member exists where is is supposed to.

2. Reads the LOADxx member and examines its statements.

3. Reads the IEASYMxx members and thoroughly processes each one using the same code that is used
at IPL time. Any errors are noted with the same messages used during IPL. If any IEASYMxx
members cannot be found, a message is issued.

4. Reads the IEASYSxx members and searches for the SYSNAME statement. If any IEASYSxx members
cannot be found, a message is issued.

5. Searches for the input member and opens it if found.

6. Processes the input member through the symbol table built from reading the IEASYMxx members and
the panel input fields. Any symbols that cannot be substituted are highlighted.

7. If DOALL is invoked, each line of the IEASYSxx member is read to see if other parmlib members are
implied. If these members are not found, an error message is issued. If these members are found, they
are processed as described in step 6, above. Any apparent processing problems for IEASYSxx are
also noted.

PARMLIB MEMBER SELECTION LIST

The tool can be used to obtain a parmlib member selection list by specifying:

v ″Member Name″ = blank

v ″Do Symbol Substitution″ = Y

v ″LOADxx Member″ = blank

This places you in a panel displaying the different types of available parmlib members. When you select a
parmlib member type the tool shows you a list of all members of that type in your parmlib data set, as
specified on the main panel.

578 z/OS V1R4.0 MVS Initialization and Tuning Reference

CONCATENATED PARMLIB MEMBER SELECTION LIST

The tool can be used to obtain a parmlib member selection list from a concatenation of parmlibs by
specifying:

v ″Member Name″ = blank

v ″Do Symbol Substitution″ = Y

v ″LOADxx Member″ = LOADxx (where that LOADxx member has defined a concatenated parmlib via the
PARMLIB keyword)

The parmlib processor places you in a panel displaying the different types of available parmlib members.
When you select a parmlib member type the tool shows you a list of all members of that type in your data
set concatenation, as determined by the LOADxx member specified on the main panel.

Limitations
1. The tool does not support editing of SYSn.IPLPARM data sets. You can use the tool to generate the

member in SYS1.PARMLIB or high_level_qualifer.PARMLIB and then you can copy the member into
the appropriate SYSn.IPLPARM data set.

2. The tool assumes that any SYSn.IPLPARM data set is on the same volume as the specified parmlib
data set. It does not support the concept of a separate IODF and SYSRES volume, nor does it use
Master Catalog to locate a SYSn.IPLPARM data set.

3. Although the code can detect the presence of a VSAM data set, it does not have the ability to read
one. Therefore, the IODF data set is only checked for existence. Its contents are not verified.

4. The Master Catalog information is not verified.

5. When in EDIT mode, the data in a member is not altered until it is saved. If you are running in split
screen mode, you will not see the effects of the changes until the EDIT mode changes are saved.

6. Synatx checking is not done generally for the parmlib members that the tool lists as ’supported’.

Appendix B. Symbolic Parmlib Parser 579

580 z/OS V1R4.0 MVS Initialization and Tuning Reference

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision,
to use software products successfully. The major accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user interfaces found in z/OS.
Consult the assistive technology documentation for specific information when using it to access z/OS
interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E Primer, z/OS TSO/E
User’s Guide, and z/OS ISPF User’s Guide Volume I for information about accessing TSO/E and ISPF
interfaces. These guides describe how to use TSO/E and ISPF, including the use of keyboard shortcuts or
function keys (PF keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

© Copyright IBM Corp. 1991, 2002 581

582 z/OS V1R4.0 MVS Initialization and Tuning Reference

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

© Copyright IBM Corp. 1991, 2002 583

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface information
This book is intended to help the customer initialize and tune the MVS element of z/OS. This book
documents information that is NOT intended to be used as Programming Interfaces of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries, or both:
v AnyNet
v BookManager
v CICS
v DB2
v DFS
v DFSMS/MVS
v DFSMSdfp
v DFSMSdss
v DFSMShsm
v DFSMSrmm
v DFSORT
v ES/9000
v ESCON
v FFST
v FICON
v GDDM
v Hiperbatch
v IBM
v IBMLink
v IMS
v InfoWindow
v Language Environment
v MVS
v MVS/ESA
v MVS/SP
v NetView
v OS/390
v OS/400
v PR/SM
v Processor Resource/Systems Manager
v RACF
v Resource Link
v RMF
v SAA
v SecureWay
v SOM
v SP
v Sysplex Timer
v VM/ESA

584 z/OS V1R4.0 MVS Initialization and Tuning Reference

v VTAM
v UNIX
v z/Architecture
v z/OS
v z/OS.e
v zSeries

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Notices 585

586 z/OS V1R4.0 MVS Initialization and Tuning Reference

Index

Special characters
_CEE_RUNOPTS variable

when specifying RUNOPTS 132
.DEFAULT statement in MPFLSTxx

defaults 481
purpose 481

.MSGCOLR statement in MPFLSTxx 476, 477
(IEATDUMP) transaction dump

ADYSETxx parmlib member 51

A
abend code

adding 527
deleting 527
eligible for automatic restart 527

ABEND dump parameter
for a SYSABEND data set 261
for a SYSMDUMP data set 281
for a SYSUDUMP data set 277

ABEND parameter in EXSPATxx 244
ACBNAME parameter in APPCPMxx 75
ACBPW parameter in TSOKEY00 555
ACCELSYS parameter in GRSCNFxx 250
accessibility 581
ACCTINFO keyword in IEAICSxx 287
ACDS parameter in IGDSMSxx 412
ACOUPLE parameter in COUPLExx 198
ACR (alternate CPU recovery)

specified in EXSPATxx member 244
example 245

ACR parameter in EXSPATxx 244
ACSDEFAULTS parameter in IGDSMSxx 413
action message retention facility 475
ACTIVE|NOACTIVE parameter

in SMFPRMxx parmlib member 541
ADD parameter

in PROGxx parmlib member 512, 518
address space

region size 111
specifying maximum number of concurrent 356

address space quiesce
recovery for excessive spinning 243

ADMINAUTHORITY parameter in IPCSPRnn 442
ADYSETxx parmlib member

description 51
overview 14

AFF parameter in SCHEDxx 532
AFTER parameter

in PROGxx parmlib member 521
ALLC_OFFLN statement in ALLOCxx 69
ALLOC parameter in IEASYSxx 341
ALLOCATE parameter in IKJTSOxx 429
ALLOCxx parmlib member

description 57
overview 14

alternate CPU recovery 245

alternate nucleus ID 451
alternate nucleus substitution 8, 451
ALTERNATE parameter in CONSOLxx 175
ALTGRP parameter in CONSOLxx 176
ALTLU parameter in APPCPMxx 77
ALVERSION parameter in DEVSUPxx 229
AMRF (action message retention facility)

description 475
selectively retaining action messages 475

AMRF parameter in CONSOLxx 184
APF (authorized program facility)

authorization
for program libraries 265
required for programs in the PPT 530

parmlib member 265
PROGxx parmlib member 503

APF parameter in IEASVCxx 327
APF parameter in IEASYSxx 341
APF parameter in PROGxx 512
APF statement in PROGxx 503
APF-authorized library list

choosing a dynamic or static format 22
description 22
specifying the contents 23

APPCPMxx parmlib member
description 73
overview 14

AREA parameter in CONSOLxx 179
maximum and default specification 193

ASCHPMxx parmlib member
description 81
overview 14

ASID parameter in CTncccxx 223
ASID parameter in DIAGxx 234
ASID parameter in IGDSMSxx 413
ASNAME parameter in BPXPRMxx 120
ASRV parameter in IEAIPSxx 292
ATBOTTOM parameter

in PROGxx parmlib member 521
ATTOP parameter

in PROGxx parmlib member 521
AUTH parameter in CONSOLxx 174
AUTHCMD parameter in IKJTSOxx 429
authority level

for consoles 167
authorized program facility 283
AUTHPGM parameter in IKJTSOxx 429
AUTHPGMLIST parameter in BPXPRMxx 133
AUTHTSF parameter in IKJTSOxx 429
AUTOCVT parameter in BPXPRMxx 108

B
BASE parameter in APPCPMxx 76
BASENAME parameter in TSOKEY00 556
BIND BREAK completion

recovery for excessive spinning 243
BLKLNGTH parameter in ALLOCxx 62

© Copyright IBM Corp. 1991, 2002 587

BLSCECT parmlib member
description 89
overview 14

BLSCUSER parmlib member
description 91
overview 14

BMFTIME parameter in IGDSMSxx 413
BookManager topic extraction

defining
in EPHWP00 parmlib member 239

BOX_LP parameter in IECIOSxx 391
BPXPRMxx parmlib member

description 103
overview 14

BROADCAST operand of SEND parameter 437
BUFFERS parameter in IKJPRM00 424
BUFRSIZE parameter in TSOKEY00 554
BUFSIZE parameter in CTncccxx 223
BUFSIZE parameter in IKJPRM00 424

C
CACHETIME parameter in IGDSMSxx 413
CANCEL parameter in SCHEDxx 530
CATALOG parameter of CSVRTLxx parmlib

member 216
cataloging 47
CCCAWMT parameter in IEAOPTxx 308
CCCSIGUR parameter in IEAOPTxx 308
CF_TIME parameter in IGDSMSxx 414
CHAR parameter in IECIOSxx 386
CHNLEN parameter in TSOKEY00 554
CHP statement in CONFIGxx 158
CIPHER parameter in IKJTSOxx 432
CLASS parameter in COUPLExx 201
CLASS statement in COFDLFxx 148
CLASS statement in COFVLFxx 151
CLASSADD statement in ASCHPMxx 83
CLASSDEF statement in COUPLExx 200
CLASSDEL statement in ASCHPMxx 84
CLASSLEN parameter in COUPLExx 199
CLASSNAME parameter in ASCHPMxx 83, 84
CLEANUP parameter in COUPLExx 198
CLOCK parameter in IEASYSxx 341
CLOCKxx parmlib member

description 135
overview 14

CLPA parameter in IEASYSxx 341
CMB parameter in IEASYSxx 342
CMD parameter in IEASYSxx 343
CMD parameter in PFKTABxx 502
CMDDELIM keyword 186
CMDDELIM parameter in CONSOLxx 185
CMDLEVEL parameter in CONSOLxx 189
CMDSYS parameter in CONSOLxx 181
CNGRP parameter in CONSOLxx 185
CNGRPxx parmlib member

description 139
overview 15

CNLcccxx parmlib member
description 143

CNLcccxx parmlib member (continued)
effects of the SET MMS command 143
overview 15
selection 143

CNSTR parameter in IEAIPSxx 292
CNTCLIST parameter in IEAOPTxx 308
COFDLFxx parmlib member

description 147
overview 15

COFVLFxx parmlib member
description 149
overview 15

cold start IPL
after a system installation 4
definition 4
reloading the PLPA 4

COM parameter in COMMNDxx 155
COMM parameter in IECIOSxx 386
command

syntax conventions xxiii
command delimiter

defining 186
COMMDS parameter in IGDSMSxx 412
comments parameter in IEFSSNxx 574
COMMNDxx parmlib member

description 153
overview 15

common area data space
specifying maximum number 356

COMPACT parameter in DEVSUPxx 229
component trace parmlib member 219
COMPRESS parameter in IGDSMSxx 414
CON parameter in CONSOLxx 177
CONEXIT parameter in COFDLFxx 148
CONFIGxx parmlib member

description 157
overview 15

CONFTXT parameter in TSOKEY00 556
CONSNAME(consname) parameter in IEFSSNxx 395
console

characteristics, defining
default routing codes 168
IEAVMXIT exit routine 167
in MMSLSTxx member 167
in MPFLSTxx member 167
in PFKTABxx member 167
message routing 167
using the MONITOR command 167
WTO/WTOR buffer limit 167

message display
defaults 476

message display :
.MSGCOLR, defaults for 476

console group parmlib member 139
console initialization 165

JES3 183
MCS console 183
MVS 183

console message display
using the SET command 477

588 z/OS V1R4.0 MVS Initialization and Tuning Reference

console name
for the system console 173

CONSOLE statement in CONSOLxx 171
CONSOLE statement in IKJTSOxx 430
CONSOLxx parmlib member

description 165
overview 15

converting IEAAPFxx to PROGxx 48
COPYFROM parameter

in PROGxx parmlib member 520
COUPLE statement in COUPLExx 196
COUPLExx parmlib member

description 195
overview 15

CPENABLE parameter in IEAOPTxx 309
CPGRT parameter in IEAIPSxx 292
CPMF parameter in IEAOPTxx 309
CPU (central processing unit)

spin loop condition
recovery 243

stopped state
recovery 243

CPU affinity
mask in the PPT 532

CPU parameter in IEAIPSxx 293
CPU statement in CONFIGxx 159
CPUAD statement in CONFIGxx 159
CREATE_POOL macro 445
cross-system coupling facility 195
CSA (common service area)

tracking function
DIAGxx parmlib member 233

CSA parameter in DIAGxx 234
CSA parameter in IEASYSxx 344
CSCBLOC parameter in IEASYSxx 346
CSM (Communication Storage Manager) 445
CSSLIB parameter

in PROGxx parmlib member 516
CSVLLAxx parmlib member

description 205
overview 15

CSVLNKPR 48
CSVRTLS macro 211
CSVRTLxx parmlib member 211

CATALOG parameter 216
DEFAULT parameter 217
DSLIST parameter 215
LIBRARY parameter 217
MODULES parameter 216, 217
NOREFRESH parameter 216
overview 15
VERSION parameter 217
VOLUME parameter 216

CSVRTLxx Parmlib member
FullCacheLim parameter 215
FULLCACHELIMP parameter 216
LIBRARY parameter 215
LOGICAL parameter 216
MAXABOVE parameter 214
MAXABOVEP parameter 216
MAXBELOW parameter 214

CSVRTLxx Parmlib member (continued)
MAXBELOWP parameter 216
PHYSICAL parameter 215
REFRESH parameter 218

CTC parameter in GRSCNFxx 250
CTC parameter in IECIOSxx 386
CTncccxx parmlib member

description 219
overview 15

CTRACE macro
HEADOPTS parameter 222
with the DEFINE parameter 219

CTRACE parameter in BPXPRMxx 117
CTRACE parameter in CONSOLxx 186
CTRACE parameter in COUPLExx 199
CTRACE parameter in IECIOSxx 392
CTRACE statement

in IPCS parmlib members 93
CUNUNIxx parmlib member

description 225
overview 15

CVIO parameter in IEASYSxx 346
CWSS parameter in IEAIPSxx 293

D
DAE (dump analysis elimination)

ADYSETxx parmlib member 51
DAPREFIX parameter in IKJTSOxx 435
DASD parameter in IECIOSxx 386
data lookaside facility

See DLF
DATA parameter in DIAGxx 234
DATA statement

in IPCS parmlib members 94
DATA statement in COUPLExx 204
data verification 578
DATASET parameter in APPCPMxx 79
DATE statement in CNLcccxx 145
DAY statement in CNLcccxx 145
DB2SSID parameter in IGDSMSxx 414
DDCONS parameter in SMFPRMxx 546
DDNAME parameter in BPXPRMxx 121, 124
DEACTIVATE parameter in XCFPOLxx 569
DEACTTIME parameter in XCFPOLxx 568
deadlock detection

setting the interval 414
DEADLOCK_DETECTION parameter in

IGDSMSxx 414
DEFAULT operand in MPFLSTxx 477
DEFAULT parameter in ASCHPMxx 85
DEFAULT parameter in BPXPRMxx 131
DEFAULT parameter of CSVRTLxx parmlib

member 217
DEFAULT statement in CONSOLxx 190
DEFAULTS statement in CNLcccxx 146
DEFINE parameter

in PROGxx parmlib member 518
DELETE parameter

in PROGxx parmlib member 512, 518
DELETE parameter in CUNUNIxx 226

Index 589

DELETEAUTHORITY parameter in IPCSPRnn 442
delimiter 186
DESELECT parameter in IGDSMSxx 415
DEV parameter in IECIOSxx 387
DEV statement in CONFIGxx 159
DEVICE parameter in COUPLExx 202
DEVICE statement in CONFIGxx 159
device type

specifying in VATLSTxx 565
DEVNUM parameter in CONSOLxx 188
DEVSUP parameter in IEASYSxx 346
DEVSUPxx parmlib member

description 227
overview 16

DFLT110 parameter in IECIOSxx 390
DFLT111 parameter in IECIOSxx 390
DFLT112 parameter in IECIOSxx 390
DFSMS_OFFERING statement in IGDDFPKG

member 407
DIAG parameter in IEASYSxx 347
DIAGxx parmlib member

description 233
overview 16

DIALOG statement
in IPCS parmlib members 95

DINTERVAL parameter in IGDSMSxx 416
DIRECTORY parameter in ALLOCxx 61
disability 581
DLF (data lookaside facility)

parmlib member 147
setting system defaults 147

DMN parameter in IEAIPSxx 294
documents, licensed xxii
DOMAINNAME parameter in BPXPRMxx 128
DOMAINNUMBER parameter in BPXPRMxx 128
DP parameter in IEAIPSxx 294
DRAIN keyword on WORKQ parameter in

ASCHPMxx 84
DSD parameter in IPCSPRnn 441
DSI parameter in SCHEDxx 531
DSLIST parameter

CATALOG parameter 216
VOLUME parameter 216

DSLIST parameter of CSVRTLxx parmlib member 215
DSN parameter in ADYSETxx 52
DSNAME parameter

in PROGxx parmlib member 512, 521
in SMFPRMxx parmlib member 542

DSNTYPE parameter in IGDSMSxx 416
DSP parameter in GTFPARM 259
DSRV parameter in IEAIPSxx 295
dump analysis elimination 51
DUMP command in IEADMCxx 274
DUMP parameter in IEASYSxx 347
DUMPABND parameter

in SMFPRMxx 551
DUR parameter in IEAIPSxx 295
DVIO parameter in IEAOPTxx 309
DVTHRSH parameter in IECIOSxx 390
dynamic allocation

default for UNIT parameter 63

E
ECSA MAX parameter in IVTPRM00 445
EDSN parameter in COFVLFxx 151
EDT (eligible device table)

removed in MVS/SP 5.1 527
EMAJ parameter in COFVLFxx 152
END parameter in GTFPARM 259
END statement

in IPCS parmlib members 96
ENTRYPOINT parameter in BPXPRMxx 118, 130
EPHWP00 parmlib member

description 239
overview 16

EPNAME parameter in IEASVCxx 326
ERV parameter in IEAOPTxx 309
ESCRTABX parameter in IEAIPSxx 295
ESCTBDS parameter in IEAOPTxx 310
ESCTPOC parameter in IEAOPTxx 310
ESCTSTC parameter in IEAOPTxx 311
ESCTSWTC parameter in IEAOPTxx 312
ESCTSWWS parameter in IEAOPTxx 312
ESCTVF parameter in IEAOPTxx 313
ESCTVIO parameter in IEAOPTxx 313
ESTOR statement in CONFIGxx 160
ESTORE parameter in XCFPOLxx 569
ETR (external time reference) 135
ETRDELTA parameter in CLOCKxx 137
ETRMODE parameter in CLOCKxx 136
ETRZONE parameter in CLOCKxx 137
excessive spin loop 243
EXCLUDE statement in NUCLSTxx 499
EXIT parameter in IEASYSxx 348
EXIT statement

in IPCS parmlib members 96
EXIT statement in PROGxx 504
EXITNAME parameter in EXITxx 242
EXITxx parmlib member

description 241
overview 16

EXSPATxx parmlib member
description 243
overview 16

external time reference 135
EZBPFINI load module

in BPXPRMxx 130

F
FEATURENAME parameter in IFAPRDxx 402
FILESYSTEM parameter in BPXPRMxx 121, 124
FILESYSTYPE parameter in BPXPRMxx 118
FIX parameter in IEASYSxx 349
FIXCIDX parameter in IEAIPSxx 295
fixed link pack area 283
fixed LPA 283
FIXED MAX parameter in IVTPRM00 445
fixed page

assigned in the PPT 532
FIXED parameter in BPXPRMxx 119, 122, 126

590 z/OS V1R4.0 MVS Initialization and Tuning Reference

FLPA (fixed link pack area)
parmlib member 283

FORKCOPY parameter in BPXPRMXX 116
FORMAT parameter in CNLcccxx 145
FORMAT parameter in PROGxx 512
FSFULL parameter in BPXPRMxx 119
FullCacheLim parameter of CSVRTLxx Parmlib

member 215
FULLCACHELIMP parameter of CSVRTLxx Parmlib

member 216

G
GDEICASB program 536
GDEISASB program 536
GDEISBOT program 536
generic entry for volume

in VATLSTxx 557
GET_LIB_ENQ keyword in CSVLLAxx 207
GETFREE parameter in DIAGxx 234
GLOBAL parameter in ADYSETxx 53
GLOBALSTOP parameter in ADYSETxx 53
GNAME parameter in TSOKEY00 556
GRAF parameter in IECIOSxx 387
GRNAME parameter in APPCPMxx 77
GROUP parameter in COUPLExx 201
GROUP parameter in IPCSPRnn 442
GROUP statement in CNGRPxx 140
GRS parameter in IEASYSxx 349
GRSCNF parameter in IEASYSxx 350
GRSCNFxx parmlib member

description 247
overview 16

GRSRNL parameter in IEASYSxx 350
GRSRNLxx parmlib member

description 253
overview 16

GTFPARM parmlib member
description 257
overview 16

H
HALT parameter in IECIOSxx 388
hard-copy message log

flagging messages 481
JES3 messages 481

HARDCOPY statement in CONSOLxx 188
hardware configuration definition 3
HCD (hardware configuration definition)

I/O configuration 3
HCFORMAT parameter in CONSOLxx 190
HCPYGRP parameter in CONSOLxx 189
HELP parameter in IKJTSOxx 429
HIBFREXT parameter in TSOKEY00 554
HIDT (hot I/O definition table) 381
HOLDMODE parameter in CONSOLxx 191
HSP_SIZE parameter in IGDSMSxx 416
HWNAME of IEASYMxx parmlib member 330
HWNAME parameter in IFAPRDxx 401
HWNAME, segmenting LOADxx statements 452

I
ICS parameter in IEASYSxx 351
ID parameter in IFAPRDxx 403
IDAVSJST program 536
IEAABD00 parmlib member

description 261
overview 16

IEAAPFxx parmlib member
description 265
overview 16

IEAAPP00 parmlib member
description 269
overview 17

IEACMD00 parmlib member
description 271
overview 17

IEADMCxx parmlib member
description 273
overview 17

IEADMP00 parmlib member
description 277
overview 17

IEADMR00 parmlib member
description 281
overview 17

IEAFIXxx parmlib member
description 283
overview 17

IEAICSxx parmlib member
description 287
overview 17

IEAIPSxx parmlib member
description 291
overview 17

IEALPAxx parmlib member
description 303
overview 18

IEANUC0x member
substituting an alternate 8

IEAOPTxx parmlib member
description 307
overview 18

IEAPAKxx parmlib member
description 319
overview 18

IEASLPxx parmlib member
description 321
overview 18

IEASVCxx parmlib member
description 325
overview 18

IEASYMxx parmlib member
description 329
HWNAME parameter 330
LPARNAME parameter 331
overview 18
SYMDEF parameter 333
SYSCLONE parameter 332
SYSNAME parameter 332
SYSPARM parameter 332
VMUSERID parameter 331

Index 591

IEASYSxx parmlib member
description 335
overview 19
parameters, overview 335
SYSNAME parameter 338

IECIOSxx parmlib member
description 381
overview 19

IEFSSNxx parmlib member
defining SMS 409
description 393, 573
overview 19

IEFUSI user exit 111
IFAPRDxx parmlib member

description 397
OS/390 elements

enabling 397
overview 19
PRODUCT statement 400
WHEN statement 400

IGDDFPKG parmlib member
description 405
DFSMS_OFFERING statement 407
DFSMS/MVS features

defining 405
DFSMS/MVS functional components

defining 405
overview 19

IGDSMSxx parmlib member
description 409
overview 19
syntax rules 411

IKJPRM00 parmlib member
description 423
overview 19

IKJTSO parameter in IEASYSxx 351
IKJTSOxx parmlib member

description 427
overview 19

IMAGE parameter in CUNUNIxx 226
IMBED statement

in IPCS parmlib members 99
Improved Data Recording Capability feature

setting defaults 227
INADDRANYCOUNT parameter in BPXPRMxx 129
INADDRANYPORT parameter in BPXPRMxx 129
INCLUDE statement in NUCLSTxx 499
indirect reference 46
indirect volume serial support 46
InfoWindow display device

specified in CONSOLxx member 173
INIT statement in CONSOLxx 183
init-routine parameter in IEFSSNxx 574
initial program load 4
INITPARM(initparm) parameter in IEFSSNxx 396
INITRTN(initrtn) parameter in IEFSSNxx 395
INLOCKHI parameter in IKJPRM00 424
INLOCKLO parameter in IKJPRM00 424
installation exit

defining
in EXITxx parmlib member 241

installation exit (continued)
defining (continued)

in PROGxx parmlib member 503
specifying 24

interactive problem control system
See IPCS

INTERVAL parameter in COUPLExx 198
INTERVAL parameter in IGDSMSxx 417
INTSECT release

recovery for excessive spinning 243
INTVAL parameter of SMFPRMxx parmlib

member 541
IOC parameter in IEAIPSxx 296
IOP parameter in IEAIPSxx 296
IOQ parameter in IEAIPSxx 296
IOS parameter in IEASYSxx 352
IOSRVC parameter in IEAIPSxx 296
IOSVROUT program 536
IOTDASD parameter in IECIOSxx 387
IOTIMING parameter in IECIOSxx 388
IPCMSGNIDS parameter in BPXPRMxx 114
IPCMSGQBYTES parameter in BPXPRMxx 115
IPCMSGQMNUM parameter in BPXPRMxx 115
IPCS (interactive problem control system)

exit routines
specified in BLSCECT member 89
specified in BLSCUSER member 91

IPCSEMNIDS parameter in BPXPRMxx 115
IPCSEMNOPS parameter in BPXPRMxx 115
IPCSEMNSEMS parameter in BPXPRMxx 115
IPCSHMMPAGES parameter in BPXPRMxx 116
IPCSHMNIDS parameter in BPXPRMxx 116
IPCSHMNSEGS parameter in BPXPRMxx 116
IPCSHMSPAGES parameter in BPXPRMxx 116
IPCSPARM data set 89
IPCSPRnn parmlib member

description 441
session parameters 441

IPCSPRxx parmlib member
overview 19

IPL (initial program load)
type of IPL 4

IPS parameter in IEASYSxx 352
IPXLOADX member of SYS1.SAMPLIB 456
IVTPRM00 parmlib member

description 445
overview 19

IXCINJST program 536

J
JCL (job control language)

master JCL 9
JES (job entry subsystem)

master JCL
defining 9
IEFSSNxx parmlib member 9
START command 9

job control language 9
job entry subsystem 9
JOBNAME parameter in CTncccxx 223

592 z/OS V1R4.0 MVS Initialization and Tuning Reference

JOBNAME parameter in IGDSMSxx 417
JWT parameter in SMFPRMxx 546

K
KEY parameter in DIAGxx 234
KEY parameter in PFKTABxx 502
KEY parameter in SCHEDxx 530
keyboard 581

L
L (list option)

specified in IEASYSxx 340
LENGTH parameter in DIAGxx 234
LIBRARIES statement in CSVLLAxx 206
library lookaside

See LLA
LIBRARY parameter of CSVRTLxx parmlib

member 217
LIBRARY parameter of CSVRTLxx Parmlib

member 215
LICENSE parameter in IEASYSxx 353
licensed documents xxii
LIKEHEAD parameter in CTncccxx 224
LIMMSG parameter in BPXPRMxx 133
LINELENGTH parameter in IPCSPRnn 443
LINKLIB parameter

in PROGxx parmlib member 516
list option (L)

specified in IEASYSxx 340
LISTDSN parameter in SMFPRMxx 542
LLA (library lookaside)

creating the LNKLST concatenation 507
IEACMD00 member 271
LLA REFRESH command 508
START command 271
SYS1.PROCLIB library 271

LLA REFRESH command 508
LNK parameter in IEASYSxx 336, 353
LNKAUTH parameter in IEASYSxx 353
LNKAUTH system parameter

effect 508
LNKLST concatenation 368

APF authorization 508
APF parameter in IEASYSxx 341
cataloging data sets 508
concatenation 507
creation 507
description 507
IEALPAxx member 303
IEFIXxx 283
LNKAUTH system parameter 267
specified in IEASYSxx member 267
specifying 449
SYS1.LINKLIB 507
using PDSE data sets 508

LNKLST set
activating 519
definition 506
locating a routine 518

LNKLST set (continued)
relationship to LNKLST concatenation 506

LNKLST statement in PROGxx 506
LNKLST statement in PROGxx parmlib member 518
LNKLSTxx parmlib member

description 449
overview 19
using PROGxx instead of 449

LNKMEMBERS statement in CSVLLAxx 207
LOAD system parameter

operator entry 5
LOADxx parmlib member

description 451
overview 20

LOBFREXT parameter in TSOKEY00 554
LOCALMSG statement in COUPLExx 203
LOCKS parameter in IEASVCxx 326
LOCREAL parameter in DIAGxx 234
LOGCLS parameter in IEASYSxx 353
logical extensions 46
LOGICAL parameter of CSVRTLxx Parmlib

member 216
logical unit 73
LOGLIM parameter in CONSOLxx 183
LOGLMT parameter in IEASYSxx 354
LOGNAME parameter in IKJTSOxx 434
LOGON parameter in CONSOLxx 191
LOGREC parameter in IEASYSxx 354
LOGSEL parameter in IKJTSOxx 434
LookAt message retrieval tool xxii
LPA

PROGxx parmlib member 503
LPA parameter in IEASYSxx 356
LPA statement in PROGxx 510
LPALIB parameter

in PROGxx parmlib member 517
LPALST concatenation 467
LPALSTxx parmlib member

description 467
overview 20

LPARNAME of IEASYMxx parmlib member 331
LPARNAME parameter in IFAPRDxx 400
LPARNAME, segmenting LOADxx statements 452
LPREF parameter in SCHEDxx 532
LRUCYCLES parameter in IGDSMSxx 418
LRUTIME parameter in IGDSMSxx 418
LSCTFET parameter in IEAOPTxx 314
LSCTFTT parameter in IEAOPTxx 314
LSCTMTE parameter in IEAOPTxx 314
LSCTUCT parameter in IEAOPTxx 314
LU (logical unit)

base LU 76
definition in parmlib 73
NOSCHED LU 75
system base LU 76

LUADD statement in APPCPMxx 74
LUDEL statement in APPCPMxx 78

Index 593

M
man pages - UNIX 239
MASK keyword in IEAICSxx 287
master catalog 451

specifying an alternate 8
master JCL

alternate versions 9, 10
changing 9, 10
defining the job entry subsystem 9
MSTJCL00 load module 9
MSTJCLxx parmlib member 495
START command 9
updating

example 9
master scheduler JCL data set

adding MSTJCLxx statements 12
defining the job entry subsystem 10
IBM-supplied sample

IEESMJCL member 10
SYS1.SAMPLIB 10

IEFSSNxx member
deleting the JES START command 10

modifying 12
MSTRJCL parameter in IEASYSxx 10

master trace table
setting size 527, 528

MATCH parameter in ADYSETxx 53
MATCHSYS parameter in GRSCNFxx 249
MAX parameter in ASCHPMxx 83
MAXABOVE parameter of CSVRTLxx Parmlib

member 214
MAXABOVEP parameter of CSVRTLxx Parmlib

member 216
MAXASSIZE parameter in BPXPRMxx 111
MAXBELOW parameter of CSVRTLxx Parmlib

member 214
MAXBELOWP parameter of CSVRTLxx Parmlib

member 216
MAXCAD parameter in IEASYSxx 356
MAXCORESIZE parameter in BPXPRMxx 111
MAXCPUTIME parameter in BPXPRMxx 111
MAXDORM parameter in SMFPRMxx 545
MAXEXPB parameter in COFDLFxx 148
MAXFILEPROC parameter in BPXPRMxx 109
MAXFILESIZE parameter in BPXPRMxx 110
MAXMMAPAREA parameter in BPXPRMxx 112
MAXMSG parameter in COUPLExx 199
MAXNWAIT parameter in ALLOCxx 68
MAXPROCSYS parameter in BPXPRMxx 108
MAXPROCUSER parameter in BPXPRMxx 109
MAXPTYS parameter in BPXPRMxx 110
MAXQUEUEDSIGS parameter in BPXPRMxx 133
MAXSHAREPAGES parameter in BPXPRMxx 112
MAXSOCKETS parameter in BPXPRMxx 129
MAXTHREADS statement in BPXPRMxx 110
MAXTHREADTASKS parameter in BPXPRMxx 110
MAXUIDS parameter in BPXPRMxx 109
MAXUSER parameter in IEASYSxx 356
MAXVIRT parameter in COFVLFxx 152
MCCAECTH parameter in IEAOPTxx 315
MCCAFCTH parameter in IEAOPTxx 315

MCCFXEPR parameter in IEAOPTxx 315
MCCFXTPR parameter in IEAOPTxx 315
MCCMAXSW parameter in IEAOPTxx 316
MCS (multiple console support)

device used as MCS console 192
MEASURE parameter in ALLOCxx 61
member selection list 578
MEMBERS keyword in CNGRPxx 140
MEMLIMIT parameter in SMFPRMxx 550
message

at the operator’s console 475
control 475
display 475
management 475
presentation 475

message area
.MSGCOLR statement 477
color attribute 477
default values for display 477
highlighting attribute

intensity attribute 477
message automation

NetView subsystem 480
message management

automation 475
exit routine 475
flagging JES3 messages 481
retention 475
suppression 475

message presentation
control

.MSGCOLR statement 476
MPFLSTxx parmlib member 476

message processing
.DEFAULT statement

options 484
syntax 484

controlling
defining color 481
defining highlighting 481
defining intensity 481

examples in MPFLSTxx
automation processing 493
overriding system defaults 493
passing a token 493

message suppression
methods 489

MPFHCF statement
options 486
syntax 486

MPFLSTxx parmlib member 480, 481
MSGID NOCHANGE statement 486
msgid parameter

options 481, 482
syntax 481, 482

options 486
syntax 486

message processing facility list 475
message retrieval tool, LookAt xxii
message routing

for consoles 167

594 z/OS V1R4.0 MVS Initialization and Tuning Reference

message table 481
message type 477
MFORM parameter in CONSOLxx 178
MIGLIB parameter

in PROGxx parmlib member 516
MIH (missing interrupt handler) 381
MIN parameter in ASCHPMxx 83
missing interrupt handler 381
MLIM parameter in CONSOLxx 183
MLPA (modified link pack area)

adding module
through the MLPA parameter 283

MLPA parameter in IEASYSxx 357
MMS parameter in CONSOLxx 185
MMSLSTxx parmlib member

description 471
overview 20

MNTS parameter in IECIOSxx 388
MOD parameter in IFAPRDxx 403
MODE parameter in BPXPRMxx 121
MODE parameter in TSOKEY00 555
MODESW parameter in TSOKEY00 556
modified link pack area 283
MODIFY CSM command 445
MODNAME parameter in EXITxx 242
MODULES parameter of CSVRTLxx parmlib

member 216, 217
MONITOR parameter on CONSOLE statement 180
MONITOR parameter on INIT statement 185
MONTH statement in CNLcccxx 145
mount attribute

specifying in VATLSTxx 564
mount message suppression

specifying in VATLSTxx 565
MOUNT parameter in BPXPRMxx 124
MOUNTMSG parameter in IECIOSxx 388
MOUNTPOINT parameter in BPXPRMxx 124
MPF parameter in CONSOLxx 184
MPFHCF parameter in MPFLSTxx 486
MPFHCF statement in MPFLSTxx

defaults 481
purpose 481

MPFLSTxx parmlib member
command processing 475
controlling message presentation

.MSGCOLR statement 476
controlling message processing

syntax 481
description 475
message display

defaults 476
message processing 480
message suppression 482
message table 481
overview 20

MSCOPE parameter in CONSOLxx 180
msgarea parameter in MPFLSTxx 477
msgid parameter in MPFLSTxx 483

defaults 481
purpose 481

MSGIDS statement in MPFLSTxx
defaults 481
purpose 481

MSGLEVEL parameter in ASCHPMxx 86
MSGLIMIT parameter in ASCHPMxx 84
MSGONLY parameter in IECIOSxx 388
MSGPROTECT operand of SEND parameter 438
MSGRT parameter in CONSOLxx 179
MSO parameter in IEAIPSxx 297
MSTJCL00 load module 9

changing 9
MSTJCLxx load module in SYS1.LINKLIB

changing 10
MSTJCLxx parmlib member

changing 10
description 495
overview 20

MSTRJCL parameter in IEASYSxx 10, 358
MSTRJCL system parameter 9, 10
MT statement in SCHEDxx 528
multiple console support 192
MVS message service list 471
MVS workload management (WLM) xxi

N
NAME keyword in CNGRPxx 140
NAME parameter

in PROGxx parmlib member 520
NAME parameter in ALLOCxx 63
NAME parameter in BPXPRMxx 130
NAME parameter in COFVLFxx 151
NAME parameter in CONSOLxx 173
NAME parameter of IFAPRDxx 402
NetView subsystem 480
NETWORK statement in BPXPRMxx 128
NOCCGRP parameter in CONSOLxx 186
NOCHANGE option on the .MSGCOLR statement 477
NOCHANGE parameter in MPFLSTxx 486
NOCHECK parameter

in PROGxx parmlib member 521
NODESMF parameter in IKJTSOxx 432
NODSD parameter in IPCSPRnn 441
NOJES3 option on CON parameter 344
NOLISTDSN parameter in SMFPRMxx 542
NOMAXDORM parameter in SMFPRMxx 545
NONVIO parameter in IEASYSxx 359
NOPARSE parameter in BPXPRMxx 126
NOPDR parameter in IPCSPRnn 441
NOPREF parameter in SCHEDxx 533
NOPROMPT parameter in SMFPRMxx 546
NOREFRESH parameter of CSVRTLxx Parmlib

member 216
NORESTART statement in SCHEDxx 529
NOSCHED parameter in APPCPMxx 75
NOSECURITY parameter in BPXPRMxx 127
NOSETUID parameter in BPXPRMxx 122, 126
NOSTART parameter in IEFSSNxx 574
NOSTATUS parameter in SMFPRMxx 545
NOSTATUS statement in XCFPOLxx 568
NOTBKGND parameter in IKJTSOxx 429

Index 595

NOTE statement
in IPCS parmlib members 99

NOTEXT parameter in BPXPRMxx 123, 125
Notices 583
NOTIFY parameter in ADYSETxx 53
NOWRAP parameter in CTncccxx 221
NOWRITEPROTECT parameter in BPXPRMxx 120,

122, 126
NPRMPT parameter in IEASVCxx 327
NQN/NONQN parameter in APPCPMxx 78
NSYSLX parameter in IEASYSxx 360
nucleus

substituting an alternate 8, 451
nucleus region

load module
adding 497
excluding 497
replacing 497

NUCLSTxx parmlib member
description 497
in the SYSn.IPLPARM data set 498
nucleus region

adding load modules 497
replacing load modules 497

overview 20

O
OAMPROC parameter in IGDSMSxx 417
OAMTASK parameter in IGDSMSxx 418
OFF parameter in CTncccxx 224
OMVS parameter in IEASYSxx 360
ON parameter in CTncccxx 222
OPER parameter in EXSPATxx 244
operator command

and system tailoring 3
operator console

display 476
OPERATOR parameter in CLOCKxx 136
OPGN parameter in IEAICSxx 288
OPI parameter in IEASYSxx 361
OPNOTIFY parameter in COUPLExx 198
OPT parameter in IEASYSxx 361
OPTIONS parameter in CTncccxx 223
OPTIONS statement in ASCHPMxx 85
OUTCLASS parameter in ASCHPMxx 87
OUTLIM parameter in IKJTSOxx 433
OUTWARN parameter in IKJTSOxx 433
override expiration date

on SMS-managed DASD data set 414, 418
OVRD_EXPDT parameter in IGDSMSxx 418
OWAITHI parameter in IKJPRM00 424
OWAITLO parameter in IKJPRM00 425
OWNER parameter in IFAPRDxx 402

P
page data set

specifying 363
PAGE parameter in IEASYSxx 362
pageable link pack area 283

PAGESIZE parameter in IPCSPRnn 443
paging space

minimum amount required 364
shortage 364

PAGTOTL parameter in IEASYSxx 365
PAK parameter in IEASYSxx 366
PANDEF statement

in IPCS parmlib members 99
Parallel Access Volumes (PAV) 163
PARM parameter in BPXPRMxx 119, 122, 125, 130
parm parameter in IEFSSNxx 574
parmlib

controlling 6
parmlib concatenation 451, 462
Parmlib Concatenation

using 6
parmlib member

ADYSETxx 51
ALLOCxx 57
APPCPMxx 73
ASCHPMxx 81
BLSCECT 89
BLSCUSER 91
BPXPRMxx 103
CLOCKxx 135
CNGRPxx 139
CNLcccxx 143
COFDLFxx 147
COFVLFxx 149
COMMNDxx 153
CONFIGxx 157
CONSOLxx 165
COUPLExx 195
CSVLLAxx 205
CSVRTLxx 211
CTncccxx 219
CUNUNIxx 225
DEVSUPxx 227
DIAGxx 233
EPHWP00 239
EXITxx 241
EXSPATxx 243
GRSCNFxx 247
GRSRNLxx 253
GTFPARMxx 257
IEAABD00 261
IEAAPFxx 265
IEAAPP00 269
IEACMD00 271
IEADMCxx 273
IEADMP00 277
IEADMR00 281
IEAFIXxx 283
IEAICSxx 287
IEAIPSxx 291
IEALPAxx 303
IEAOPTxx 307
IEAPAKxx 319
IEASLPxx 321
IEASVCxx 325
IEASYMxx 329

596 z/OS V1R4.0 MVS Initialization and Tuning Reference

parmlib member (continued)
IEASYSxx 335
IECIOSxx 381
IEFSSNxx 393, 573
IFAPRDxx 397
IGDDFPKG 405
IGDSMSxx 409
IKJPRM00 423
IKJTSOxx 427
IPCSPRnn 441
IVTPRM00 445
LNKLSTxx 449
LOADxx 451
LPALSTxx 467
MMSLSTxx 471
MPFLSTxx 475
MSTJCLxx 495
NUCLSTxx 497
objectives for sharing 25
PFKTABxx 501
PROGxx 503
SCHEDxx 527
sharing 8
SMFPRMxx 537
syntax rules 7
system symbols 25
TSOKEY00 553
VATLSTxx 557
XCFPOLxx 567

parmlib member selection list 578
parmlib symbolic preprocessing 578
PASS parameter in SCHEDxx 532
PATHIN statement in COUPLExx 202
PATHOUT statement in COUPLExx 202
PAV statement in CONFIGxx 163
PCI parameter in GTFPARM 259
PCOUPLE parameter in COUPLExx 197
PCTRETB parameter in COFDLFxx 148
PDATA parameter in IEAABD00 263
PDATA parameter in IEADMP00 279
PDR parameter in IPCSPRnn 441
PDSE (partitioned data set extended)

sharing across systems in a sysplex 419
starting or modifying the PDSE monitor 419

PDSE_MONITOR parameter in IGDSMSxx 419
PDSESHARING parameter in IGDSMSxx 419
PFK parameter in CONSOLxx 185
PFK parameter in PFKTABxx 502
PFK settings in CONSOLxx 165
PFKTAB parameter in CONSOLxx 179
PFKTABxx parmlib member

description 501
overview 20

PGN parameter in IEAICSxx 288
PGN parameter in IEAIPSxx 297
PGNNAME parameter in SCHEDxx 530
PHYSICAL parameter of CSVRTLxx Parmlib

member 215
planning 25

IEASYMxx parmlib member 36
LOADxx parmlib member 40

planning (continued)
values, specifying 25

PLATCMD statement in IKJTSOxx 431
PLATPGM parameter in IKJTSOxx 431
PLEXCFG parameter in IEASYSxx 366
PLPA (pageable link pack area)

adding module
through the INCLUDE parameter 285

POLICY parameter in ALLOCxx 66, 67
POLICYNW parameter in ALLOCxx 69
POOL parameter in IVTPRM00 445
PPGRT parameter in IEAIPSxx 297
PPGRTR parameter in IEAIPSxx 298
PPT (program properties table)

APF-authorization 530
default entries 527
effects of the SET SCH command 528
IBM-supplied PPT 528
modifying 528
preferred storage frame

assigning 533
processor affinity 532
special properties

assigning 527
V=R program 530
V=V program 531
with VARY STOR,OFFLINE 533

PPT statement in SCHEDxx 529
preferred storage frame

assigning 533
PRESET parameter in CTncccxx 219, 222
PRIM_ORG parameter in ALLOCxx 62
PRIMARY parameter in ALLOCxx 60
PRIMARY parameter in IEFSSNxx 396, 574
PRIORITYGOAL parameter in BPXPRMxx 114
PRIORITYPG parameter in BPXPRMxx 113
PRIV parameter in SCHEDxx 531
PROBIDPREFIX parameter in IPCSPRnn 442
processor storage increment size 369
PROD parameter in IEASYSxx 367
PRODUCT parameter in IFAPRDxx 401
PRODUCT statement in IFAPRDxx member 400
PROG parameter in IEASYSxx 367
program function key

defining the PFK table 501
setting 165, 501

program properties table
See PPT

PROGxx parmlib member
description 503
overview 20

PROMPT parameter in SMFPRMxx 546
PSTIMER parameter in APPCPMxx 76
PURGE keyword on WORKQ parameter in

ASCHPMxx 84
PVLDP parameter in IEAIPSxx 298
PWSS parameter in IEAIPSxx 299

Q
QNAME parameter in GRSRNLxx 255

Index 597

quick start IPL
after a power-up 4
definition 4

R
RBUF parameter in CONSOLxx 181
RCCCPUT parameter in IEAOPTxx 316
RCCFXET parameter in IEAOPTxx 316
RCCFXTT parameter in IEAOPTxx 317
RCCPTRT parameter in IEAOPTxx 317
RCCUICT parameter in IEAOPTxx 317
RCFBDUMP parameter in TSOKEY00 556
RDE parameter in IEASYSxx 368
REAL parameter in IEASYSxx 368
REALSTORAGE parameter in CUNUNIxx 226
REC parameter in SMFPRMxx 545
RECONLIM parameter in IKJPRM00 425
RECONLIM parameter in TSOKEY00 554
RECORDS parameter in ADYSETxx 53
REDIRECTED_TAPE parameter in ALLOCxx 63
REFRESH parameter of CSVRTLxx parmlib

member 218
REGION parameter in ASCHPMxx 86
region size 111
REJOIN parameter in GRSCNFxx 250
RELEASE parameter in IFAPRDxx 403
REPLACE parameter in IEASVCxx 326
RER parameter in IEASYSxx 369
RESETTIME parameter in XCFPOLxx 568
RESMIL parameter in GRSCNFxx 249
RESOLVER_PROC in BPXPRMxx 129
RESPGOAL parameter in ASCHPMxx 84
RESTART parameter in GRSCNFxx 250
RESTART resource

recovery for excessive spinning 243
RESTART statement in SCHEDxx 529
RESVBUF parameter in IKJPRM00 425
RETAIN parameter in MPFLSTxx 483, 485, 487
RETRY parameter in COUPLExx 199
REVERIFY parameter in IGDSMSxx 419
RISGNL response

recovery for excessive spinning 243
RLIM parameter in CONSOLxx 184
RLS_MAX_POOL_SIZE parameter in IGDSMSxx 419
RLS_MaxCfFeatureLevel in IGDSMSxx 420
RLSE parameter in ALLOCxx 63
RLSINIT parameter in IGDSMSxx 419
RMAX parameter in CONSOLxx 191
RMPTTOM parameter in IEAOPTxx 317
RNAME parameter in GRSRNLxx 255
RNL parameter in GRSRNLxx 255
RNUM parameter in CONSOLxx 178
ROOT parameter in BPXPRMxx 121
ROUND parameter in ALLOCxx 62
ROUTCODE parameter in CONSOLxx 189
routing code

for console message 165
for console message in CONSOLxx 165

RPGN parameter in IEAICSxx 288
RSU parameter in IEASYSxx 369

RSVNONR parameter in IEASYSxx 371
RSVSTRT parameter in IEASYSxx 371
RTLS 211
RTLS parameter in IEASYSxx 372
RTME parameter in CONSOLxx 178
RTO parameter in IEAIPSxx 299
run-time library services (RTLS) 211

S
SCH parameter in IEASYSxx 372
SCHED parameter in APPCPMxx 75
SCHEDxx parmlib member

abend code
adding 527
deleting 527

description 527
example in SYS1.SAMPLIB 528
overview 21

SCRSIZE parameter in TSOKEY00 555
SDATA parameter in IEAABD00 262
SDATA parameter in IEADMP00 278
SDATA parameter in IEADMR00 282
SDFT110 parameter in IECIOSxx 391
SDFT111 parameter in IECIOSxx 391
SDFT112 parameter in IECIOSxx 391
SDSN_WAIT statement in ALLOCxx 66
SECONDARY parameter in ALLOCxx 60
SECURITY parameter in BPXPRMxx 127
SEG parameter in CONSOLxx 177

maximum and default specification 193
SELECT parameter in IGDSMSxx 420
SEND command 427
SEND parameter

BROADCAST operand 437
MSGPROTECT operand 438

SEND statement in IKJTSOxx 436
session parameter in IPCSPRnn

member dataset 441
modifying 441
respecifying 441

SET command
used to modify SMF processing 537

SET EXS command
used to change EXSPATxx member 244

SET MMS command
use 143

SET RTLS=xx operator command 211
SETSMF command 538
SETUID parameter in BPXPRMxx 122, 126
SHARE parameter in ADYSETxx 54
sharing parmlib members 8
shortcut keys 581
SHRLIBMAXPAGES parameter in BPXPRMxxx 113
SHRLIBREGSIZE parameter in BPXPRMxxx 113
SI3551 183
SID parameter in SMFPRMxx 542
SIDEINFO statement in APPCPMxx 79
SIMETRID parameter in CLOCKxx 137
SIZE parameter in ALLOCxx 65
SIZE parameter in IGDSMSxx 420

598 z/OS V1R4.0 MVS Initialization and Tuning Reference

SMF parameter in IEASYSxx 372
SMF record

record type 42
synchronized with SMF interval 420

SMF_TIME parameter in IGDSMSxx 420
SMFPRMxx parmlib member

ACTIVE|NOACTIVE parameter 541
description 537
DSNAME parameter 541
INTVAL parameter 541
overview 21
SID parameter 542
SYNCVAL parameter 541

SMS (Storage Management Subsystem)
changing options 411
defined to MVS 409
parmlib member 409
starting SMS 411

SMS parameter in IEASYSxx 373
SMS parameter in IGDSMSxx 412
SMS parameter in PROGxx 512
SPACE statement in ALLOCxx 60
SPEC_MNT statement in ALLOCxx 67
spin lock release

recovery for excessive spinning 243
spin loop

automatic recovery 243
default recovery action 244
recovery 243
specifying system default 243
specifying timeout interval 243

SPIN parameter in EXSPATxx 244
SPINRCVY statement in EXSPATxx 244
SPINTIME parameter in EXSPATxx 244
SPOOLCL parameter in IKJTSOxx 432
SPPINST member of SYS1.SAMPLIB 456
SPREF parameter in SCHEDxx 532
SQA (system queue area)

SQA parameter in IEASYSxx 373
tracking function

DIAGxx parmlib member 233
SQA parameter in DIAGxx 234
SRB parameter in IEAIPSxx 300
SRM parameter in GTFPARM 259
SRVCLASS parameter in IEAICSxx 289
SSN parameter in IEASYSxx 375
ssname parameter in IEFSSNxx 574
START parameter in ADYSETxx 54
START parameter in IEFSSNxx 396
STARTUP_EXEC parameter in BPXPRMxx 131
STARTUP_PROC parameter in BPXPRMxx 131
STATE parameter in IFAPRDxx 403
STATUS parameter in SMFPRMxx 545
STEBLIBLIST parameter in BPXPRMxx 117
STND parameter in IECIOSxx 389
STOP parameter in ADYSETxx 54
stopped CPU (central processing unit)

recovery for excessive spinning 243
STOR statement in CONFIGxx 161
storage increment size 369

Storage Management Subsystem
See SMS

STORAGE statement in CONFIGxx 161
STORE parameter in XCFPOLxx 569
STRNAME statement in COUPLExx 202
SUB parameter in CTncccxx 222
SUBFILESYSTYPE parameter in BPXPRMxx 130
sublevel trace

specified in CTncccxx parmlib member 219
specified in SUB parameter 222

SUBNAME(subname) parameter in IEFSSNxx 395
SUBPARM parameter in SMFPRMxx 550
SUBPOOL parameter in DIAGxx 234
substr(p) parameter in IEAICSxx 288
SUBSYS parameter in ASCHPMxx 85
SUBSYS parameter in IEAICSxx 289
SUBSYS parameter in IEFSSNxx 395
SUBSYS parameter in SMFPRMxx 551
SUP parameter in MPFLSTxx 484, 485, 487
SUPERUSER parameter in BPXPRMXX 117
SUPPRESS parameter in ADYSETxx 54
SUPPRESSALL parameter in ADYSETxx 54
SVC

user-defined 325
SVC parameter in IEASYSxx 375
SVC table 325
SVCDUMP parameter in ADYSETxx 54
SVCPARM statement in IEASVCxx 326
SWAP parameter in SCHEDxx 531
SWAPRSF parameter in IEAOPTxx 318
SWITCH statement in CONFIGxx 162
SYMBOL statement

in IPCS parmlib members 99
symbolic links

in a sysplex 121
Symbolic Parmlib Parser 577
symbolic preprocessing 578
symbolic substitutions 577
SYMDEF of IEASYMxx parmlib member 333
SYNC parameter in BPXPRMxx 122, 125
SYNCDEFAULT parameter in BPXPRMxx 119
SYNCHDEST parameter in CONSOLxx 192
SYNCHRES parameter in GRSCNFxx 251
SYNCRESERVE parameter in BPXPRMxx 126
SYNCVAL parameter of SMFPRMxx parmlib

member 541
syntax

rules for parmlib members 7
syntax checking 577
syntax conventions

how to read xxiii
SYS parameter in SMFPRMxx 547
SYS1.DAE dataset

ADYSETxx parmlib member 51
SYS1.LINKLIB data set 449
SYS1.LPALIB

concatenation 467
SYS1.STGINDEX 378
SYSABEND data set

parmlib member 261
SYSCLONE of IEASYMxx parmlib member 332

Index 599

SYSDDIR statement
in IPCS parmlib members 101

SYSDEF statement in IEASYMxx 330
SYSGONE statement in XCFPOLxx 568
SYSLIB statement in PROGxx 505, 516
SYSM parameter in GTFPARM 259
SYSMDUMP data set

parmlib member 281
SYSMDUMP parameter in ADYSETxx 55
SYSn.IPLPARM data set

contains NUCLSTxx member 498
on the IODF volume 498

SYSNAME of IEASYMxx parmlib member 332
SYSNAME parameter

IEASYSxx parmlib member 338
SYSNAME parameter in IEASYSxx 375
SYSNAME parameter in IFAPRDxx 401
SYSOUT parameter in IKJTSOxx 435
SYSP parameter

specified by operator 339
SYSP parameter in IEASYSxx 377
SYSPARM of IEASYMxx parmlib member 332
sysplex

BPXPRMxx SYSPLEX statement 120
BPXPRMxx VERSION statement 121
console definition

defining the same console to different
systems 167

CONSOLxx parameters with sysplex scope 165
serialization 135
synchronization 135
time stamp 135
using system symbols in shared CONSOLxx

members 165
XCF Group 120

SYSPLEX parameter in COUPLExx 197
SYSPLEX parameter in IFAPRDxx 401
Sysplex Timer 135
SYSPLEXSHR parameter in IKJTSOxx 439
SYSR1

defining substitution texts 26
definition 27
example 334

SYSRES 46
SYST parameter in SCHEDxx 532
system catalog

specifying an alternate 8
system console

naming 173
naming restrictions 173

system initialization
overview 3
system tailoring 3

system parameter
operator entry 5

SYSTEM parameter in IPCSPRnn 442
SYSTEM parameter in XCFPOLxx 568
SYSTEM parameter on CONSOLE statement in

CONSOLxx 181
system residence (sysres) volume

specifying volume serial number 265

system symbol
specifying in SMFPRMxx 541
using in parmlib members 25

system symbol console name
specifying in CONSOLxx 167
using 167

system tailoring
at initialization time 3
implicit system parameters 21
operator command 3
security

APF-authorized library list 22
system trace

modifying 153
SYSTEMS parameter in IGDSMSxx 420
SYSUDUMP data set

parmlib member 277

T
TABLE parameter in PFKTABxx 502
TAG parameter in BPXPRMxx 123, 125
TAPE parameter in IECIOSxx 389
TERM parameter in EXSPATxx 244
TERMINAL parameter in IECIOSxx 392
TEST parameter

in PROGxx parmlib member 518
TEST parameter in IECIOSxx 390
TEST parameter in IKJTSOxx 432
TEXT parameter in BPXPRMxx 123, 125
time

setting 135
synchronizing 135

time of day (TOD) 135
TIME parameter in ASCHPMxx 86
TIME parameter in IECIOSxx 390
TIME statement in CNLcccxx 146
timeout interval

specifying default 243
TIMEZONE parameter in CLOCKxx 136
TIOT statement in ALLOCxx 64
TOD (time-of-day) clock

setting 135
synchronizing with ETR 135

TOLINT parameter in GRSCNFxx 250
TPDATA parameter in APPCPMxx 76
TPDEFAULT statement in ASCHPMxx 85
TPLEVEL parameter in APPCPMxx 77
TRACE parameter on IGDSMSxx 421
TRACEEXIT parameter on IGDSMSxx 421
TRACEOPTS statement in CTncccxx 221
transaction initiator class

definition in parmlib 81
TRANSREC statement in IKJTSOxx 432
TRC parameter in GTFPARM 259
TRXCLASS parameter in IEAICSxx 290
TRXNAME parameter in IEAICSxx 290
TSDP parameter in IEAIPSxx 300
TSGRP parameter in IEAIPSxx 300
TSO/E (time sharing option extensions)

APF-authorized program 427

600 z/OS V1R4.0 MVS Initialization and Tuning Reference

TSO/E (time sharing option extensions) (continued)
authorized commands table 427
authorized program table 427
defaults for the SEND command 427

TSO/E statement
in IPCS parmlib members 101

TSOKEY00 parmlib member
description 553
overview 21

TSPTRN parameter in IEAIPSxx 300
TTYGROUP parameter in BPXPRMxx 117
TUNIT parameter in IEAIPSxx 301
TYPE parameter in BPXPRMxx 118, 121, 124, 129,

130
TYPE parameter in GRSRNLxx 255
TYPE parameter in IEASVCxx 326
TYPE parameter in IGDSMSxx 421

U
UD parameter in CONSOLxx 181, 189
UEXIT parameter in CONSOLxx 184
UNDEFINE parameter

in PROGxx parmlib member 518
UNI parameter in IEASYSxx 377
Unicode Conversion Environment 225
UNIT parameter in CONSOLxx 172
UNIT statement in ALLOCxx 63
UNIX man pages 239
UNT parameter in IEAIPSxx 301
UPDATE parameter

in PROGxx parmlib member 519
UPDATE parameter in ADYSETxx 55
UREC parameter in IECIOSxx 390
use attribute

specifying in VATLSTxx 565
USE parameter in CONSOLxx 175
USEREXIT parameter in MPFLSTxx 484, 486
USERID parameter in IEAICSxx 290
USERIDALIASTABLE parameter in BPXPRMxx 118
USERMAX parameter in IKJPRM00 425
USERMAX parameter in TSOKEY00 553
USERVAR parameter in APPCPMxx 77
USR parameter in GTFPARM 260
USRCTL parameter in IKJTSOxx 435
UTME parameter in CONSOLxx 180

V
V=R area

and the PPT 533
VAL parameter in IEASYSxx 377
VARYCPU parameter in IEAOPTxx 318
VATDEF statement in VATLSTxx 557
VATLSTxx parmlib member

description 557
overview 21

VERSION parameter in IFAPRDxx 402
VERSION parameter of CSVRTLxx parmlib

member 217
VF statement in CONFIGxx 162

VIO parameter in IKJTSOxx 434
VIODSN parameter in IEASYSxx 378
virtual lookaside facility

See VLF
VLF (virtual lookaside facility)

parmlib member 149
VMCPUIDTOLERATION parameter in COUPLExx 200
VMUSERID of IEASYMxx parmlib member 331
VMUSERID parameter in IFAPRDxx 401
VMUSERID, segmenting LOADxx statements 452
VOL statement in CONFIGxx 162
VOLNSNS parameter in DEVSUPxx 229
VOLUME parameter

in PROGxx parmlib member 521
VOLUME parameter in PROGxx 512
VOLUME parameter of CSVRTLxx parmlib

member 216
volume serial

specifying in VATLSTxx 564
VOLUME statement in CONFIGxx 162
VOLUME_ENQ statement in ALLOCxx 66
VOLUME_MNT statement in ALLOCxx 67
VRREGN parameter in IEASYSxx 379

W
warm start IPL

after a system crash 4
definition 4

WHEN parameter in IFAPRDxx 400
WHEN statement in IFAPRDxx member 400
WLM (workload management) xxi
WORKQ parameter in ASCHPMxx 84
WRAP parameter in CTncccxx 221
WTR parameter in CTncccxx 224
WTRSTART parameter in CTncccxx 221
WTRSTOP parameter in CTncccxx 224

X
XCF (cross-system coupling facility)

setting system defaults 195
specifying policy for PR/SM 567

XCFPOLxx parmlib member
description 567
overview 21

XES (cross-system extended services)
setting system defaults 195

Index 601

602 z/OS V1R4.0 MVS Initialization and Tuning Reference

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Initialization and Tuning Reference

Publication No. SA22-7592-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7592-03

SA22-7592-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7592-03

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	MVS™ Workload Management
	Where to find more information
	Using LookAt to look up message explanations
	Accessing z/OS licensed documents on the Internet
	Information updates on the web

	How to read syntax conventions

	Summary of changes
	Part 1. Overview
	Chapter 1. System tailoring
	MVS hardware configuration definition
	System tailoring at initialization time
	Types of IPL
	The first IPL after system installation
	An IPL at which the PLPA is reloaded
	An IPL after power-up
	An IPL after a system crash

	Operator entry of parameters
	Description and use of the parmlib concatenation
	How to control parmlib
	General syntax rules for the creation of members
	Sharing parmlib members

	Specifying an alternate nucleus
	Specifying an alternate master (system) catalog

	Understanding the master scheduler job control language
	Where does the master JCL reside?
	Changing the master scheduler JCL
	Coding the parameter in IEASYSxx
	Specifying the master JCL in parmlib
	Specifying the master JCL in the MSTJCLxx load module

	Setting up started tasks with the Master JCL
	Using IEFJOBS to define started tasks
	Using IEFPDSI to define started tasks
	Started task processing

	Writing your own master scheduler JCL

	Overview of parmlib members
	Implicit system parameters
	Managing system security — APF-authorized library list
	Choosing an APF list format
	Specifying the APF list

	Specifying installation exits
	Specifying LNKLST concatenations

	Chapter 2. Sharing parmlib definitions
	Objectives for sharing parmlib
	What are system symbols?
	Static system symbols
	Dynamic system symbols
	Symbols reserved for system use

	Setting up a shared parmlib
	Step 1. Plan to share parmlib members
	Step 2. Determine where to specify system parameters
	Step 3. Determine where to specify the system name
	Step 4. Know the considerations for a mixed sysplex
	Step 5. Create an IEASYMxx parmlib member
	Contents of IEASYMxx
	Scope of statements in IEASYMxx
	Rules for coding IEASYMxx

	Step 6. Code support for system symbols in LOADxx
	Contents of LOADxx
	Procedure for coding LOADxx

	Using system symbols in parmlib
	Step 1. Know the rules for using system symbols in parmlib
	Using substrings of system symbols

	Step 2. Determine where to use system symbols in parmlib
	Step 3. Verify system symbols in parmlib

	Displaying static system symbols
	Diagnosing problems with static system symbols
	Indirect volume serial support
	Using indirect volume serial support
	Restrictions

	Part 2. Members of SYS1.PARMLIB
	Chapter 3. ADYSETxx (dump suppression)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for ADYSETxx
	Syntax format of ADYSETxx
	IBM-supplied defaults for ADYSETxx
	Statements/parameters for ADYSETxx

	Chapter 4. ALLOCxx (allocation system defaults)
	Parameter in IEASYSxx (supplied by the operator):
	Syntax rules for ALLOCxx
	Syntax format of ALLOCxx
	Syntax example of ALLOCxx
	IBM-supplied default for ALLOCxx
	Statements/parameters for ALLOCxx

	Chapter 5. APPCPMxx (Define APPC/MVS configuration)
	Changing values
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for APPCPMxx
	Syntax format of APPCPMxx
	IBM-supplied default for APPCPMxx
	Statements/parameters for APPCPMxx
	Response to errors in APPCPMxx

	Chapter 6. ASCHPMxx (APPC/MVS transaction scheduler)
	Changing values
	Default values
	Support for system symbols
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for ASCHPMxx
	Syntax format of ASCHPMxx
	IBM-supplied default for ASCHPMxx
	Statements/parameters for ASCHPMxx

	Chapter 7. BLSCECT (Formatting exits for dump and trace analysis)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for BLSCECT
	IBM-supplied default for BLSCECT
	Statements/parameters for BLSCECT

	Chapter 8. BLSCUSER (Installation customization for dump and trace analysis)
	Parameter in IEASYSxx (or issued by the operator):
	Syntax rules for BLSCUSER
	Syntax format of BLSCUSER
	IBM-supplied default for BLSCUSER
	Statements/parameters for BLSCUSER, BLSCECT, and embedded parmlib members

	Chapter 9. BPXPRMxx (z/OS UNIX System Services parameters)
	Syntax rules for BPXPRMxx
	Syntax of BPXPRMxx
	Syntax example of BPXPRMxx
	IBM-supplied default for BPXPRMxx
	Statements and parameters for BPXPRMxx

	Chapter 10. CLOCKxx (time of day parameters)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for CLOCKxx
	Syntax format of CLOCKxx
	IBM-supplied default for CLOCKxx
	Statements/parameters for CLOCKxx

	Chapter 11. CNGRPxx (Specify alternate console groups)
	Console groups in a SYSPLEX
	Selecting a CNGRPxx member
	Syntax rules for CNGRPxx
	Syntax examples
	Syntax format of CNGRPxx
	IBM-supplied default for CNGRPxx
	Statement/parameters for CNGRPxx

	Chapter 12. CNLcccxx (Time and date format for translated messages)
	Restrictions for CNLcccxx
	Parameter in IEASYSxx (or supplied by the operator):
	Selecting a CNLcccxx member
	Syntax rules for CNLcccxx
	Syntax format of CNLcccxx
	Syntax example of CNLcccxx
	Statements/parameters for CNLcccxx

	Chapter 13. COFDLFxx (hiperbatch parameters)
	Parameter in IEASYSxx (or issued by the operator)
	Syntax rules for COFDLFxx
	Syntax format of COFDLFxx
	Starting DLF
	Statements/parameters for COFDLFxx

	Chapter 14. COFVLFxx (virtual lookaside facility parameters)
	Collecting VLF statistics
	Parameter in IEASYSxx (or issued by the operator)
	Syntax rules for COFVLFxx
	Syntax format of COFVLFxx
	Starting VLF
	Statements/parameters for COFVLFxx

	Chapter 15. COMMNDxx (Commands automatically issued at initialization)
	Parameter in IEASYSxx (or issued by the operator):
	Support for system symbols
	Syntax rules for COMMNDxx
	IBM-supplied default for COMMNDxx
	Statements/parameters for COMMNDxx

	Chapter 16. CONFIGxx (standard configuration list)
	Comparing the current and standard configurations
	Matching configurations
	Nonmatching configurations
	Error in CONFIGxx statement

	Reconfiguring system elements
	Parameter in IEASYSxx:
	Syntax rules for CONFIGxx
	IBM-supplied default for CONFIGxx
	Statements/parameters for CONFIGxx

	Chapter 17. CONSOLxx (Console configuration definition)
	Using CONSOLxx in a sysplex
	Related members of parmlib
	Related commands
	CONSOLE statement
	INIT statement
	DEFAULT statement
	HARDCOPY statement
	IEASYSxx:
	Syntax rules for CONSOLxx
	IBM-supplied default for CONSOLxx
	Statements/parameters for CONSOLxx
	Devices used as MCS consoles
	Maximum and default specifications for AREA and SEG

	Chapter 18. COUPLExx (cross-system coupling facility (XCF) parameters)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for COUPLExx
	Syntax format of COUPLExx
	IBM-supplied default for COUPLExx
	Statements/parameters for COUPLExx

	Chapter 19. CSVLLAxx (library lookaside (LLA) list)
	Starting LLA
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for CSVLLAxx
	Syntax format of CSVLLAxx
	IBM-supplied default for CSVLLAxx
	Statements/parameters for CSVLLAxx

	Chapter 20. CSVRTLxx (Define the RTLS configuration)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for CSVRTLxx
	Syntax format of CSVRTLxx
	IBM-supplied default for CSVRTLxx
	Statements/parameters for CSVRTLxx
	Examples
	Example 1
	Example 2

	Chapter 21. CTncccxx (component trace parameters)
	Tracing of MVS components
	Tracing of installation-provided applications
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for CTncccxx
	Syntax examples
	Syntax format of CTncccxx
	IBM-supplied default for CTncccxx
	Statements/parameters for CTncccxx

	Chapter 22. CUNUNIxx (Unicode Conversion Environment)
	Selecting a CUNUNIxx member
	Parameter in IEASYSxx:
	Syntax rules for CUNUNIxx
	Syntax format of CUNUNIxx
	IBM-supplied default for CUNUNIxx
	Statements/parameters for CUNUNIxx

	Chapter 23. DEVSUPxx (Device Support Options)
	Parameter in IEASYSxx (or Issued By the Operator)
	Syntax Rules for DEVSUPxx
	Syntax Format of DEVSUPxx
	IBM-Supplied Default for DEVSUPxx
	Statements/Parameters for DEVSUPxx
	Volume Partitioning Parameters

	Chapter 24. DIAGxx (Control common storage tracking and GFS trace)
	Specifying the DIAGxx members
	Parameter in IEASYSxx (or specified by the operator):
	Syntax rules for DIAGxx
	Syntax format of DIAGxx
	IBM-supplied default for DIAGxx
	Statements/parameters for DIAGxx

	Chapter 25. EPHWP00 (BookManager® topic extraction)
	Parameter in IEASYSxx (or issued by the operator):
	Syntax rules for EPHWP00
	Syntax format of EPHWP00
	IBM-supplied default for EPHWP00

	Chapter 26. EXITxx (allocation installation exit list)
	Parameter in IEASYSxx (or issued by the operator):
	Syntax rules for EXITxx
	Syntax format of EXITxx
	IBM-supplied default for EXITxx
	Statements/parameters for EXITxx

	Chapter 27. EXSPATxx (excessive spin condition actions)
	Parameter in IEASYSxx (or issued by the operator):
	Syntax rules for EXSPATxx
	Syntax example of EXSPATxx
	IBM-supplied default for EXSPATxx
	Statements/parameters for EXSPATxx
	Example of EXSPATxx

	Chapter 28. GRSCNFxx (global resource serialization configuration)
	Parameters in IEASYSxx:
	Syntax rules for GRSCNFxx
	IBM-supplied default for GRSCNFxx
	Statements/parameters for GRSCNFxx

	Chapter 29. GRSRNLxx (global resource serialization resource name lists)
	Parameter in IEASYSxx (or supplied by the operator):
	Support for system symbols
	Syntax rules for GRSRNLxx
	IBM-supplied default for GRSRNLxx
	Statements/parameters for GRSRNLxx

	Chapter 30. GTFPARM (generalized trace facility parameters)
	Parameter in IEASYSxx (or issued by the operator):
	Syntax rules for GTFPARM
	IBM-supplied default for GTFPARM
	Statements/parameters for GTFPARM

	Chapter 31. IEAABD00 (ABDUMP written to a SYSABEND data set)
	Parameter in IEASYSxx (or specified by the operator):
	Syntax rules for IEAABD00
	IBM-supplied default for IEAABD00
	Statements/parameters for IEAABD00

	Chapter 32. IEAAPFxx (authorized program facility list)
	Parameter in IEASYSxx (or Supplied by the Operator):
	Syntax Rules for IEAAPFxx
	IBM-Supplied Default for IEAAPFxx
	Statements/Parameters for IEAAPFxx

	Chapter 33. IEAAPP00 (authorized I/O appendage routines)
	Syntax rules for IEAAPP00
	IBM-supplied default for IEAAPP00
	Statements/parameters for IEAAPP00

	Chapter 34. IEACMD00 (IBM-supplied commands)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for IEACMD00
	IBM-supplied default for IEACMD00
	Statements/parameters for IEACMD00

	Chapter 35. IEADMCxx (DUMP command parmlib)
	Performance implications
	Syntax rules for IEADMCxx
	Syntax format of IEADMCxx
	IBM-supplied default for IEADMCxx
	Statements/parameters for IEADMCxx

	Chapter 36. IEADMP00 (ABDUMP written to a SYSUDUMP data set)
	Parameter in IEASYSxx (or specified by the operator):
	Syntax rules for IEADMP00
	IBM-supplied default for IEADMP00
	Statements/parameters for IEADMP00

	Chapter 37. IEADMR00 (ABDUMP written to a SYSMDUMP data set)
	Recommendation for IEADMR00 with z/OS UNIX
	Parameter in IEASYSxx (or specified by the operator):
	Syntax rules for IEADMR00
	IBM-supplied default for IEADMR00
	Statements/parameters for IEADMR00

	Chapter 38. IEAFIXxx (fixed LPA list)
	Parameter in IEASYSxx (or specified by the operator):
	Syntax rules for IEAFIXxx
	Syntax format of IEAFIXxx
	Syntax example of IEAFIXxx
	IBM-supplied default for IEAFIXxx
	Statements/parameters for IEAFIXxx

	Chapter 39. IEAICSxx (installation control specifications)
	Syntax rules for IEASICSxx
	Statements/parameters for IEAICSxx

	Chapter 40. IEAIPSxx (installation performance specifications)
	Syntax rules for IEAIPSxx
	Statements/parameters for IEAIPSxx

	Chapter 41. IEALPAxx (modified LPA list)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for IEALPAxx
	Syntax format of IEALPAxx
	Syntax example of IEALPAxx
	IBM-supplied default for IEALPAxx
	Statements/parameters for IEALPAxx

	Chapter 42. IEAOPTxx (OPT parameters)
	Syntax rules for IEAOPTxx
	Statements/parameters for IEAOPTxx

	Chapter 43. IEAPAKxx (LPA pack list)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for IEAPAKxx
	IBM-supplied default for IEAPAKxx
	Statements/parameters for IEAPAKxx

	Chapter 44. IEASLPxx (SLIP commands)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for IEASLPxx
	IBM-supplied default for IEASLPxx
	Using system commands

	Chapter 45. IEASVCxx (installation-defined SVCs)
	Parameter in IEASYSxx (or entered by the operator):
	Syntax rules for IEASVCxx
	Syntax examples of IEASVCxx
	IBM-supplied default for IEASVCxx
	Statements/parameters for IEASVCxx

	Chapter 46. IEASYMxx (symbol definitions and IEASYSxx members)
	Parameter in LOADxx:
	Performance implications
	Syntax rules for IEASYMxx
	Syntax format of IEASYMxx
	IBM-supplied default for IEASYMxx
	Statements/parameters for IEASYMxx

	Chapter 47. IEASYSxx (system parameter list)
	Overview of IEASYSxx parameters
	Changes to initialization parameters
	Support for system symbols
	Parameter specified by the operator:
	Syntax rules for IEASYSxx
	IBM-supplied default for IEASYSxx
	Specifying the list option for IEASYSxx parameters
	Statements/parameters for IEASYSxx

	Chapter 48. IECIOSxx (MIH, HOTIO, IOTIMING, IOS CTRACE and TERMINAL parameters)
	Missing interrupt handler (MIH)
	I/O timing
	Interaction of MIH and I/O timing processing
	Hot I/O (HOTIO)
	IOS component tracing
	Parameter in IEASYSxx (or specified by the operator):
	Syntax rules for IECIOSxx
	IBM-supplied default for IECIOSxx
	Statements/parameters for MIH
	Statements/parameters for HOTIO
	Options for HOTIO recovery

	Statements/parameters for TERMINAL
	Statements/parameters for CTRACE

	Chapter 49. IEFSSNxx (subsystem definitions) - keyword parameter form
	Restrictions for IEFSSNxx
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for IEFSSNxx
	IBM-supplied default for IEFSSNxx
	Statements/parameters for IEFSSNxx
	Examples of IEFSSNxx member
	Example 1
	Example 2

	Chapter 50. IFAPRDxx (product enablement policy)
	Before creating the member
	Usage considerations
	Parameter in IEASYSxx (or issued by the operator):
	Syntax rules for IFAPRDxx
	Syntax format of IFAPRDxx
	IBM-supplied default for IFAPRDxx
	Statements/parameters for IFAPRDxx
	Examples

	Chapter 51. IGDDFPKG (DFSMS/MVS functional component list)
	Before creating the member
	Listing components and features in IGDDFPKG
	Usage considerations
	Parameter in IEASYSxx (or issued by the operator):
	Syntax rules for IGDDFPKG
	Syntax format of IGDDFPKG
	Syntax examples for IGDDFPKG
	IBM-supplied default for IGDDFPKG
	IBM-supplied sample for IGDDFPKG
	Statements/parameters for IGDDFPKG

	Chapter 52. IGDSMSxx (Storage Management Subsystem definition)
	Parameter in IEASYSxx:
	Defining SMS through the IEFSSNxx member
	Example of an SMS record in IEFSSNxx

	Starting SMS - at IPL and afterward
	Specifying SMS parameters through SETSMS and SET SMS
	Syntax rules for IGDSMSxx
	Syntax format of IGDSMSxx
	IBM-supplied default for IGDSMSxx
	Required keywords for IGDSMSxx
	Optional keywords for IGDSMSxx
	Example of the contents of IGDSMSxx

	Chapter 53. IKJPRM00 (TIOC parameters to control TSO/TCAM)
	Parameter in IEASYSxx (or issued by the operator)
	Syntax rules for IKJPRM00
	IBM-supplied default for IKJPRM00
	Statements/parameters for IKJPRM00

	Chapter 54. IKJTSOxx (TSO/E commands and programs)
	Parameter in IEASYSxx (or specified by the operator):
	Selecting the IKJTSOxx member
	Syntax rules for IKJTSOxx
	IBM-supplied default for IKJTSOxx
	Statements/parameters for IKJTSOxx

	Chapter 55. IPCSPRnn (interactive problem control system)
	Parameter in IEASYSxx (or specified by the operator):
	Syntax rules for IPCSPRnn
	IBM-supplied default for IPCSPRnn
	Statements/parameters for IPCSPRnn

	Chapter 56. IVTPRM00 (Communication Storage Manager)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax format of IVTPRM00
	Syntax rules for IVTPRM00
	IBM-supplied defaults for IVTPRM00
	Statements/parameters for IVTPRM00

	Chapter 57. LNKLSTxx (LNKLST concatenation)
	Using PROGxx to define LNKLST concatenations
	Using LNKLSTxx
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for LNKLSTxx
	Syntax format of LNKLSTxx
	Syntax example of LNKLSTxx
	IBM-supplied default for LNKLSTxx
	IBM-supplied sample for LNKLSTxx

	Chapter 58. LOADxx (system configuration data sets)
	Placement of LOADxx
	Copying LOADxx members
	Filtering with LOADxx
	Filtering example

	Parameter in IEASYSxx (or supplied by the operator):
	Support for system symbols
	Syntax rules for LOADxx
	Syntax format of LOADxx
	IBM-supplied default for LOADxx
	Statements/parameters for LOADxx
	Example of parmlib concatenation

	Chapter 59. LPALSTxx (LPA library list)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for LPALSTxx
	Syntax format of LPALSTxx
	Syntax example of LPALSTxx
	IBM-supplied default for LPALSTxx
	Statements/parameters for LPALSTxx

	Chapter 60. MMSLSTxx (MVS message service list)
	Selecting an MMSLSTxx member
	Parameter in IEASYSxx:
	Sample MMSLSTxx member
	Syntax rules for MMSLSTxx
	Syntax format of MMSLSTxx
	Syntax example for MMSLSTxx
	IBM-supplied default for MMSLSTxx
	Statements/parameters for MMSLSTxx

	Chapter 61. MPFLSTxx (message processing facility list)
	Parameter in IEASYSxx:
	Syntax rules for MPFLSTxx
	Selecting MPFLSTxx members
	IBM-supplied MPFLSTxx member
	Controlling message presentation through MPFLSTxx
	Syntax for controlling message presentation
	IBM-supplied defaults for .MSGCOLR
	Displaying the message presentation attributes for the current MPFLSTxx
	MPFLSTxx parameters for controlling message presentation

	Controlling message management
	Specifying message management
	Syntax for controlling message management
	IBM-supplied defaults for message management
	Listing the message processing attributes for the current MPFLSTxx
	Using other methods to suppress messages

	Statements/parameters for MPFLSTxx
	Controlling command processing using MPFLSTxx
	MPFLSTxx parameters for controlling command processing
	Deactivating a command exit

	Approaches to message suppression using MPFLSTxx
	Conservative list of suppressible non-JES messages
	Aggressive list of suppressible JES2 messages
	Conservative list of suppressible JES3 messages

	Examples of MPFLSTxx members

	Chapter 62. MSTJCLxx (master scheduler JCL)
	Parameter in IEASYSxx (or supplied by the operator):
	Performance implications
	Support for system symbols
	Syntax rules for MSTJCLxx
	IBM-supplied default for MSTJCLxx
	Statements/parameters for MSTJCLxx

	Chapter 63. NUCLSTxx (Customizing the nucleus region)
	Adding and deleting modules
	Contradictory specifications
	Restrictions

	NUCLSTxx compared with NMLDEF
	Relationship to the LOADxx member
	Placement of NUCLSTxx
	NUCLSTxx specification in LOADxx member

	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for NUCLSTxx
	Syntax format of NUCLSTxx
	IBM-supplied default for NUCLSTxx
	Statements/parameters for NUCLSTxx
	Example of replacing modules

	Chapter 64. PFKTABxx (program function key table definition)
	Parameter in IEASYSxx (or entered by the operator):
	Syntax rules for PFKTABxx
	Using the display command
	IBM-supplied default for PFKTABxx
	Statements/parameters for PFKTABxx

	Chapter 65. PROGxx (Authorized program list, exits, LNKLST sets and LPA)
	Using the APF statement
	Defining aliases in the APF list
	Using the IEAAPFPR exec

	Using the EXIT statement
	Using the SYSLIB statement
	Using the LNKLST statement
	Using PROGxx instead of LNKLSTxx
	Using LNKLST processing
	Changing the current LNKLST set
	Concatenating data sets to the LNKLST concatenation
	Allocating a PDS or PDSE for use with LNKLST

	APF authorization for LNKLST data sets
	Cataloging LNKLST data sets
	Modifying the contents of LNKLST data sets
	Removing an XCFAS ENQ
	Removing or compressing a data set in an active LNKLST set

	Placement of SYSLIB and LNKLST statements in PROGxx
	Using the LPA statement
	Considerations for msys for Setup

	Parameter in IEASYSxx (or specified by the operator):
	PROG=xx and APF=xx
	PROG=xx and EXIT=xx
	PROG=xx and LNK=xx

	IBM-supplied default
	Syntax rules for PROGxx
	Syntax format of the APF statement
	Statements/parameters for the APF statement
	Example of the APF statement
	Syntax format of the EXIT statements
	Statements/parameters for the EXIT statement
	Examples of EXIT statements
	Syntax format of the SYSLIB statement
	Statements/parameters for the SYSLIB statement
	Example of the SYSLIB statement
	Syntax format of the LNKLST statements
	Statements/parameters for the LNKLST statement
	Examples of the LNKLST statement
	Syntax format of the LPA statements
	Statements/parameters for the LPA statement

	Chapter 66. SCHEDxx (PPT, master trace table, and abend codes for automatic restart)
	Parameter in IEASYSxx (or specified by the operator):
	Modifying the PPT between IPLs
	Syntax rules for SCHEDxx
	IBM-supplied default for SCHEDxx
	IBM-supplied sample member SCHEDxx
	Statements/parameters for SCHEDxx
	Program properties table (PPT)

	Chapter 67. SMFPRMxx (system management facilities (SMF) parameters)
	Using the SET command
	Using the SETSMF command
	Parameter in IEASYSxx (or supplied by the operator):
	Support for system symbols
	Syntax rules for SMFPRMxx
	Syntax format of SMFPRMxx
	IBM-supplied default for SMFPRMxx
	IBM-supplied sample for SMFPRMxx
	Considerations for msys for Setup
	Parameters for SMFPRMxx

	Chapter 68. TSOKEY00 (TSO/VTAM time-sharing parameters)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for TSOKEY00
	IBM-supplied default for TSOKEY00
	Statements/parameters for TSOKEY00

	Chapter 69. VATLSTxx (volume attribute list)
	Use of 3344 and 3350 Emulated 3330-1 and 3330-11 devices
	Definitions of the mount and use attributes
	Processing the VATLSTxx members
	Parameter in IEASYSxx (or supplied by the operator):
	Support for system symbols
	Creating a VATLSTxx member
	Example of default use attributes

	Syntax rules for VATLSTxx
	Specifying a generic volume serial number
	Specifying a generic device type
	Example of setting the generic device type

	Statements/parameters for VATLSTxx
	Examples of VATLSTxx entries
	IBM-supplied default for VATLSTxx

	Chapter 70. XCFPOLxx (XCF PR/SM policy)
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for XCFPOLxx
	Syntax format of XCFPOLxx
	IBM-supplied default for XCFPOLxx
	Statements/parameters for XCFPOLxx

	Part 3. Appendixes
	Appendix A. IEFSSNxx (subsystem definitions) - positional parameter form
	Parameter in IEASYSxx (or supplied by the operator):
	Syntax rules for IEFSSNxx
	IBM-supplied default for IEFSSNxx
	Statements/parameters for IEFSSNxx

	Appendix B. Symbolic Parmlib Parser
	Activation
	Capabilities
	Limitations

	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

